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Abstract

The introduction of massively multithreaded (MMT) processors,
comprised of a large number of cores with many shared resources,
has made task scheduling, in particular task to hardware thread
assignment, one of the most promising ways to improve system
performance. However, finding an optimal task assignment for a
workload running on MMT processors is an NP-complete problem.

Due to the fact that the performance of the best possible task
assignment is unknown, the room for improvement of current task-
assignment algorithms cannot be determined. This is a major prob-
lem for the industry because it could lead to: (1) A waste of re-
sources if excessive effort is devoted to improving a task assign-
ment algorithm that already provides a performance that is close to
the optimal one, or (2) significant performance loss if insufficient
effort is devoted to improving poorly-performing task assignment
algorithms.

In this paper, we present a method based on Extreme Value The-
ory that allows the prediction of the performance of the optimal
task assignment in MMT processors. We further show that execut-
ing a sample of several hundred or several thousand random task
assignments is enough to obtain, with very high confidence, an as-
signment with a performance that is close to the optimal one. We
validate our method with an industrial case study for a set of multi-
threaded network applications running on an UltraSPARC T2 pro-
CEessor.

Categories and Subject Descriptors
Process management—Scheduling

D4 [Operating systems]:

General Terms Performance, experimentation

Keywords Scheduling, Task assignment, Multithreading, Statisti-
cal estimation, Extreme value theory
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1.

The main purpose of Lightweight Kernel (LWK) implementations
is to provide maximum access to the hardware resources for the
applications, as well as providing predictable system performance.
In order to achieve these goals, system services are restricted only
to the ones that are essential. Furthermore, the services are stream-
lined, thus reducing the overhead of LWKs to the minimum. Also,
LWKs usually apply simplified algorithms for task scheduling and
memory management that provide a significant and predictable
amount of the processor resources to the running applications.

Dynamic scheduling may potentially vary the amount of pro-
cessing time made available to applications during their execu-
tion, which can significantly affect the performance of HPC ap-
plications [26, 42] and reduce the performance provided by com-
mercial network processors. Maximizing the amount of computa-
tion power delivered to running parallel applications is critical to
achieving high performance and scalability. As a result, many com-
mercial systems already use LWKs with static scheduling, such as
CNK [48] in BlueGene HPC systems, and Netra DPS [3, 4] which
is mainly used in networking.

Multithreaded processors' comprised of several cores, where
each core supports several simultaneously running threads, have
different levels of resource sharing [56]. For example, in a CMP
processor where each core supports the concurrent execution of
several tasks through SMT, all simultaneously running tasks share
global resources such as the last level of cache or the I/O. In ad-
dition to this, tasks running in the same core share core resources
such as the Instruction Fetch Unit, or the L1 instruction and data
cache. Therefore, the way that tasks are assigned to cores deter-
mines which resources they share, which, in turn, may significantly
affect the system performance. In processors with several levels of
resource sharing, task scheduling is comprised of two steps. In the
first step, usually called workload selection, the OS selects the set
of tasks (workload) that will be executed in the processor in the
next time slice, from a set of ready-to-run tasks. In the second step,
called rask assignment, each task in the workload is assigned to a
hardware context (virtual CPU) of the processor.

Introduction

'In this paper, we use the term “multithreaded processor” to refer to
any processor that has support for more than one thread running at a
time. Chip Multiprocessors (CMPs), Simultaneous Multithreading (SMT),
Coarse-grain Multithreading, Fine-Grain Multithreading processors, or any
combination of them are multithreaded processors.



In Massively Multithreaded (MMT) processors with large num-
bers of cores and several levels of resource sharing that increase
in each generation [5], finding a good task assignment becomes an
intractable problem. As the number of possible task assignments is
vast (e.g. 1059 [18, 20, 33, 44], it is unfeasible to do an exhaustive
search in order to find the task assignment with the highest perfor-
mance. Also, the analytical analysis of optimal task assignment is
an NP-complete problem [24].

Therefore, current task assignment approaches can not guaran-
tee that the performance of the predicted best assignment is either
the optimal one, or close to it. As the performance of the optimal
task assignment for a workload is unknown, the room for improve-
ment of current task assignment techniques cannot be determined.
Thus, it is difficult to properly determine the effort needed to in-
vest in the task assignment process. This may lead to overspend-
ing if a good task assignment algorithm is constantly improved, or
sub-optimal performance if a poor-performing algorithm is not en-
hanced.

In this paper, we present a method based on Extreme Value
Theory (EVT) that allows the prediction of the performance of the
optimal task assignment. We also show that, in environments in
which the workload infrequently changes, the system designer can
simply execute a sample of several hundred or several thousand
random task assignments of a given workload and measure the
performance of each assignment. According to this analysis, there
is a very high probability that the performance of the best observed
assignment will be close to the optimal system performance. This
removes the need for any application profiling or an understanding
of the increasingly complex MMT architectures. Unlike other task
assignment proposals that use performance predictors to find the
best task assignment, our method is application and architecture
independent. The method can be applied directly and without any
change to any architecture running any set of applications. Our
study makes the following contributions:

1. We show that running a sample of several hundred or several
thousand random task assignments will most probably capture
an assignment within 1% or 2% of the best performing ones.

2. We present a statistical method that, based on the measured
performance of a sample of random assignments, estimates the
performance of the best task assignment i.e. the optimal system
performance for a given workload.

3. We present an iterative algorithm that, based on the previous
analysis, samples random task assignments until it captures an
assignment with the acceptable performance difference with
respect to the estimated optimal system performance.

We applied the presented analysis and the iterative tasks-
assignment algorithm to an industrial case study in which we
scheduled multithreaded network applications running on the Ul-
traSPARC T2 processor. For all five applications used in the study,
just several thousand random task assignments were enough to
capture an assignment with a performance loss below 2.5% with
respect to the estimated optimal system performance (the estimated
performance of the best task assignment). When the acceptable per-
formance loss increased to 10%, for all the benchmarks in the suite,
running less than 1300 random assignments was enough to provide
the required performance. In addition to being architecture and
application independent, our method required, in the worst case,
around two hours of experimentation on the target systems to find
the task assignments with performance very close to the optimal
one.

The rest of the paper is organized as follows. Section 2 moti-
vates the need for systematic task assignments and quantifies the
number of possible different assignments in modern MMT proces-
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sors. Section 3 presents a statistical analysis that we use to estimate
the optimal system performance based on a small sample of ran-
dom task assignments. Section 4 describes the experimental envi-
ronment used in the case study. In Section 5, we present the results
of experiments in which we applied the presented analysis to the
industrial case study for the assignment of multithreaded network
applications. Section 6 presents the related work, while Section 7
lists the conclusions of the study.

2. Motivation and background

In this paper, we focus on the problem of task assignment for net-
work applications running on massively multithreaded processors.
The importance of network applications increases with the number
and the complexity of services that these applications provide and
with the tremendous growth of Internet traffic. Providing high per-
formance in networking services is critical to sustain these services
and avoid dropping packets, since network processors are saturated
by a high network bandwidth that is constantly increasing.

In order to provide high-speed processing and high throughput,
network applications have specific hardware and operating system
requirements. Massively multithreaded processors are the best al-
ternative to exploit the multiple levels of parallelism exposed by
network applications [57]. These processors support simultaneous
execution of multiple threads that can process numerous packets
at the same time. Network-oriented systems require run-time en-
vironments that provide high performance, high-speed packet pro-
cessing, and execution time predictability. To that end, these sys-
tems use low-overhead runtime environments that reduce the per-
formance impact of the system overhead because of execution of
management tasks [4].

In networking environments, applications continuously process
different packets, repeating a similar processing algorithm for each
packet. As the applications running on network processors pro-
vide a constant set of services and process different packets in a
similar manner, dynamic task scheduling is not essential. In addi-
tion to this, the workload running on network processors is usually
known beforehand and seldom changes at runtime. Hence, the most
promising way to increase the performance of network applications
running in MMT processor is by finding a task assignment with a
performance that is close to the optimal (close-to-the-optimal task
assignment), which is the focus of our study.

Doing optimal task assignment requires a deep knowledge of
the resource requirements of each running task and an understand-
ing of how the tasks interact in each shared processor resource.
Therefore, it is difficult to determine the optimal task assignment
without a previous analysis of a large number of experiments that
exponentially increases with the number of processor hardware
contexts (virtual CPUs), number of different levels of resource
sharing, and number of simultaneously running tasks. The prob-
lem becomes even more complex for multithreaded applications.
When an application comprises several threads, it is not enough
to understand how sharing hardware resources affects the execu-
tion time of each thread independently. The designer also has to be
aware of the way that the threads communicate and to understand
which application threads are the bottlenecks that determine appli-
cation performance. Currently, task assignment is done in one of
two ways:

(1) Manual assignment: A skilled designer determines the op-
timal task assignment based on a detailed analysis of the target
architecture and an off-line application profiling. This analysis is
complex and its complexity increases with the number of processor
hardware contexts, number of levels of resource sharing, and num-
ber of simultaneously running tasks. In addition to this, any change
in the application or in the hardware platform requires the repetition
of the whole analysis. Manual task assignment is not a systematic



approach, its performance depends on the designer’s skills, and, in
general, does not provide the optimal solution.

(2) Performance predictors: Several studies [20, 44, 46] pro-
pose approaches that predict the performance of different task
assignments for a given workload based on some architecture-
dependent heuristics. As the number of all possible task assign-
ments is vast (over 10°° in current architectures), predicting the
performance of all assignments is unfeasible. Therefore, the predic-
tors are used to estimate performance for a sample of assignments,
and to determine the best task assignment in the given sample. In
addition to this, as predictors introduce an error when estimating
the performance of task assignments, the best predicted assignment
in the sample may not be the actual best one. Another drawback of
most of the currently available performance predictors is that they
are not designed with multithreaded applications in mind.

In both manual task assignment and performance predictors,
any change in the architecture or applications may require signifi-
cant extra time and effort to find good task assignments under new
conditions. If task assignment is done manually, a change in the set
of running applications or target architecture requires the designer
to repeat the whole analysis. In the case of performance predictors,
the whole process of application profiling and performance estima-
tion has to be re-analyzed, and the prediction algorithm may require
significant changes.

Number of possible task assignments in current MMT pro-
cessors: In current multithreaded processors comprised of sev-
eral cores where each core supports several simultaneously-running
tasks, the total number of possible task assignments is vast [18, 20,
33, 44]. This number will grow hugely in future massively multi-
threaded processors in which the number of cores and number of
different levels of resource sharing increase [5]. In order to illus-
trate this, we study the number of possible assignments when sev-
eral tasks simultaneously execute on the UltraSPARC T2 proces-
sor. The UltraSPARC T2 processor comprises eight cores, and each
core contains two hardware pipelines. Each (hardware) pipeline can
execute up to four tasks at a time, meaning that the maximum num-
ber of simultaneously running tasks is 64. The number of possi-
ble task assignments for different workload size is shown in Ta-
ble 1. The first column of the table shows the number of tasks in
the workload. We present results for 3, 6, 9, 12, 15, 18, and 60
tasks. The second column presents the number of different task as-
signments for a given workload size. When the workload is com-
prised of 3 tasks, a, b and ¢, the number of possible task assign-
ments is 11. For example, in one assignment, a is executed alone
on Core 0, while b and ¢ run inside the same hardware pipeline of
Core 1: {[a][]}{[bc][]} *. In the second assignment, a executes
alone on Core 0, and b and c are distributed among two hardware
pipelines of Core 1, {[a][]}{[b][c]}, etc. The third column of the
table shows the time needed to execute all possible task assign-
ments assuming that each assignment can be executed in only one
second. Finally, in the last column, we present the time needed to
predict the performance of all task assignments. We make an opti-
mistic assumption that the performance of a single assignment can
be predicted in 1us that is in the order of 1000 cycles of a processor
running at 1GHz frequency.

Overall, we observe that the number of possible tasks assign-
ments as well as the time needed to execute them grows exponen-
tially with the number of tasks in the workload. The point where
running all assignments is unfeasible is reached very fast. For 9
tasks in the workload, the time needed to execute all assignments
is 7 days, for 12 tasks, the execution time is more than 15 years.
For 60-task workloads that use 94% of hardware contexts of the

2 The rest of the cores are not shown for the sake of simplicity.
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Numb ber of ble | Time ded to te | Time ded to predict

of tasks | task assignments all task assignments all task assignments
3 11 11 seconds 11 ps|
6 1,526 25 minutes| 1.5 ms
9 591 x 103 7 days 0.6 seconds|
12 458 x 108 15 years| 8 minutes
15 600 x 10° 19 thousand years 7 days
18 971 x 1012 30 million years 31 years
60 550 x 10° 1.75 x 10°1 years 1.75 x 10%° years|

Table 1. Number of different task assignments for applications
running on the UltraSPARC T2 processor

processor, the time needed to execute all possible task assignments
is 1.75x10°* years. The results presented in Table 1 clearly show
that, in general, running all task assignments is unfeasible, and that
an exhaustive search cannot be used to find the optimal system per-
formance for a given workload.

From Table 1, we also see that the prediction of all possible
tasks assignments is unfeasible. The last column shows that, for
example, for the case of 15-task workloads, the time needed to
predict all assignments is 7 days. For 18 tasks, the prediction time is
measured in years. Therefore, performance predictors can be used
only to determine the close-to-the-optimal task assignment in a
limited sample. But, as the number of possible task assignments
in modern processors is vast, the effectiveness of performance
predictors is questionable [18, 20]; even if we assumed that a
performance predictor would be able to find the best assignment in
the sample, it would not be clear what the performance difference
between the best assignment in the sample and the actual global
best assignment (the optimal system performance) would be.

Importance of knowing the optimal system performance:
Numerous studies present the algorithms for task assignments on
multithreaded processors (see Section 6). Given that, in general,
running all possible task assignments is unfeasible, several au-
thors [6, 20, 44] verify their proposals with respect to a naive task
assignment, in which tasks are randomly assigned to the virtual
CPUs of the processor, or Linux-like assignments, in which the
number of tasks per core or scheduling domain is balanced. It is
our position that the evaluation of those proposals could signifi-
cantly improve if they were also compared to the performance of
the optimal task assignment.

We use an example to show how the evaluation of task assign-
ments techniques can be misleading if the optimal system perfor-
mance is unknown. Figure 1 presents the performance of two multi-
threaded network benchmarks running on the UltraSPARC T2 pro-
cessor. Both benchmarks used in the experiment, IPFwd-intadd and
IPFwd-intmul, are based on a generic 3-thread pipelined IP For-
warding network application [44]. Figure 1 shows the results for
two instances of the 3-thread benchmark (six threads) simultane-
ously running on the processor. As, in this specific case, the to-
tal number of possible task assignments is around 1500, we can
obtain the performance for all assignments. The X axis lists the
benchmarks that are used in the experiment and the Y axis shows
the performance measured in processed Packets Per Second (PPS).
The chart is divided into two parts. In the left part, we only plot the
results for Naive and the Linux-like task assignment. In the right
part, we also include the bar that corresponds to the optimal system
performance.

Based on the results presented in Figure 1, we want to analyze
whether the Linux-like scheduler provides a good performance for
IPFwd-intadd and IPFwd-intmul benchmarks running on the Ul-
traSPARC T2 processor. First, we compare only the Linux-like
and Naive scheduler (see the left part of the chart). The improve-
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Figure 1. Comparison of a naive, Linux-like, and optimal task
assignment

ment of the Linux-like scheduler with respect to naive scheduling
is around 110,000 PPS (8%) for IPFwd-intadd benchmark, and
around 30,000 PPS (2%) for IPFwd-intmul benchmark. Based on
these results, we could conclude that the Linux-like scheduler pro-
vides much better performance for I[PFwd-intadd than for IPFwd-
intmul benchmark.

However, when we also consider the performance of the optimal
task assignment, the conclusions of the analysis change. From the
results presented in the right part of the chart, we see that the differ-
ence between the optimal performance and performance provided
by the naive scheduler is much larger for /PFwd-intadd than for
IPFwd-intmul benchmark, 305,000 PPS (22%) and 115,000 PPS
(7%), respectively. Therefore, we conclude that the improvement
of the Linux-like scheduler for /PFwd-intadd benchmark is higher
because the room for the improvement is larger, and not because the
Linux-like scheduler fits better with this benchmark. Actually, for
the IPFwd-intmul benchmark, the Linux-like scheduler provides a
performance much closer to the optimal one. For IPFwd-intmul, the
performance loss of the Linux-like scheduler with respect to opti-
mal performance is only 85,000 PPS (5%). For IPFwd-intadd, the
performance loss is 200,000 PPS (12%).

Overall, knowing the optimal system performance not only im-
proves the evaluation of different task assignment techniques, but it
also shows the performance difference between the proposed task
assignments and the optimal one. This performance difference de-
termines the upper limit for improvement of a given task assign-
ment algorithm, which is the most important piece of informa-
tion for the system designer when deciding whether the algorithm
should be enhanced.

3. A statistical approach to the task assignment
problem

In this paper, we present a statistical method that overcomes the
limitations of the approaches currently used for task assignment
in multithreaded processors. The analysis is comprised of three
parts. First, we execute a sample of random task assignments on
the target processor and measure the performance of each one of
them. We analyze whether the best performing assignment in the
random sample exhibits performance close to the optimal one. In
order to do this, we analyze the probability that a sample of ran-
domly selected n task assignments contains at least one from the
P% (e.g., P = 1, 2, or 5%) of the best-performing assignments.
Second, we show how the cumulative distribution function can be
used to identify which portion of all task assignments has good per-
formance. Thirdly, we use Extreme Value Theory to statistically es-
timate the performance of the best task assignment, i.e. the optimal
system performance for the given workload. We also use the esti-
mated optimal system performance to determine the possible room
for the performance improvement of the proposed task assignment
method.
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Figure 2. Probability that a sample contains a task assignment
from P% of the best-performing assignments

3.1 Finding task assignments with a good performance

The probability that a sample of random assignments selected from
a vast population contains the assignment with the best perfor-
mance is low. However, it is not clear what the probability is that a
sample of random assignments contains at least one of the assign-
ments with a good performance.

Assume that event A is the probability that a sample contains at
least one task assignment from the P% of best-performing assign-
ment. Event A’ is the opposite of event A, representing the proba-
bility that the random sample contains zero task assignments from
PY% of the best-performing assignments. If the number of possible
task assignments is large (i.e. the population is large), the proba-
bility that a single assignment is in the lower (100 — P)% of the
population is 10100613 . We assume that the sample is selected from
a finite population of all task assignments using sampling with re-
placement. Sampling with replacement means that at any draw, all
assignments in the population are given an equal chance of being
drawn, no matter how often they have already been drawn [16].
In addition to this, we assume that the selected task assignments
in the sample are mutually independent and uniformly distributed.
Taking into account these assumptions, the probability that all n
assignments in the sample are contained in the lower (100 — P)%
of the population is computed as: P(A") = (122=F)". As A and
A’ are opposite events, the sum of probabilities that they occur is
equal to 1: P(A) + P(A’) = 1. Therefore, the probability of the
event A can be computed as:

P(4) 100

We observe that the probability that a sample of random task
assignments contains at least one of the P% of the best-performing
assignment is independent of the population size (i.e. the number of
possible task assignments). However, we have to be aware that this
is valid only for large populations, which is satisfied in the case of
task scheduling problems in MMT processors, as we have shown
in Table 1.

Figure 2 plots the probability P(A) for the samples of dif-
ferent size and for different percentages of the best-performing
task assignments. The X axis of the figure shows the number
of assignments in the sample (n), while the Y axis presents the
probability that the sample contains at least one from P% of the
best-performing task assignments. The figure shows data for P =
1, 2, 5, 10, 25. We derive three conclusions from Figure 2. First,
that the probability asymptotically approaches 1 as the number of
task assignments in the sample increases. Second, as the fraction
of the best-performing assignments decreases (from 25% to 1% in
the figure) the probability approaches 1 slower (more task assign-
ments are required to reach a high probability). Finally, we observe

(A =1- (IOO—P)“
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that small samples of below 10 elements are unlikely to capture any
task assignment from 1%, 2%, and 5% of the best-performing ones.
However, a sample of several hundred random observations is suffi-
cient to capture at least one of 1% or 2% of the best-performing task
assignments with a very high probability. This means that, if we
assume that 1% or 2% of the best-performing assignments have a
good performance, simply running several hundred or several thou-
sand randomly selected task assignments is sufficient to capture at
least one assignment with a good performance.

3.2 Cumulative Distribution Function

One way to determine which portion of the population of all task
assignments exhibits a good performance is by plotting the Cu-
mulative Distribution Function (CDF). We illustrate CDF with the
following example. Figure 3 shows the CDF of all 1500 task as-
signments for a network processing a workload of six threads. The
details of the experimental framework are described in Section 4.
The X axis of the figure shows the measured performance in Mil-
lions of Packets processed Per Second (MPPS). The Y axis shows
the portion of all task assignments (the population) that exhibit a
performance lower or equal to the corresponding value on the X
axis.

The presented CDF plot also shows the importance of task as-
signment. The performance of the task assignments ranges from
0.715 MPPS to 1.7 MPPS, meaning that non-optimal assignment
could lead to W = 58% of performance loss. The
performance difference in P% of the best-performing task assign-
ments can be directly determined from the CDF of the population.
For the data presented in Figure 3, the performance difference in
1% of the best-performing task assignments is very low, below
10,000 PPS which is only 0.6% of the optimal system performance.
However, in general, since running all task assignments is not fea-
sible, CDF based on the performance of all assignments cannot be
constructed. In that case, the measured performance of a sample
of task assignments can be used to construct an Empirical CDF
(ECDF) that estimates the CDF of the whole population [27, 34].
ECDEF is a very good method to estimate the median part of the ac-
tual CDF, but it cannot be used to infer the performance of the best
task assignments in the tails of CDF of vast populations. Therefore,
ECDF cannot be used to estimate (with a hard confidence level)
the optimal system performance, nor the performance difference in
P% of the best-performing task assignments, which are the main
goals of our study.

3.3 Estimation of the optimal performance

One way to evaluate any task assignment approach is to compare
the performance of the task assignments provided by the approach
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with the performance of the best assignment, i.e. with the optimal
system performance. This performance difference shows the room
for possible improvement of the proposed scheduling approach.
However, as in general the number of possible task assignments is
vast, the optimal system performance cannot be determined [33].
In this paper, we propose using statistical inference methods to
estimate the optimal system performance based on the measured
performance of a sample of random task assignments.

3.3.1 Extreme value theory

We estimate the performance of the best task assignment using
Extreme Value Theory (EVT). EVT is a branch of statistics that
studies extreme deviations from the median of distributions [10,
11]. One of the EVT approaches is the Peak Over Threshold (POT)
method. The POT method takes into account the distribution of the
observations that exceed a given (high) threshold. For example, in
Figure 4, the observations x1, x4, x5, and x exceed the threshold
u and constitute extreme values that can be used in POT analysis.

The POT method can also be explained using cumulative dis-
tribution function (CDF). For example, assume that F' is the CDF
of a random variable X . The POT method can be used to estimate
the cumulative distribution function F;, of values of x above a cer-
tain threshold w. The function F3, is called the conditional excess
distribution function and it is defined as

Fu(y) =P(X —u<y|X>u), 0<y<zr-—u,

where X is the observed random variable, v is the given thresh-
old, y = x—wu are the exceedances over the threshold, and xr < 0o
is the right endpoint of the cumulative distribution function F'.
Figure 5 shows a CDF of a random variable X (upper chart) and
the corresponding conditional excess distribution function Fy (y)
(bottom chart).



The POT method is based on the following theorem [9, 43]:

THEOREM 1. For a large class of underlying distributions func-
tions F, the conditional excess distribution function Fy(y), for u
large, is well approximated by F,(y) = Ge¢ o (y) where

1— (14 £y)71/¢ 0
Geon) = { [T U0 A 20

fory € [0,(xzr —w)]if€ > 0andy € [0,—%} if € < 0, where
Ge¢,o is called Generalized Pareto Distribution (GPD).

This means that the F, of numerous distributions that present
real-life problems can be approximated with GPD. For each partic-
ular problem, the decision as to whether GPD can be used to model
the problem, is made based on how well the sample of observations
can be fitted to GPD. We describe the goodness of fit of observa-
tions to GPD in Section 3.3.2 in Step 2 and Step 3 of the presented
analysis. GPD is defined with two parameters: shape parameter &
and scaling parameter o. One of the characteristics of GPD is that
for & < 0 the upper bound of the observed value (in our study,
the performance of the best task assignment) can be computed as
u— %, where o and ¢ are the GPD parameters and w is the selected
threshold [25, 35].

In Theorem 1, the definition of G¢ () for parameter { = 0 can
only be used to model problems with an infinite upper bound [25,
35]. As in this study we use GPD to estimate application perfor-
mance when running in a real computer system, the upper bound of
the observed value is finite and the estimated values of the parame-
ter £ are always f < 0. Therefore, for the sake of the simplicity of
the presented mathematical formulas, in the rest of the paper we do
not present G¢ o (y) formulas for parameter £ = 0.

3.3.2 Application of Peak Over Threshold method

We use the POT method to estimate the optimal system perfor-
mance for a given workload (i.e. the performance of the best task
assignment) based on the measured performance of the sample of
random task assignments. The application of the POT method in-
volves the following steps:

Step 1: Generate the sample of random task assignments, exe-
cute the assignments on the target machine, and measure the per-
formance of each assignment. A requisite of the presented statis-
tical analysis is that the selected task assignments in the sample
are independent and identically distributed (iid): they have to be
independent and have to have the same marginal distribution. The
sample assignments have to be taken from a single population using
sampling with replacement [55]. The method we use to generate iid
task assignments is described next.

For example, assume that a workload of 7' tasks would be
assigned on a processor comprising V' hardware contexts, where
T < V. We enumerate the hardware contexts of the processor with
integers from 1 to V' and for each task in the workload we randomly
select an integer from this interval. The number assigned to each
running task represents the hardware context to which the task is
mapped to in a given task assignment. After mapping all tasks, we
check if the generated task assignment is valid. An assignment is
not valid if two or more tasks are mapped to the same hardware
context. If this is the case, we simply discard the invalid assignment
and repeat the whole process until the sample contains the required
number of task assignments. As assignments in the sample are
independent and they are sampled from a single population using
sampling with replacement, the generated sample is comprised of
iid task assignments.

Step 2: Select the threshold w. The selection of the threshold
u is an important step in POT analysis. Gilli and Kéllezi [25,
35] propose using sample mean excess plot, a graphical tool for
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threshold selection. This method first sorts all task assignments in
a sample in non-decreasing performance order: 27 < zy < - <
x. Figure 6(a) shows the sorted performance of 5000 random task
assignments for a workload comprised of 24 threads of the IPFwd-
L1 application (see Section 4). Then, the possible threshold w takes
the values from x7 to x, (7 < u < ;) and for each value we
compute the sample mean excess function ey, (u):

en(u) = %ﬁl;u),where E=min{ ¢ | a2} >u}.

In this formula, the factor n — k + 1 is the number of obser-
vations that exceed the threshold. Finally, the sample mean ex-
cess plot is defined by the points (u, en(u)) for 27 < u < ap;.
Figure 6(b) shows the example of the sample mean excess plot for
24 threads of /PFwd-L1 application.

As we are interested in the upper performance bound estima-
tion, the estimated parameter £ of GPD has to be negative (é < 0).
One of the characteristics of the GPD with parameter £ < 0 is that
it has linear mean excess function plot. In order to have a good fit
of the conditional distribution function F, to GPD, the threshold
should be selected so that the observations that exceed the thresh-
old have a roughly linear sample mean excess plot. As an example,
for the data presented in Figure 6, the threshold should be selected
to be around 6.6 x 10°. Sample mean excess plot is also a very good
tool to test whether GPD can be used to model a particular set of
observations. If the right portion of the mean excess plot for the
sample of measured task assignments performance is not (roughly)
linear, that particular problem cannot be modeled using GPD.

Another important tool that can be used to understand if a given
sample of observations can be modeled with a Generalized Pareto
Distribution is a quantile plot [10, 35]. In a quantile plot, the sample
quantiles xj' are plotted against the quantiles of a target distribution
F~Y(q;) for i =1,...,n. If the sample data originates from the
family of distributions F', the plot is close to a straight line. For
all experiments presented in this paper, we plot the quantiles of
the samples of observations against the quantiles of GPD. In all



experiments, the form of quantile plots strongly suggest that that
samples of observations follow a Generalized Pareto Distribution.
The linear sample mean excess plot and the quantile plot are
not the only constraints that should be considered when selecting
the threshold. If the threshold is too low, the estimated parameters
of GPD may be biased to the median values of the cumulative
distribution function instead of to the maximum values. In order to
avoid this bias, when selecting a threshold we have to ensure that
the number of observations that exceed the selected threshold is not
higher than 5% of the task assignments in the whole sample. This
is a commonly used limit in studies that use POT analysis [25, 35].

Step 3: Fit the GPD function to the observations that exceed the
threshold and estimate parameters £ and o.

Once the threshold u is selected, the observations over the
threshold can be fitted to GPD, and the parameters of the distri-
bution can be estimated. For the sake of simplicity, we assume
that observations from x} to z;, in the sorted sample presented
in Figure 6(a) exceed the threshold. We rename the exceedances
Yi—k+1 = a3 —u for k < 4 < n and use the set of elements
{y1,¥2, ..., ym } to estimate the parameters of GPD. The number of
elements in the set, m = n — k + 1, is the number of exceedances
over the threshold.

Different methods can be used to estimate the parameters of
GPD from a sample of observations [12, 28, 30, 52]. In our study,
we used the estimation based on the likelihood function. The
likelihood is a statistical method that estimates distribution pa-
rameters based on a set of observations [8]. The GPD is defined
with parameters £ and o. The likelihood that a set of observations
{y1, Y2, ..., ym } is the outcome of a GPD with parameters £ = &
and 0 = oy is equal to the probability that GPD with parameters
&o and o has the outcome {y1, y2, ..., Ym }-

We will use the likelihood function to compute the probability
that different values of GPD parameters have for a given set of
observations {y1, Y2, ..., Ym - As the logarithm is a monotonically
increasing function, the logarithm of a positive function achieves
the maximum value at the same point as the function itself. This
means that instead of finding the maximum of a likelihood function,
we can determine the maximum of the logarithm of the likelihood
function - the log-likelihood function. In statistics, log-likelihood
is frequently used instead of the likelihood function because it
simplifies the computation. The estimation of parameters £ and o
of G¢ - (y) involves the following steps:

(i) Determine the corresponding probability density function as
a partial derivate of G¢ , (y) with respect to y:

G 4 (1 —1_
geo(y) = 252 = L1 4 £y)7¢

(ii) Find the logarithm of g¢ » (y):
log (9¢,0(y)) = —log o — (§ + 1) log(1 + £y)

(iii) Compute the log-likelihood function L(&,o|y) for the
GPD as the logarithm of the joint density of the observations

1

{y17y27' 7ym}
L(¢ oly) = Zlog 9e,o(ui)
L(E oly) = —m log o — (1 +1)D log(1 + Sy)

i=1
We compute estimated values of parameters £ and &, to maxi-
mize the value of the log-likelihood function L(&, oly) for obser-

vations {y1, Y2, ..., Ym }*
L(¢,6)y) = max(L(¢, oly))

L(£,6]y) = max(—m log o —

(13 tog(1+ Sp)

i=1
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In order to determine the parameters .f and &, we find the min-
imum of the negative log-likelihood function, rgnn( L&, oly)),

using the procedure fminsearch() included in Matlab® R2007a [14].

The values f and & are called the point estimate of the parameters
¢ and o, respectively.

Step 4: Estimate the optimal system performance (the upper
performance bound of all task assignments). The upper bound of
the observed value can be determined only for £ < 0 which is
satisfied for all data sets that are presented in this paper. The point
estlmate of the Upper Performance Bound (UPB) is computed as
UPB = u — 6/¢.

In order to indicate the confidence of the /eztimate, we compute
the confidence intervals of the estimated UPB. UPB confidence
interval is computed using likelihood ratio test [8] which consists
of the following steps:

(i) Define GPD as a function of & and UPB:

Gg,UPB(y) =1-(1- UPB— uy)_1/§
(ii) Determine the corresponding probability density function:

9G¢,upB (¥) -1-1
geups(y) = SGU;B L= _g(upls—u)(l - UPBl—uy) ¢

(iii) Compute the joint log-likelihood function for observations
{y17 sey ym}

L(¢, UPBJy)

= log ge,urn(v:)

i=1
—n log(—&(UPB — u)) — (1 + = )Zlog(l

(iv) Find the UPB confidence interval. We determme the confi-
dence interval for UPB using likelihood ratio test [8] and Wilks’s
theorem [15, 59, 60] The maximum log-likelihood function is de-
termined as L (¢, UPB|y) = mUax( (¢, UPB)).

L(¢, UPBJy) =

The function L(, UPB\y) has two parameters that are free to
vary (£ and UPB), hence it has two degrees of freedom, df1 = 2. As
UPB is our parameter of interest, the profile log-likelihood function
is defined as L* (UPB) = max L(¢,UPB).

The function L*(UPB) has one parameter that is free to vary
i.e. one degree of freedom, dfs = 1. Wilks’s theorem applied to
the problem that we are addressing claims that, for large Il.lgber
of exceedances over the threshold, distribution of 2(L(£, UPB —
L*(UPB)) converges to a x* distribution with df; — dfs degrees
of freedom. Therefore, the confidence interval of UPB includes all
values of UPB that satisfy the following condition:

(€]

X(21—a),1 is the (1 — a)-level quantile of the x? distribution
with one degree of freedom (dfi — df: = 1). « is the con-
fidence level for which we compute UPB confidence intervals.

. . 1
L(¢,UPB) — L*(UPB) < §X?1—Q),1

1
UPB — u

Yi)



We illustrate the computation of the UPB confidence interval in
Figure 7. The figure plots L*(UPB) for different values of UPB.

For UPB = UPB, L* reaches its maximum. The confidence in-
terval of UPB includes all values of UPB that satisfy the condi-
tion  L*(UPB) > L(§,UPB) — £x{, ., which corresponds
to the Equation 1. We computed the UPB confidence interval using
an iterative method based on the fininsearch() function included in
Matlab® R2007a.

The code that generates the sample mean excess plots, infers
the parameters of the GPD distribution, and estimates the optimal
system performance was developed in Matlab™~ R2007a.

3.4 Summary

In this section, we have presented two statistical methods. The first
method computes the probability that a sample of n randomly se-
lected task assignments captures at least one out of P% (e.g. 1%)
best performing assignments. The results of this method show that
running several hundred or several thousand random tasks assign-
ments is enough to capture at least one out of 1% of the best
performing assignments with a very high probability. The second
method estimates the performance of the best-performing task as-
signment, i.e. the optimal system performance for a given work-
load. The method infers the optimal system performance with the
hard statistical confidence based on a measured performance of the
sample of random task assignments. The presented method is com-
pletely independent of the hardware environment and target appli-
cations. The method scales to any number of cores and hardware
contexts per core and it does not require any profiling of the ap-
plication nor does it require knowledge of the architecture of the
target hardware.

4. Experimental environment

We evaluated the presented statistical analysis for the case study
of multithreaded network applications running in a real industrial
environment. The environment comprised two T5220 machines
that managed the generation and the processing of network traffic.
Each T5220 machine comprised one UltraSPARC T2 processor.
One T5220 machine executed the Network Traffic Generator (NT-
Gen) [4]. NTGen is a software tool, developed by Oracle that gen-
erates IPv4 TCP/UDP packets with configurable options to mod-
ify various packet header fields. NTGen transmitted network pack-
ets through a 10Gb link to the second T5220 machine in which
we executed the task assignments selected by our method. In all
the experiments presented in the study, NTGen generated enough
traffic to saturate the network processing machine. Thus, in all ex-
periments, the performance bottleneck was the speed at which the
packets were processed, which is determined by the performance
of the selected task assignment.

4.1 UltraSPARC T2 processor

The UltraSPARC T2 is a multithreaded processor [1][2] that com-
prises eight cores connected through the crossbar to the shared L2
cache (see Figure 8). Each of the cores supports eight hardware
contexts, thus up to 64 tasks can be simultaneously executed on the
processor. Strands inside each hardware core are divided into two
groups of four strands, forming two hardware execution pipelines.
Therefore, tasks simultaneously running on the UltraSPARC T2
processor can share (and compete for) different resources in three
different levels depending on how they are distributed on the pro-
cessor. Resources at the IntraPipe level, such as the Instruction
Fetch Unit (IFU) and the Integer Execution Units (IEU) are shared
among tasks running in the same hardware pipeline. The IntraCore
resources, such as the L1 instruction cache, L1 data cache, in-
struction and data TLBs, Load Store Unit (LSU), Floating Point
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the UltraSPARC T2 processor

and Graphic Unit (FPU), and Cryptographic Processing Unit are
shared among tasks running on the same core. Finally, the resources
shared among all tasks simultaneously running on the processor
(InterCore sharing level) are mainly the L2 cache, the on-chip in-
terconnection network (crossbar), the memory controllers, and the
interface to off-chip resources [56].

4.2 Netra DPS

Networking systems use lightweight runtime environments to re-
duce the overhead introduced by fully-fledged OSs. One of these
environments is Netra DPS [3, 4] developed by Oracle. Netra DPS
does not incorporate virtual memory nor a run-time process sched-
uler, and performs no context switching. The assignment of running
tasks to processor hardware contexts (virtual CPUs) is performed
statically at the compile time. It is the responsibility of the pro-
grammer to define the hardware context in which each particular
task will be executed. Netra DPS does not provide any interrupt
handler nor daemons. A given task runs to completion on the as-
signed hardware context without any interruption.

4.3 Benchmarks

Netra DPS is a specific lightweight runtime environment that does
not provide functionalities of fully-fledged OSs such as system
calls, dynamic memory allocation, or file management. There-
fore, benchmarks included in standard benchmark suites have to be
adopted in order to execute in this environment. The benchmarks
used are described next:

(1) IP Forwarding (IPFwd) is one of the most representative
Layer2/Layer3 network applications. IPFwd application makes the
decision to forward a packet to the next hop based on the desti-
nation IP address. Depending on the size of the lookup table and
destination IP addresses of the packets that are to be processed, the
IPFwd application may have significantly different memory behav-
ior. In order to cover different cases of IPFwd memory behavior,
we created two variants of the [PFwd application that are based on
the IPFwd application included in the Netra DPS distribution [3]:

(i) The lookup table fits in the L1 data cache (IPFwd-L1);

(ii)) The lookup table entries are initialized to make IPFwd
continuously access the main memory (IPFwd-Mem benchmark).

IPFwd-L1 is representative of the best case of IPFwd memory
behavior, since it shows high locality in data cache accesses. On
the other hand, IPFwd-Mem represents the worst case of IPFwd
memory behavior used in network processing studies, in which
there is no cache locality between accesses to the lookup table [47].

(2) Packet analyzer is a program that can intercept and log traf-
fic passing over a network or part of a network [17]. Packet analyz-



ers are primary tolls for network monitoring and management used
to troubleshoot network problems, examine security issues, gather
and report network statistics, detect suspect content, and filter it
from the network traffic [51, 54, 61].

The packet analyzer that we used in the experiments captures
each packet that passes through the Network Interface Unit (NIU),
decodes the packet, and analyzes its content according to the ap-
propriate RFC specifications [31]. The packet analyzer can display
the information about different fields of packet headers at Layer 2,
Layer 3, and Layer 4, and about the packet payload. A user can de-
cide to log all traffic that passes through the NIU, or to define filters
based on many criteria. In the experiments presented in this paper,
we used the packet analyzer to log MAC source and destination
address, time to live field, Layer 3 protocol, source and destination
IP address, and source and destination port number of all packets
passing through the NIU of the processor under study.

(3) Aho-Corasick is a string matching algorithm. String match-
ing is the basic technique to analyze the network traffic at the appli-
cation layer [29]. In networking, string matching algorithms search
for a set of strings (keywords) in the payload of the network pack-
ets. Aho-Corasick is an efficient algorithm that locates all occur-
rences of a given set of keywords in a string of text (packet payload
in case of packet processing). The algorithm constructs a finite state
pattern matching machine from the keywords and then uses the pat-
tern matching machine (finite automata) to process the string of text
in a single pass [7]. The Aho-Corasick string matching algorithm
has proven linear performance, and it is suitable for searching of a
large set of keywords concurrently. This is why the Aho-Corasick
algorithm is used in state-of-the art network intrusion detection sys-
tems such as Snort [40].

In the experiments presented in the paper, we used the Aho-
Corasick algorithm to search for keywords from Snort Denial-of-
Service set of intrusion detection rules (version 2.9, November
2011) in the payloads of the packets that were processed.

(4) Stateful packet processing is an important component of
state-of-the art network monitoring tools [41, 58] and intrusion
prevention and detection system [51]. Unlike stateless applications
that process each packet independently (like the IPFwd, Packet an-
alyzer, and Aho-Corasick benchmarks used in this study), stateful
packet processing keeps the information of previous packet pro-
cessing.

The packets that belong to the same flow, i.e. have the same
flow-keys?,
The record of a given flow contains the information as to whether
the flow is open (the connection is established), safe, malicious,
etc. The information about the active flows is stored in a hash table
that is indexed based on the flow-keys. The common main compo-
nents of stateful packet processing are: (1) Read the flow-keys of
a packet; (2) Use a hash function to determine the corresponding
hash table entry based on the packet flow-keys; (3) Access the hash
table. Lock, read, and update the flow-record of an already-existing
flow, or create a flow-record for a new flow.

The stateful packet processing benchmark that we used in the
experiments is comprised of these three components. The stateful
benchmark uses the same hash function as the one that is imple-
mented in nProbe network monitor [19, 41]. The hash table con-
tains 2'% entries, which is sufficient to store the records of ac-
tive flows of fully-utilized 10Gb link [57], and it is the hash ta-
ble size that was already used to test different network monitoring
tools [19].

3The flow-keys are typically the source and destination IP address, the
source and destination port, and protocol used.

share the common information called the flow-record [19].
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4.3.1 Benchmark implementation

Each benchmark is divided into three threads that form a software
pipeline (see Figure 9). This is a commonly-used approach in the
development of the network applications [4, 62]:

e The receiving threads (R) of all benchmarks read the packets
from the Network Interface Unit (NIU) associated with the re-
ceiver 10Gb network link, and write the pointers to the packets
into the R—P memory queues.

e The processing threads (P) read the pointer to the packets from
the memory queues, process the packets, and write the pointers
to the P—T memory queues. The packet processing is different
for each benchmark, e.g. P threads of the IPFwd-L1 and IPFwd-
Mem benchmarks read the destination IP address, call the hash
function, and access the lookup table; P threads of the Aho-
Corasick benchmark search for the keywords in the packet
payload, efc.

e Finally, the transmitting threads (T) of all benchmarks read the
pointers from the P—T memory queues, and send the packets
to the network through the NIU associated to the 10Gb network
link.

To summarize, the presented benchmarks represent a good
testbed for the analysis of tasks assignment techniques because:

(1) Each benchmark is divided in three different threads, thus
the systems deal with heterogeneous tasks even when several in-
stances of the same application are executed simultaneously.

(2) The benchmarks stress the hardware resources of the Ultra-
SPARC T2 processor at all three sharing levels [56].

(3) Each instance of the benchmarks comprises interconnected
threads that communicate through shared memory queues. The
performance of the benchmarks also depend on the distribution of
interconnected threads among processor cores (L1 cache domains).

(4) The impact of task assignment to the performance is sig-
nificant. We detect performance variation of up to 49% between
different task assignments of the same workload.

4.4 Methodology

In order to assure stable results, we measured the performance of
task assignments when each application instance processed three
million network packets. This means that each application thread
was executed three million times. The execution time of each ex-
periment was around 1.5 seconds, and the duration depended on
the benchmark and on the distribution of the simultaneously run-
ning threads.

5. Results

In this section, we apply the presented statistical approach to the
task assignment of multithreaded network applications running on
the UltraSPARC T2 processor. We start by analyzing whether a
sample of random task assignments can capture an assignment with
a good performance. Next, we estimate the optimal system perfor-
mance for a given workload, and compare it with the measured
performance of the observed best task assignment in the sample.
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Figure 10. Performance of the best task assignment in the random
sample

Finally, we show how the presented analysis can be applied in the
industrial case study for task assignment of network applications.

In all presented experiments, we simultaneously executed eight
benchmark instances (24 threads). We could not execute more than
eight benchmark instances because of the limitation in the experi-
mental environment: the on-chip Network Interface Unit (NIU) of
the UltraSPARC T2 used in the study can split the incoming net-
work traffic into up to eight DMA channels and Netra DPS binds
at most one receiving thread to each DMA channel. As a part of
future work, we plan to apply the presented statistical approach to
applications with several processing threads and to workloads with
a higher number of simultaneously-running tasks.

5.1 Finding task assignments with good performance

In Section 3.1, we presented a method to compute the probability
that a sample of randomly selected task assignments contains at
least one of P% of best-performing assignments. We showed that
samples containing more than several hundred random task assign-
ments capture at least one in 1% or 2% of the best performing task
assignments with a probability higher than 99%. We also showed
that the probability that a sample of random assignments contains at
least one out of 1% of the best-performing task assingments asymp-
totically approaches 1 as the number of task assignments in the
sample exceeds 1000 (see Figure 2).

In order to analyze if further increasing the number of task as-
signments in the sample increases the performance of the captured
best-performing assignment, we executed experiments for 1000,
2000, and 5000 random task assignments. The results of the ex-
periment are plotted in Figure 10, in which the X axis lists differ-
ent benchmarks and the Y axis shows the performance of the best
task assignment in the sample, measured in processed Packets Per
Second (PPS). We observed that increasing the sample size from
1000 to 5000 only negligibly improves the performance of the cap-
tured best task assignment. The highest performance improvement
we detect is only 0.6% for the /PFwd-Mem benchmark. For the re-
maining four benchmarks, the performance improvement when the
sample increases from 1000 to 5000 assignments is below 0.25%.

We repeated the same set of experiments for different workloads
each having a different number of simultaneously running threads.
The conclusions that we reached are the same - increasing sample
size from 1000 to 5000 insignificantly improves the performance
of the captured best-performing task assignment.

In order to analyze how good the performance of the captured
best task assignment in the sample is, and what its performance
loss with respect to the optimal one is, we used the statistical
inference method that estimates the performance of the optimal task
assignment.
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Figure 11. Estimated best-performing schedule performance

5.2 Estimation of the optimal performance

In Section 3.3, we described the statistical approach for the esti-
mation of the optimal system performance for a given workload.
The presented statistical method estimates the performance of the
best task assignment based on the measured performance of a sam-
ple of random assignments. Figure 11 shows the estimated optimal
system performance for all five benchmarks in the suite which are
listed along X axis. In order to understand the impact of sample
size to the estimated optimal system performance, we executed ex-
periments and present data for 1000, 2000, and 5000 random task
assignments in the sample. The height of the solid bar corresponds
to the point estimation of the optimal system performance, while
the error bars show the confidence interval for the 0.95 confidence
level.

From the data presented in Figure 11, we can see that the point
estimation is roughly the same for all three sample sizes. On the
other hand, we see that for four out of five benchmarks (all except
Aho-Corasick) increasing the sample size significantly narrows the
confidence interval, i.e. it improves the precision of the estimation.
As we increase the number of assignments in the sample, more task
assignments in the right tail of the cumulative distribution function
(see Figure 5) are used to estimate the parameters of the General-
ized Pareto Distribution (GPD). As we stated in Section 3, in order
to avoid the bias of the GPD to median values in the cumulative
distribution function, no more than 5% of the best performing as-
signments should be considered when the right tail of the cumu-
lative distribution function is fitted to GPD. Therefore, the maxi-
mum number of observations we use to estimate a performance of
the optimal system performance is 50, 100, and 250 for the sam-
ple of 1000, 2000, and 5000 task assignments, respectively. As we
increase the number of task assignments in the sample, more ob-
servations can be used to estimate the optimal system performance,
which, in turn, leads to more precise estimations.

Figure 12 shows the performance difference between the best-
performing assignment in the sample and the estimated optimal
system performance. This chart shows how good the performance
of the captured best assignment in the given sample is. The bench-
marks that are used in the case study are listed along the X axis.
Different bars present results for 1000, 2000, and 5000 random as-
signments in the sample. The height of the solid bar corresponds
to the point estimation of the optimal system performance, while
the error bars correspond to the confidence interval for the 0.95
confidence level. We reach several conclusions from the results
that are presented in Figure 12. For 1000 task assignments in the
sample, the estimated possible performance improvement is con-
siderable and significantly different for different benchmarks. For
Aho-Corasick and IPFwd-LI1 benchmarks, the detected possible
performance improvement ranges up to 7% and 9%. For IPFwd-
Mem, Packet analyzer, and Stateful benchmarks, the possible per-
formance improvement ranges up to 16%, 19%, and 23%, respec-
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Figure 12. Estimated performance improvement

tively. For 2000 assignments in the sample, the performance dif-
ference between the best assignment in the sample and the esti-
mated optimal performance is below 5% for all five benchmarks in
the suite. Finally, for the 5000 task assignments in the sample, the
best measured performance in the random sample is very close to
the estimated optimal performance, for all five benchmarks in the
suite. The highest possible performance improvement is only 2.4%
(IPFwd-Mem benchmark).

Overall, in this section, we applied the method presented in
Section 3 to estimate the optimal system performance for a given
workload. We used the estimated performance to understand how
good the best task assignments captured in the random samples
are. In our experiments, running only several thousand random
task assignments from a vast population was enough to detect
assignments with performance very close to the optimal ones. We
also showed that increasing the sample size from 1000 to 5000
significantly improved the precision of the estimation, though it
only insignificantly improved the performance of the captured best
task assignment.

5.3 Case study

Next, we show how the presented analysis can be applied to an
industrial case study for the task assignment of network applica-
tions. In the presented scenario, the main objective is to satisfy the
given performance requirement of the best task assignment that is
captured in the random sample. In this scenario, the customer re-
quires that the performance difference between the captured best
task assignment and the optimal system performance for the given
workload is below X %.

In order to address this problem, we developed an iterative algo-
rithm that converges to the performance required by the customer
by increasing the number of random assignments in the sample.
The schematic view of the algorithm is shown in Figure 13. The
algorithm is comprised of four steps.

In Step 1, we select the initial sample size N;.:, generate a
sample of N;,i; random task assignments, execute them on the
target processor, and measure the performance of each assignment
in the sample. The output of Step 1 is the measured performance of
all task assignments that are executed on the target processor.

In Step 2, we apply the described statistical method to esti-
mate the optimal system performance. There are two outputs from
Step 2: the performance of the best assignment in the sample and
the estimated optimal system performance, i.e. the performance of
the optimal assignment for a given workload.

In Step 3, we compute the performance difference between the
observed best assignment in the random sample and the estimated
optimal system performance. If this performance difference is ac-
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Figure 13. Case study: The schematic view of the algorithm

ceptable for the customer (it is below X %), then the iterative pro-
cess ends. The final outcome of this process is the observed best as-
signment in the sample and the estimated performance difference
with respect to the optimal assignment. On the other hand, if the
difference between the performance of the best task assignment in
the sample and the estimated optimal system performance is not
acceptable (it is higher than X %), the iterative process continues.

In Step 4, we generate a sample of Ngeito random assignments,
execute the assignments on the target processor, and measure the
performance of each of them. The set of Ngec;+o measured values is
included in the set of measurements that are the input to the statis-
tical analysis in Step 2 (Ncurrent = Neurrent + Ndeita) and the
statistical analysis is repeated, this time for a larger input dataset.
As the number of task assignments in the random sample increases,
the performance of the captured best assignment increases as well.
But, more importantly, the input dataset for statistical analysis in-
creases, which provides a more precise estimation of optimal sys-
tem performance.

Step 2, Step 3, and Step 4 of the algorithm are repeated as long
the best task assignment in the sample does not satisfy performance
requirements specified by the customer.

We appled the presented algorithm to the set of network bench-
marks executing in Netra DPS low-overhead runtime environment
on the UltraSPARC T2 processor. We started the algorithm with
Nini+ = 1000 task assignments and in each iteration we executed
Ngeita = 100 assignments more. We analyzed three cases, when
the acceptable performance loss is 2.5%, 5%, and 10%. In Step 2
of the algorithm, the optimal system performance was estimated
for the 0.95 confidence level. The number of task assignments in
the sample needed to capture an assignment with the acceptable
performance loss is presented in Figure 14. We present data for all
five benchmarks in the suite that are listed along the X axis. From
the results presented in the figure we see that: (1) Running several
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Figure 14. Case study: Required number of task assignments

thousand random task assignments was enough to capture an as-
signment with a performance loss of below 2.5% with respect to
the estimated optimal performance. The required number of task
assignments range from 2200 for IPFwd-LI to 4500 for IPFwd-
Mem benchmark. (2) As the acceptable performance loss increased,
less assignments in the sample were needed. For example, when the
acceptable performance loss was 10%, running less then 1300 ran-
dom task assignments was sufficient to provide the required per-
formance for all five benchmarks. (3) Required number of tasks
assignments in the sample depends on the concrete benchmark.

One of the main strengths of the presented approach is that
it is application and architecture independent, and that it can be
applied to find task assignments that satisfy different performance
requirements. The number of assignments in the sample depends on
the characteristics of the benchmarks, characteristics of the target
architecture, and also on the performance requirements.

5.4 Other Considerations

There are a couple of aspects to consider regarding the presented
approach.

Experimental time: Our method requires execution on the tar-
get architecture of all task assignments in the sample. In our tar-
get networking environment, as described in Section 4.4, around
1.5 seconds were enough to take a stable measurements of the per-
formance of each task assignment. Hence, the time needed to ex-
ecute all experiments for samples of 1000, 2000, and 5000 task
assignments, for which we have obtained close-to-the-optimal per-
formance, was approximately 25 minutes, 50 minutes, and 2 hours,
respectively. This experimentation time is reasonable considering
that the selected task assignment can be used during the lifetime of
the system.

However, it may be the case that in some environments the time
required to execute thousands of experiments on the target archi-
tecture is large or unfeasible. In that case, instead or execution of
random task assignments on a target processor, the performance
of each assignment in the sample can be predicted using a perfor-
mance predictor. For that matter, the input data to the statistical
model is the predicted performance for a sample of task assign-
ments. Performance predictors are models that estimate the perfor-
mance of task assignments based on the analysis of the target archi-
tecture and resource requirements of each task in a workload (see
Section 6). It is important to note that the accuracy of the integrated
approach that combines performance predictors and statistical anal-
ysis depends on the accuracy of the predictor that is used. Design
and evaluation of such an integrated approach is part of our future
work.

Workload selection: As we mentioned in Section 1, for proces-
sors with one level of resource sharing, the task scheduling is done
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in a single step, called workload selection: out of all ready-to-run
tasks, the OS selects a set of tasks (workload) that will concur-
rently execute on the processor [32]. As all tasks share the same
processor resources homogeneously, the way they interfere is in-
dependent of their distribution. In processors with several levels of
resource sharing, task scheduling requires an additional step, called
task assignment. Once the workload is selected, the tasks have to
be distributed among different hardware context of the processor.

In the industrial networking environment used in our experi-
mental setup, the workload is known beforehand and cannot be
changed at runtime (see Section 4). Hence, in this kind of envi-
ronment, the workload selection is not an issue and the optimal
task assignment is the only scheduling problem. In this paper, we
have shown how our statistical approach can be applied to the prob-
lem of the optimal task assignment. In processors with one level of
resource sharing, the presented methodology can be directly ap-
plied to address the workload selection problem. The designer has
to generate a sample of random workloads, run them on the target
machine, measure the performance of each workload, and follow
the methodology we presented in Section 3.

The application of the presented statistical approach becomes
more complex for processors with several levels of resource shar-
ing. In this case, the processor may execute different workloads,
and each workload may have a different performance for different
task assignments. The development of a statistical approach that ad-
dresses a combined workload selection and task assignment prob-
lem is part of our future work.

6. Related work

Workload Selection: Several approaches that address the work-
load selection problem propose models that predict the impact
of interferences among co-running tasks to system performance.
Snavely et al. [49, 50] present the SOS scheduler, which is, to the
best of our knowledge, the first scheduler that uses profile-based
information to compose workloads. The SOS scheduler uses hard-
ware performance counters to find schedules that exhibit good per-
formance. Eyerman and Eeckhout [22] propose probabilistic job
symbiosis model that enhances the SOS scheduler. Based on the
cycle accounting architecture [21], the model estimates the single-
threaded progress for each job in a multithreaded workload. Other
approaches [13, 23, 36, 45] propose techniques to construct work-
loads of tasks that exhibit good symbiosis in shared caches solving
problems of cache contention.

Task Assignment: Several studies show that the performance
of applications running on multithreaded processors depends on the
interference in hardware resources, which, in turn, depends on task
assignment [6, 20, 44]. Acosta et al. [6] propose a task assignment
algorithm for CMP+SMT processors that takes into account not
only the workload characteristics, but also the underlying instruc-
tion fetch policy. El-Moursy el al. [20] also focus on CMP+SMT
processors and propose an algorithm that uses hardware perfor-
mance counters to profile task behavior and assign compatible tasks
on the same SMT core. Radojkovi¢ et al. [44] present a model for
task assignment of applications running on multithreaded proces-
sors. The solution can be used when the number of tasks is low, and
it requires profiling information from the application and knowl-
edge about the target architecture.

Other studies analyze task scheduling for platforms comprised
of several multithreaded processors [39, 53]. McGregor et al. [39]
introduce new scheduling policies that use run-time information
from hardware performance counters to identify the best mix of
tasks to run across processors and within each processor. Tam
el al. [53] present a run-time technique for the detection of data
sharing among different tasks. The proposed technique can be used



by an operating system job scheduler to assign tasks that share data
to the same memory domain (same chip or the same core on the
chip).

Kumar et al. [38] and Shelepov et al. [46] propose algorithms for
scheduling in heterogeneous multicore architectures. The focus of
these studies is to find an algorithm that matches the application’s
hardware requirements with the processor core characteristics. In
our study, we explore interference among tasks that are distributed
among the homogeneous hardware domains (processor cores and
hardware pipelines) of a processor.

Other studies propose solutions for optimal assignment of mul-
tithreaded network workloads in parallel processors, specifically in
network processors. Kokku et al. [37] propose an algorithm that as-
signs network processing tasks to processor cores with the goal of
reducing the power consumption. Wolf et al. [62] propose run-time
support that considers the partitioning of applications across pro-
cessor cores. The authors address the problem of dynamic threads
re-allocation because of network traffic variations, and provide task
assignment solutions based on the application profiling and traffic
analysis.

Optimal performance analysis: To the best of our knowledge,
the work of Jiang et al. [33] is the only systematic study devoted
to find the optimal task assignment of applications running on mul-
tithreaded processors. First, the authors analyze the complexity of
the task assignment for multithreaded processors. Later, they pro-
pose several task assignment algorithms. The authors use graphs to
model interaction between simultaneously-running tasks and use
graph search to find the optimal solution. The main drawback of
this study is that it assumes that the impact of task interaction to
system performance is known beforehand for all possible assign-
ments.

We present a different approach for finding the performance
of the optimal task assignment. We do not try to find the best-
performing assignment, but to capture a task assignment with per-
formance close to the optimal one. In our approach, the optimal
system performance is estimated using statistical inference based
on measured performance of a sample of random task assignments.

7. Conclusions

Optimal task assignment is one of the most promising ways to im-
prove the performance of applications running on massively multi-
threaded processors. However, finding an optimal task assignment
on modern multithreaded processors is an NP-complete problem.

In this paper, we proposed a statistical approach to the problem
of optimal task assignment. In particular, we showed that running
a sample of several hundred or several thousand random task as-
signments is enough to capture at least one out of 1% of the best-
performing assignments with a very high probability. We also de-
scribed the method that estimates, with a given confidence level,
the optimal system performance for given workload. Knowing the
optimal system performance improves the evaluation of any task
assignment technique and it is the most important piece of informa-
tion for the system designer when deciding whether any scheduling
algorithm should be enhanced.

The presented approach is completely independent of the hard-
ware environment and target applications. The approach scales to
any number of cores and hardware contexts per core and it does not
require any profiling of the application nor does it require knowl-
edge of the architecture of the target hardware.

We successfully applied our proposal to a case study of task
assignment of multithreaded network applications running on the
UltraSPARC T2 processor. Our results showed that running several
thousand random task assignments provided enough information
for the precise estimation of the performance of the optimal task
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assignment, and that it was sufficient to capture the assignments
with performance very close to the optimal ones (less than 2.5% of
the performance loss), requiring around two hours of experimenta-
tion in the target architecture in the worst case.
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