
Searching for a Parent Instead of Fighting Over
Children: A Fast Breadth-First Search Implementation

for Graph500

Scott Beamer
Krste Asanovi
David A. Patterson

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-117
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-117.html

November 15, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

The authors would like to thank Intel for their hardware donations which
enabled this work and Jason Reidy and Henry Gabb for providing access.
Research supported by Microsoft (Award #024263) and Intel (Award
#024894) funding and by matching funding by U.C. Discovery (Award
#DIG07-10227). Additional support comes from Par Lab affiliates National
Instru- ments, Nokia, NVIDIA, Oracle, and Samsung.

Searching for a Parent Instead of Fighting Over Children:

A Fast Breadth-First Search Implementation for Graph500

Scott Beamer, Krste Asanović, David Patterson
sbeamer@eecs.berkeley.edu, krste@eecs.berkeley.edu, pattrsn@eecs.berkeley.edu

The Parallel Computing Laboratory,
Electrical Engineering & Computer Science Department,

UC Berkeley

November 15, 2011

Abstract

This report provides a summary of an efficient breadth-first search implementation that

is advantageous for social networks. This implementation uses a hybrid approach, combining

a conventional top-down algorithm along with a novel bottom-up algorithm. The bottom-up

algorithm can dramatically reduce the number of edges examined, which in turn accelerates the

search as a whole. This hybrid approach is used to make a fast implementation for the Graph500

Benchmark [2], achieving 5.1 GTEPs at scale=28 (256M vertices with 4B undirected edges) on

a quad-socket 40-core Intel Xeon compute node. It ranks 19th out of 50 on the November 2011

Graph500 Rankings.

1 Introduction

Breadth-First Search (BFS) is a key building block for many graph analysis algorithms, but due

to its low computational intensity and low locality (both spatial and temporal), it is usually

memory bound. We present a hybrid approach that includes a new algorithm that is advanta-

geous for small-world graphs because it accesses and processes less data. This early report is

intended to briefly summarize the implementation used by mirasol (5.1 GTEPs at scale=28)

for the November 2011 Graph500 rankings. A more thorough evaluation of the algorithm, in-

cluding an investigation of when it is advantageous and comparing it to prior work is underway,

and will be submitted soon. Once released, that publication will supercede this one.

1

2 Weakness of The Conventional Top-Down Algorithm

A conventional BFS implementation can be thought of as a top-down approach, which starts at

the search key and propagates down the created BFS tree during each step (Figure 1). Figure 2

shows a classic implementation of a single step of this top-down approach. Each vertex in the

frontier attempts to become the parent of all of its neighbors. This approach results in every

edge in the main connected component being traversed.

Implementations of this same basic algorithm can vary in a number of performance-impacting

ways, including: data structures, traversal order, parallel work allocation, partitioning, synchro-

nization, or update procedure. The process of checking if neighbors have been visited can result

in many costly random accesses. An effective optimization for shared memory machines with

large last-level caches is to use a bitmap to mark nodes that have already been visited [1]. The

bitmap can often fit in the last-level cache, which prevents many of those random accesses from

going out to DRAM.

Social networks have a low effective diameter, so when performing a BFS, even if the graph

has hundreds of millions of vertices, the vast majority of them will be reached in the first several

steps. Since the BFS starts from a single vertex, this means the size of the frontier ramps up

and down exponentially in order to reach so many vertices in so few steps. This exponential

growth follows from the defining properties of a social network: scale-free and small-world.

Table 1 shows the breakdown of a typical search on a scale=27 graph when traversed by a

parallel queue-based top-down traversal, such as the Graph500 omp-csr reference code. The

middle steps (2 and 3) consume the vast majority of the runtime, which is unsurprising since

the frontier is then at its largest size, requiring many more edges to be examined.

During these steps, there are a great number of wasted attempts to become the parent of a

neighbor, since if a vertex is at depth d in the BFS tree, any of its neighbors at depth d−1 could

also be its parent. Depending on the implementation, neighbors may contend to become the

parent of an unvisited vertex. Wasted attempts come not only from other parents in the same

step, but the vertex also could have already been visited in the previous step. Using a bitmap

to mark visited vertices can reduce the time spent checking neighbors, but each vertex on the

frontier is still attempting to become the parent of all of its neighbors. These failed attempts

represent redundant work, since a vertex in a correct BFS tree only needs to have one parent.

The theoretical minimum for the number of edges that need to be examined is the size of the

2

function breadth-first-search(graph, key)

frontier ← {key}
next ← {}
tree ← [-1,-1,. . . -1]
while frontier �= {} do

top-down-step(frontier, next, tree)
swap(frontier, next)
next ← {}

end while
return tree

Figure 1: Classical BFS Algorithm

function top-down-step(frontier, next, tree)

for v ∈ frontier do
for n ∈ neighbors(v) do

if tree(n) = -1 then
tree(n) ← v
next ← next ∪ {n}

end if
end for

end for

Figure 2: Top-Down Algorithm for a single step

BFS tree minus one, since that is how many edges are required to connect it. For the example

in Table 1, only 63,036,116 vertices are in the BFS tree, so at least 63,036,115 edges need to

be considered, which is about 1
67

th
of all the edge examinations that would happen during a

top-down traversal. This factor of 67 is substantially larger than the input degree of 16, and is

caused by two reasons. First, the input degree is for undirected edges, but during a top-down

search, both endpoints of each edge will check it, which doubles the number of examinations.

Secondly, there are a large number of vertices of zero degree, which reduce the size of the main

connected component, which also further increases the effective degree of the vertices it contains.

There is clearly substantial room for improvement by checking fewer edges.

3 Bottom-Up Algorithm

When the frontier is large, there exists an opportunity to perform the BFS traversal more

efficiently by searching in the reverse direction, i.e. going bottom-up. Instead of each vertex

in the frontier attempting to become the parent of all of its neighbors, each unvisited vertex

3

Step Frontier Fraction Edge Failed Fraction
Size of Runtime Examinations Attempts Failed

0 1 0.00002 242 0 0
1 242 0.01836 5,055,487 2,031,553 0.402
2 3,023,934 0.63358 2,902,729,050 2,847,737,876 0.981
3 54,991,174 0.32917 1,309,552,404 1,304,547,038 0.996
4 5,005,366 0.01755 5,870,543 5,855,182 0.997
5 15,361 0.00133 15,406 15,368 0.997
6 38 0.00001 38 38 1.0

Total 63,036,116 1.0 4,223,223,170 4,160,187,055 0.985

Table 1: Typical BFS on a scale=27 graph (128M vertices with 2B undirected edges)

function bottom-up-step(frontier, next, tree)

for v ∈ vertices do
if tree(v) = -1 then

for n ∈ neighbors(v) do
if n ∈ frontier then

tree(v) ← n
next ← next ∪ {v}
break

end if
end for

end if
end for

Figure 3: Bottom-Up BFS Algorithm for one Step

attempts to find any parent among its neighbors. A neighbor is a parent if the neighbor is a

member of the frontier, and this can be determined efficiently if the frontier is represented by a

bitmap. The advantage of this approach is that once a vertex has found a parent, it does not

need to check the rest of its neighbors. Figure 3 shows a single step of this algorithm.

The bottom-up algorithm also removes the need for some atomic operations when paral-

lelized. In the top-down algorithm, there could be multiple writers to the same child, so atomic

operations are needed. With the bottom-up approach, the child writes to itself, so there is only

one writer, which removes any contention concerns. The bottom-up algorithm is advantageous

when a large fraction of the vertices are in the frontier, but it will result in more work if the

frontier is small, so an efficient BFS algorithm must combine this with the top-down algorithm.

4

4 Hybrid Implementation Design

Our hybrid approach uses the top-down algorithm for steps when the frontier is small and

uses the bottom-up algorithm for steps when the frontier is large. The runtime for the top-

down algorithm is proportional to the size of the frontier, while the runtime for the bottom-up

approach is roughly proportional to the number of unvisited nodes divided by the size of the

frontier. This pairing is complementary, since when the frontier is its largest, the bottom-up

algorithm will be at its best whereas the top-down algorithm will be at its worst, and vice versa.

Switching algorithms requires converting the frontier, which is represented by a standard

queue for the conventional top-down algorithm and by a bitmap for the bottom-up algorithm.

Converting from the queue to the bitmap can be done most efficiently when integrated into the

last top-down step before the first bottom-up step. The integrated transition and top-down step

populates the bitmap directly, and is faster than the normal top-down algorithm since it does

not refill the queue. Converting the bitmap back to the queue when switching from bottom-up

to top-down does not take much time since the frontier is quite small at that point.

To control the hybrid approach, cutoff parameters based on the current and predicted next

size of the frontier are used to determine when to switch algorithms, and Figure 4 shows the

overall control logic. The next frontier size can be predicted efficiently by summing the degrees

of all of the vertices in the current frontier. This prediction is an overestimate, since vertices will

be counted multiple times and some of them will have already been visited. When a BFS search

begins and the frontier is only the start vertex, this prediction is exact, however, as the search

continues, the prediction becomes a greater overestimate. At the step before the frontier is its

largest, the prediction will have an error roughly proportional to the degree. If the prediction is

greater than the number of vertices divided by the degree, the prediction must be substantially

overestimating, so the frontier will be its largest soon.

The top-down algorithm starts the search, and continues until the frontier becomes too big.

Initial testing has shown that it is best to switch right before the frontier becomes its largest. If

the controller can guess one step before the switch, it can use the transition top-down algorithm

to accelerate the conversion work (guarded by c1). If the size of the frontier ramps up suddenly,

the top-down algorithm can bypass the transition top-down algorithm and go straight to the

bottom-up algorithm (guarded by c2). The bottom-up algorithm continues until the frontier

becomes small, and then switches back to the top-down algorithm. Making the switch at exactly

5

Top-
Down

Trans.
Top-
Down

Bottom-
Up

C
1 < pred < C

2

pred > C2

frontier < C3 & shrinking

pred ≤ C1 frontier ≥ C3

Start

&
 growing

(convert)

(convert)

Figure 4: Control algorithm for hybrid approach. (convert) indicates the frontier must be converted
from a queue to a bitmap or vice versa between the steps.

the right step is less critical since the late steps take much less time, no matter which algorithm

is used.

Using these insights, we developed the following heuristics for the controller. Let n be the

number of vertices, e be the number of undirected edges, k = e
n be the average degree, and F

be the frontier, the heuristics for the cutoffs are:

pred =
∑

v∈F

degree(v)

c1 =
n

2k

c2 = 2n

c3 =
n

2k

The factors of 2 in the cutoffs are due to k being only half the effective degree, since the traversal

will attempt to search from both sides of each undirected edge.

5 Results

The results (Table 3) for Graph500 were run on mirasol, a large memory, quad-socket multicore

(Table 2). Using the hybrid approach greatly reduces the number of edges checked, which

6

Parameter Value

Architecture Westmere-EX
Model Intel Xeon E7-8870
Clock rate 2.4 GHz
Cores/socket 10
Threads/socket 20
LLC/socket 30 MB
Sockets 4
DRAM Size 256 GB

Table 2: mirasol specifications (LLC is Last-Level Cache)

Scale Avg. Search Search Rate Checks per Vertex Reduction
Time (s) (MTEPs) in BFS Tree in Checks (x)

27 0.424 5067.7 2.822 24.14
28 0.838 5125.5 2.554 27.76
29 1.734 4954.4 2.878 25.64

Table 3: Hybrid approach on Graph500 graphs

explains the high performance. As shown from the results for large searches (Table 3), the vast

majority of edges can go unchecked. As described in Section 2, the potential number of checks

performed per vertex is substantially larger (>64) than the input degree of 16 because the input

degree counts undirected edges, and zero degree vertices inflate the effective degree for the rest

of the graph. The step when the algorithm switches from the top-down to the bottom-up avoids

the most edges because the vertices in the frontier after the switch never get to test their edges.

During the top-down algorithm, each vertex in the frontier checks all of its edges, but during the

bottom-up algorithm, each unvisited vertex (which by definition is not in the frontier), checks

some of its edges.

The MTEPs measure is computed according to the Graph500 specifications, where it is based

on the number of undirected edges in the traversed connected component. The scale=29 result

does not use the validator since there is not enough memory capacity to hold both the input

edge list needed for validation and the loaded graph.

7

6 Implementation Details

The implementation is written in C++/OpenMP and links in the validator and generator from

the Graph500 reference code (version 2.1.4 [2]). It uses a standard Compressed Sparse Row

(CSR) layout to hold the graph, and each undirected input edge is represented as two directed

edges in the loaded graph. We implement our own bitmaps to include atomic versions of all of

the needed operations, but STL [3] vector<bool>s were sufficient for most of the development.

Node identifiers are implemented using 64-bit integers to meet the required size of at least

48-bits.

7 Frequently Asked Questions

In talking to others about these results, some questions have arisen:

Q: Is the Graph500 input graph sufficiently representative to predict performance

on all other graphs?

A: No, we believe it would be better if a graph competition included a suite of potential graphs

rather than just one. An inspiring example is the Sparse Matrix community which uses a variety

of sparse matrices to evaluate innovations [4]. We would be happy to participate in such an

endeavor.

Q: What impact does degree have?

A: If the input graph has a low-effective diameter, the degree is the biggest predictor of how

much faster this hybrid approach will be.

Q: What about high diameter graphs?

A: When performing BFS on a high diameter graph, the frontier should not get large enough

to trigger the change to the bottom-up algorithm, so it will continue with the conventional

top-down algorithm. Even if an adversarial graph is constructed to have a frontier just large

enough to cause the switch, the crossover point is a heuristic selected where both algorithms

have comparable runtime, so performing a step with the bottom-up algorithm should not have

significantly worse performance.

Q: What about graphs with many small connected components?

A: Like high diameter graphs, searches on small connected components should not generate a

frontier large enough to trigger the switch.

Q: How robust is the heuristic for switching algorithms?

8

A: The heuristic makes the right decision the vast majority of the time. The few times it makes

a premature or late switch, the bottom-up approach is so much faster during the advantageous

steps, that the overall search time is still faster than the conventional purely top-down approach.

8 Conclusion

Performing a BFS in the opposite direction by going bottom-up can substantially reduce the

number of edges traversed because a child needs to find only one parent instead of a parent

attempting to claim all possible children. This technique is advantageous when the search is on

a large connected component of low-effective diameter because this will cause the frontier to be

a substantial fraction of the vertices. Using a conventional top-down approach works well for

the beginning and end of such a search, since the frontier will be a small fraction of the vertices.

A hybrid approach can effectively combine these two algorithms, and a simple heuristic of the

number of vertices divided by the degree provides guidance of when to switch.

9 Acknowledgements

The authors would like to thank Intel for their hardware donations which enabled this work and

Jason Reidy and Henry Gabb for providing access. Research supported by Microsoft (Award

#024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery

(Award #DIG07-10227). Additional support comes from Par Lab affiliates National Instru-

ments, Nokia, NVIDIA, Oracle, and Samsung.

References

[1] V Agarwal, F Petrini, D Pasetto, and David A Bader. Scalable graph exploration on multi-

core processors. Supercomputing, 2010.

[2] Graph500 benchmark. http://http://www.graph500.org/.

[3] Standard template library. http://www.sgi.com/tech/stl/.

[4] The university of florida sparse matrix collection. http://www.cise.ufl.edu/research/sparse/matrices/.

9

