
Tessellation: Refactoring the OS around Explicit Resource
Containers with Continuous Adaptation

Juan A. Colmenares�[, Gage Eads�, Steven Hofmeyr†, Sarah Bird�, Miquel Moretó�,
David Chou�, Brian Gluzman�, Eric Roman†, Davide B. Bartolini�, Nitesh Mor�,

Krste Asanović�, John D. Kubiatowicz�

�The Parallel Computing Laboratory, UC Berkeley, Berkeley, CA, USA
†Lawrence Berkeley National Laboratory, Berkeley, CA, USA

[Samsung Research America - Silicon Valley, San Jose, CA, USA
juan.col@samsung.com, geads@eecs.berkeley.edu, shofmeyr@lbl.gov, sbird@eecs.berkeley.edu,

mmoreto@ac.upc.edu, {brian.gluzman,davidchou}@berkeley.edu, eroman@lbl.gov,
{dbb,mor,krste,kubitron}@eecs.berkeley.edu

ABSTRACT
Adaptive Resource-Centric Computing (ARCC) enables a si-
multaneous mix of high-throughput parallel, real-time, and
interactive applications through automatic discovery of the
correct mix of resource assignments necessary to achieve ap-
plication requirements. This approach, embodied in the Tes-
sellation manycore operating system, distributes resources
to QoS domains called cells. Tessellation separates global
decisions about the allocation of resources to cells from
application-specific scheduling of resources within cells. We
examine the implementation of ARCC in the Tessellation
OS, highlight Tessellation’s ability to provide predictable
performance, and investigate the performance of Tessella-
tion services within cells.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management –
Scheduling; D.4.7 [Operating Systems]: Organization
and Design – Real-time and embedded systems; D.4.8
[Operating Systems]: Performance – Measurements,
Monitors

General Terms
Multicore, parallel, quality of service, resource containers

Keywords
Adaptive resource management, performance isolation,
quality of service

1. INTRODUCTION
Today’s users demand lightning fast interaction with their

portable devices while simultaneously displaying glitch-free
multimedia and interacting with a variety of external in-
formation sources. Further, the growing number of mobile

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’13, May 29 - June 07 2013, Austin, TX, USA.
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

Application1

QoS-aware
Scheduler

Block Service

QoS-aware
Scheduler

Network Service

QoS-aware
Scheduler

GUI Service

Channel

Running System
(Data Plane)

Application2Ch
an
ne
l

Channel

Channel

Cha
nne
l

Performance
Reports

Resource
Assignments

Resource Allocation
(Control Plane)

Partitioning
and

Distribution

Observation
and

Modeling

Figure 1: Adaptive Resource-Centric Computing: Cells

provide performance isolation and guaranteed access to

resources for applications and services. Cells are de-

picted as rounded boxes with solid lines. Resource al-

locations are automatically adjusted to maximize over-

all system utility. Resources wrapped with cells provide

guaranteed services to other cells.

devices, sensors, and embedded systems makes efficiency a
primary concern as systems demand an increasing amount of
computation from the same battery capacity. Such require-
ments are very different from the high-throughput workloads
that drove the design of operating systems in the past.

Modern applications consist of multiple interacting com-
ponents, each with differing resource needs and quality-of-
service (QoS) requirements. They often extend into the
cloud and may include sensors and other embedded sys-
tems, requiring the operating system to provide respon-
siveness and performance predictability on a global scale.
One example is that of a modern smartphone reproduc-
ing music retrieved on the fly from the cloud while render-
ing web pages with interactive multimedia contents. Other
examples include Distributed Real-time Embedded (DRE)
systems that control fly-by-wire airplanes and manufactur-
ing plants; these systems need to ensure performance pre-
dictability across increasingly parallel components [13] and
communication networks. Future DRE systems, such as au-
tonomous vehicles and health-monitoring applications, will

also have to manage large swaths of data from growing, in-
terconnected “swarms” of sensors [22].

Thus, a new paradigm for the interaction between appli-
cation components and systems software is clearly needed.
Since resources are central to performance, predictability,
and efficiency, we propose to utilize Adaptive Resource-
Centric Computing (ARCC), as illustrated by Figure 1. In
ARCC, resources are distributed to explicitly parallel, light-
weight resource containers called cells, which provide stable
execution environments for the software components run-
ning within them. Further, composite resources are con-
structed by wrapping cells around existing resources and
exporting service interfaces. Applications can then be al-
located QoS contracts from these services. This service-
oriented architecture [34] approach enables performance pre-
dictability for a variety of more complex system services.

To reduce the burden on the programmer and to respond
to changing environmental circumstances, our approach au-
tomatically adjusts resource allocations to meet application
requirements. The stable environment of a cell makes it pos-
sible to experimentally observe user-defined progress metrics
and predict how these metrics vary with resources – thus
enabling accurate resource optimization. This approach ad-
dresses the impedance-mismatch between programmer and
system that results from the fact that user-meaningful QoS
metrics (e.g., frame rate) are only indirectly related to re-
source allocations (e.g., processor cycles).

In this paper, we illustrate the fundamental concepts of
ARCC and evaluate it with Tessellation, a novel operat-
ing system for multi- and manycore systems. We base our
evaluation on typical client applications, but the underlying
methodology is equally applicable to embedded systems.

2. TESSELLATION ARCHITECTURE
In this section, we summarize some of the key components

of Tessellation OS [11, 27], as illustrated by Figure 2. The
Tessellation kernel is a thin, hypervisor-like layer that pro-
vides support for ARCC by implementing cells and provid-
ing interfaces for resource adaptation and cell composition.
Tessellation uses two-level scheduling [24, 30, 11] to sepa-
rate resource allocation from resource usage. This approach
supports custom schedulers for efficient resource usage.

2.1 The Cell Model
Cells provide the basic unit of computation and protec-

tion in Tessellation. Cells are performance-isolated resource
containers that export their resources to user level. The
software running within each cell has full user-level con-
trol of the resources assigned to the cell, including CPU
cores and memory pages. In the future, we plan to extend
cells with multiple address spaces managed by the cell user-
level runtime. We envision this facility as supporting more
traditional UNIX-style processes or multi-component device
drivers (e.g., USB) within a cell.

Applications in Tessellation are created by composing
cells via efficient and secure channels. Channels provide
fast, user-level asynchronous message-passing between cells.
Standard OS services (e.g., network and file services) are
hosted in cells and accessed via channels.

Tessellation OS virtualizes resources using space-time par-
titioning [36, 27, 28], a multiplexing technique that divides
the hardware into a sequence of simultaneously-resident spa-
tial partitions. With space-time partitioning, CPU cores and

Figure 2: The Tessellation kernel implements cells

through spatial-partitioning. The Resource Allocation Bro-

ker redistributes resources after consulting application-

specific heartbeats and system-wide resource reports.

other resources are gang-scheduled [31, 14]. Cells thus pro-
vide to their hosted applications an environment that is very
similar to a dedicated machine.

Partitionable resources include CPU cores, pages in mem-
ory, and guaranteed fractional services from other cells (e.g.,
a throughput reservation of 150 Mbps from the network ser-
vice). They may also include cache slices, portions of mem-
ory bandwidth, and fractions of the energy budget, when
hardware support is available (e.g., [4, 23, 38]).

Two-level scheduling [24, 30, 11] in Tessellation separates
global decisions about resource allocation to cells (first level)
from management and scheduling of resources within cells
(second level). Resource redistribution occurs at a coarse
time scale to amortize the decision-making cost and allow
time for second-level scheduling decisions (made by each
cell) to become effective.

The user-level runtime within each cell may utilize its re-
sources (e.g., hardware-thread contexts and memory pages)
as it wishes – without interference from other cells. The
cell’s runtime can thus be customized for specific applica-
tions or application domains with, for instance, a particular
scheduling algorithm and page replacement policy. Section 4
discusses second-level scheduling in detail.

2.2 Service-Oriented Architecture
Cells provide a convenient abstraction for building OS

services with QoS guarantees. Such services can reside in
dedicated cells, have exclusive control over devices, and en-
capsulate user-level device drivers (see Figure 1). Hence,
each service can arbitrate access to its enclosed devices, and
leverage its cell’s performance isolation and customizable
schedulers to offer service guarantees to other cells.1 Ser-
vices can shape data and event flows coming from external
sources with unpredictable behavior and prevent other cells
from being affected.

Two services in Tessellation that offer QoS guarantees
are: the Network Service, which provides access to network
adapters and guarantees that the data flows are processed

1In keeping with ARCC, we view the services offered by such
service cells as additional resources to be managed by the
adaptive resource allocation architecture.

with the agreed levels of throughput; and the GUI Ser-
vice, which provides a windowing system with response-time
guarantees for visual applications [19]. For details about the
implementation and performance of these services, refer to
Appendix B.

2.3 Adaptive Resource Allocation
Tessellation uses an adaptive resource-allocation approach

to provide QoS guarantees to applications while maximizing
efficiency in the system. The Resource Allocation Broker
(RAB) is a broker service that distributes resources to cells
while attempting to satisfy competing system-wide goals,
such as deadlines met, energy efficiency, and throughput.
Allocation decisions are communicated to the kernel and
services for enforcement. The RAB Service uses system-wide
goals, resource constraints, performance targets and current
performance measurements as inputs to the optimization.

The RAB Service reallocates resources, for example, when
a cell starts or finishes or when a cell significantly changes
performance. The RAB Service can periodically adjust al-
locations; the reallocation frequency provides a tradeoff be-
tween adaptability (to changes in state) and stability (of
user-level scheduling).

The RAB Service runs in its own cell and communicates
with applications through channels. When a cell is started,
it provides its QoS requirements to the RAB Service in the
form of target performance goals, such as desired framer-
ates. The RAB Service continuously monitors the cells’ per-
formance and compares it to target rates, adjusting resource
allocations as required. To do this, the RAB Service utilizes
two sources of information:
• Periodic performance reports, heartbeats [17], contain-

ing application-specific performance metrics from the
cells (e.g., the time to render a frame for a video app).
• System-wide performance counter values, such as

cache-miss statistics and energy measurements.
The RAB Service provides a resource-allocation frame-

work that supports rapid development and testing of new
allocation policies. Section 5 demonstrates a few simple poli-
cies we developed as a proof of concept. The development
time for each policy was under an hour. Using this frame-
work we can explore the tradeoffs between enabling software
components to meet their performance goals and optimizing
resource distribution to achieve global objectives.

3. IMPLEMENTING THE CELL MODEL
As shown in Figure 2, the Tessellation kernel comprises

two layers, the Partition Multiplexing Layer (or Mux Layer)
and the Spatial Partitioning Mechanisms Layer (or Mecha-
nism Layer). The Mechanism Layer performs spatial parti-
tioning and provides resource guarantees by exploiting hard-
ware partitioning mechanisms (when available) or through
software emulation (e.g., cache partitioning can be imple-
mented using page coloring). Building on this support, the
Mux Layer implements space-time partitioning and trans-
lates resource allocations from the RAB Service into an or-
dered time sequence of spatial partitions.

3.1 Types of Cells
The Mux Layer offers several time-multiplexing policies

for cells to support applications (or parts thereof) with dif-
ferent timing requirements. Each multiplexing policy defines
a cell type with a specific timing behavior. Tessellation pro-

vides: 1) non-multiplexed (non-muxed) cells with dedicated
access to cores; 2) time-triggered (TT) cells, which are active
during periodic time windows; 3) event-triggered (ET) cells,
which are activated upon event arrivals, but never exceed
their assigned fraction of processing time; and 4) best-effort
(BE) cells with no time guarantees. The cell types are ex-
plained in greater detail in Appendix A.

These time-multiplexing policies allow users to easily spec-
ify the desired timing behavior for cells with a certain pre-
cision (currently 1 ms). The Mux Layer then ensures that,
if feasible, a set of cells with different multiplexing policies
harmoniously coexist and receive the specified time guar-
antees. In this way, Tessellation offers precise control over
cells’ timing behavior, one of the characteristics that differ-
entiates Tessellation from traditional hypervisors and virtual
machine monitors [5, 20].

3.2 Space-Time Partitioning
On each hardware thread there is a separate multiplexer

(or muxer) that controls the multiplexing of cells on that
thread. The muxers collectively implement gang schedul-
ing [31] in a decentralized manner. They execute the same
scheduling algorithm and rely on a high-precision global-
time base [21] to simultaneously activate a cell on multiple
hardware threads with minimum skew. In the common case,
the muxers operate independently and do not communicate
to coordinate the simultaneous activation of cells. The mux-
ers thus implement an instance of communication-avoiding
gang-scheduling.

For correct gang scheduling, the muxers need to maintain
an identical view of the system’s state whenever a scheduling
decision is made. Hence, each muxer makes not only its own
scheduling decisions but also reproduces the decisions made
by other (related) muxers with overlapping schedules. In the
worst case, each muxer must schedule the cell activations
happening in every hardware thread in the system, but the
RAB Service tries to avoid such unfavorable mappings.

The muxers implement gang-scheduling using a variant
of Earliest Deadline First (EDF) [26], combined with the
Constant Bandwidth Server (CBS) [3] reservation scheme in
order to provide the variety of timing behaviors required by
the cell types. EDF is used to implement TT cells while
CBS is used for ET and BE cells. More details can be found
in Appendix A.

3.3 Redistributing Resources among Cells
To request a redistribution of resources among cells (e.g.,

resizing cells, changing timing parameters, or starting new
cells), the RAB Service passes the new distribution to the
Mux Layer via a system call (only accessible to this service).
To implement resource-distribution changes, each muxer has
two scheduler instances: one active and one inactive. The
Mux Layer first validates the new resource distribution and,
if successful, proceeds to serve the request. The Mux Layer
next resets and prepares the inactive schedulers, and estab-
lishes the global time in the near future (e.g., 1 ms later)
at which the muxers will synchronously exchange their ac-
tive and inactive schedulers. Then, the Mux Layer sends
the muxers a message with the global time value and the
system call returns. Finally, at the specified time, the mux-
ers exchange their schedulers and perform other actions re-
lated to the relocation of cells (e.g., re-routing device in-
terrupts). This approach allows the Mux Layer to process

resource-distribution requests almost entirely without dis-
turbing the system’s operation with only the overhead of
switching schedulers and other cell-relocation actions. Note
that if a subset of muxers is involved in a resource redistri-
bution, only that subset performs the scheduler switch.

4. USER-LEVEL RUNTIME
One benefit of two-level scheduling is the ability to sup-

port different resource-management policies simultaneously.
In Tessellation OS, cells provide their own, possibly highly-
customized, user-level runtime system for processor (thread)
scheduling and memory management. Further, each cell’s
runtime can control the delivery of events, such as timer
and device interrupts, inter-cell message notifications, excep-
tions, and memory faults. This section describes the support
Tessellation offers to implement user-level runtimes.

Our current Tessellation prototype includes two user-
level thread scheduling frameworks: a preemptive one called
PULSE (Preemptive User-Level SchEduling), and a coop-
erative one based on Lithe (LIquid THrEads) [33]. With
either framework, a cell starts when a single entry point,
enter(), is executed simultaneously on each core. After
that, the kernel interferes with the cell’s runtime only when:
1) the runtime receives events (e.g., interrupts) it has regis-
tered for, 2) the cell is suspended and reactivated according
to its time-multiplexing policy, and 3) the resources (e.g.,
hardware threads) assigned to the cell change in response
to RAB Service’s requests. For instance, when an interrupt
occurs during user-level code execution, the kernel saves the
thread context and calls a registered interrupt handler, pass-
ing the saved context to the cell’s user-level runtime. This
way the cell’s runtime can then choose whether to restore
the previously running context or swap to a new one.

Since preemptive scheduling is commonly used in embed-
ded and other types of computer systems, now we discuss
PULSE, our framework for user-level preemptive schedul-
ing, in more detail. PULSE is a simple framework, written
in less than 800 lines of code (LOC). Creating a new user-
level preemptive scheduler with PULSE is an easy task. The
runtime must implement several callbacks, for instance: en-
ter(), mentioned earlier; tick(context), which is called
whenever a timer tick occurs and receives the context of the
interrupted thread; yield(), called when a thread yields;
and done(), called when a thread terminates. The frame-
work also provides functions for saving and restoring con-
texts, and other relevant operations.

PULSE’s simplicity makes it easy to implement and cus-
tomize schedulers – without having to patch the OS ker-
nel, as is often the case with Linux. For example, we
implemented a global round-robin scheduler with mutex
and conditional-variable support, in ∼850 LOC. We also
wrote a global EDF scheduler with mutex support and
priority-inversion control via dynamic deadline modification
(DDM) [18], in less than 1000 LOC.

To support adaptive resource allocation, user-level run-
times must adjust to changes in the number of hardware
threads assigned to their host cells. PULSE propagates
changes in the number of hardware threads to the user-level
scheduler. In the event that hardware threads are added,
PULSE informs the runtime that additional resources are
available. When a cell loses hardware threads (or harts),
the framework delivers the extra application contexts (from
the revoked hardware threads) to the user-level scheduler’s

Figure 3: Adaptation of core counts while running the

NAS EP benchmark. The number under each adapta-

tion marker indicates the number of cores in the new

allocation.

scheduling queue. If any of the saved contexts are sched-
uler contexts, PULSE uses a non-preemptive auxiliary sched-
uler that executes all scheduler contexts one by one until
they enter application contexts. Then PULSE communi-
cates these application contexts to the user-level scheduler
with the callback adapt(prev_num_harts, new_num_harts,

context*). PULSE implements this procedure so that the
user-level scheduler is completely unaware that adaptation
is occurring until the adapt callback is executed. Conse-
quently, we were able to add support for adaptation in the
round-robin and global EDF schedulers simply by adding
the adapt callback.

Although still a work in progress, Tessellation will soon
support a user-level paging facility. The Resource Alloca-
tion Broker will allocate physical memory pages to cells af-
ter which the user-level runtime will manage these pages
with customized page replacement and allocation policies,
and use the block storage device(s) through a service inter-
face2 to implement paging, if desired. This approach, similar
to self-paging in the Nemesis OS [16], can minimize uncon-
trolled interference between cells and enable better perfor-
mance predictability and stronger QoS guarantees.

5. EXPERIMENTAL EVALUATION
In this section, we investigate the adaptive behavior of

Tessellation OS through two simple experiments. The first
shows the performance of the adaptation mechanisms in the
kernel and user-level preemptive runtime when changing the
number of cores assigned to a cell. The second, demonstrates
the system’s ability to adjust, via the RAB Service, the QoS
guarantee that a service offers to a cell so that it can meet
its performance goals.

5.1 Adjusting Core Allocation
This experiment is a simple feedback loop between a com-

pute intensive application and the RAB Service. The appli-
cation used was the NAS EP benchmark [2], which gener-
ates random numbers in an embarrassingly parallel manner.
We chose EP because it scales perfectly and uses negligible
memory; so we can easily confirm that it behaves as expected
when varying number of cores.

EP was configured for 6 threads and run in a non-muxed
cell with our global round-robin scheduler. The RAB Service

2We are currently developing a QoS-aware service that pro-
vides guaranteed client access to hard disks and other stor-
age devices, called the Block Device Service.

Figure 4: Adaptive network throughput no guarantees,

with a general-purpose policy, and with an application-

specific policy.

resided in a separate non-muxed cell running on a dedicated
core. We modified EP to compute the rate R at which ran-
dom numbers were generated, and set a goal of R′ for the
desired rate of random number generation. Each second, EP
computed R and sent the value to the RAB Service.

We set 5 resource allocations, operating points, with core
allocations of 2, 3, 4, 5, and 6. The RAB Service used
a simple reactive policy to adjust the allocation of cores.
When the performance is too low (i.e., R < R′), it allocates
the next larger operating point; when the performance is
too high (i.e., R > R′ + ε), it allocates the next smaller
operating point. We used ε = 0.1 to prevent oscillation
between operating points.

We ran this experiment on an Intel system with two 2.66-
GHz Xeon X5550 quad-core processors and hyper-threading
disabled (i.e., 8 hardware threads). The results can be seen
in Figure 3, which shows the performance of EP as the de-
sired rate R′ changes periodically. There is a small lag be-
tween an adaptation event and the resulting performance
change because EP only reports changes every second. We
also see a noticeable lag in performance when a large change
is required since the simple reactive policy shifts only one
operating point at a time, and then waits for a new measure-
ment before shifting again. Note, however, after the adap-
tation time it does settle on the correct rate illustrating the
effectiveness of Tessellation’s adaptation mechanisms. Al-
though clearly, the reactive policy used here is too limited
for general use as shown by the oscillations at t ≥ 125 s.

5.2 Adjusting Service Guarantees
In this experiment, the RAB Service drove the Network

Service to allocate network throughput to an application.
We show how the RAB Service adjusted the throughput
reservation for a video player against changes in the incom-
ing video stream, so that the video player’s performance
goals were met, while enabling efficient use of the Network
Service. We used two computers (1 Linux, 1 Tessellation),
both with an Intel 3.4-GHz Core i7 quad-core processor with
hyper-threading (i.e., 8 hardware threads), and 4 GB of
RAM, directly connected via 1-Gbps Ethernet adapters.

The Linux box was the video source and sent video frames
to the Tessellation box over a TCP connection. The Linux
box produced a stream of uncompressed frames at a con-
stant rate of 24 frames per second (fps). The frame size was

Figure 5: Achieved frames rates with the application-

specific policy and the generic policy.

adjusted between 480x320 and 320x240 every 10 s to sim-
ulate changing video quality. Thus, large frames required
14.74 MB/s while small frames 7.37 MB/s.

On the Tessellation box, the video-player application re-
ceived the video stream via the Network Service and passed
the reconstructed frames to the GUI Service for display. The
video player periodically sent performance reports to the
RAB Service. Using this information, RAB Service chose
the throughput reservation the Network Service provided
to the video player. Additionally, two “bandwidth-hog” ap-
plications ran on the Tessellation box and contended with
the video player for bandwidth by constantly sending UDP
messages to the Linux box. The Network Service gave no
bandwidth guarantees to these applications, which shared
the excess of bandwidth. On the Tessellation box, applica-
tions and services resided in separate non-multiplexed cells.

Ideally, the RAB Service should allocate sufficient
throughput for the video player to reach 24 fps without over
provisioning. To this end, we experimented with two simple
reactive policies: an application-specific policy, PApp, that
exploits knowledge about the video stream’s bandwidth de-
mands; and a general-purpose policy, PGen, that operates
only based on the video player’s observed performance. PApp

uses reports that explicitly specify the size of the frames be-
ing received. PGen, on the other hand, uses reports with the
average frame inter-arrival time (in milliseconds per frame),
and has three operating points: 15.0 MB/s, 11.0 MB/s, and
7.5 MB/s. When the RAB Service receives a performance
report from the video player, the policy in use determines
whether the application is falling short of its performance
goal and needs higher throughput from the Network Service,
or whether the applications is exceeding the performance
goal by a pre-determined threshold could possibly run at a
lower operating point. Both policies include hysteresis to
prevent oscillations between operating points.

Figure 4 shows how the system reacts to changes in the
incoming video stream for each policy type. The upper
graph shows the video player’s observed throughput with
no guaranteed bandwidth reservation. In this case, the two
“bandwidth-hog”applications consume too much bandwidth
to allow the video player to receive its required amount.
The lower graph shows the results of PApp, where the Net-
work Service (via the RAB Service) rapidly adapts to the
changing needs of the video player. For PGen (the center
graph), the high-bandwidth intervals contain occasional low-
reservation glitches when it probes the next lowest operating
point. PGen is flexible enough for any scenario where a la-
tency value (e.g., frame inter-arrival time) is the key metric,

but is not optimized for the video-player application. How-
ever, adjusting the frequency of probing, number of operat-
ing points, and hysteresis in the RAB Service can improve
the system’s adaptation accuracy.

Figure 5 shows the video player’s observed frame rate,
which is the user-meaningful metric considered here. PApp

achieves near-constant 24 fps with glitches near the high-
bandwidth to low-bandwidth transition points. As expected,
PGen falls short of 24 fps during the high-bandwidth inter-
vals when the RAB Service probes lower operating points.
This experiment demonstrates that the system, composed
by the video player, the RAB Service, and the Network Ser-
vice, can adapt to changes in the incoming video stream.

6. CONCLUSIONS
This paper introduced Adaptive Resource-Centric Com-

puting (ARCC) and described and evaluated its implemen-
tation in the Tessellation OS. The key points for ARCC are:
• Resources distributed to QoS domains called cells,

which are explicitly parallel, light-weight containers
with guaranteed, user-level access to resources;
• User-level scheduling of resources within cells; and
• Adaptive allocation and distribution of resources to

cells in order to meet QoS requirements efficiently.
We showed that this approach handles a simultaneous mix of
high-throughput parallel, real-time, and interactive applica-
tions. Though we restricted our focus to client applications,
the embedded systems domain presents a similar complex re-
source management problem that we believe Tessellation OS
is capable of managing. We believe that ARCC is essential
for designing systems that can meet the rigorous responsive-
ness and efficiency demands of modern applications.

7. ACKNOWLEDGMENTS
This research is supported by Microsoft (Award

#024263), Intel (Award #024894), matching U.C. Discov-
ery funding (Award #DIG07-102270), and DOE ASCR
FastOS Grant #DE-FG02-08ER25849. Additional support
comes from Par Lab affiliates National Instruments, Nokia,
NVIDIA, Oracle, and Samsung. No part of this paper repre-
sents views and opinions of the sponsors mentioned above.
We thank other Par Lab members for their collaboration
and feedback. J. A. Colmenares participated in this work
while he was a post-doctoral scholar at UC Berkeley. M.
Moreto is supported by a MEC/Fulbright Fellowship.

8. REFERENCES
[1] Nano-X window system. http://www.microwindows.org/.

[2] NAS parallel benchmarks.
http://www.nas.nasa.gov/publications/npb.html.

[3] L. Abeni and G. Buttazzo. Resource reservations in dynamic
real-time systems. Real-Time Systems, 27(2):123–165, 2004.

[4] B. Akesson et al. Predator: a predictable SDRAM memory
controller. In Proc. of CODES+ISSS, 2007.

[5] P. Barham et al. Xen and the art of virtualization. In Proc. of
SOSP, 2003.

[6] D. B. Bartolini et al. The Autonomic Operating System
Research Project Achievements and Future Directions. In Proc.
of DAC, 2013.

[7] S. Baruah et al. Implementing constant-bandwidth servers
upon multiprocessors. In Proc. of RTAS, 2002.

[8] S. Baruah and G. Lipari. Executing aperiodic jobs in a
multiprocessor constant-bandwidth server implementation. In
Proc. of ECRTS, 2004.

[9] A. Baumann et al. The Multikernel: A new OS architecture for
scalable multicore systems. In Proc. of SOSP, 2009.

[10] S. Boyd-Wickizer et al. Corey: an operating system for many
cores. In Proc. of OSDI, 2008.

[11] J. A. Colmenares et al. Resource management in the
Tessellation manycore OS. In Proc. of HotPar, 2010.

[12] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel: An
operating system architecture for application-level resource
management. In Proc. of SOSP, 1995.

[13] P. Fischer. Multicore processors revolutionize real-time
embedded systems. Electronic Design, December 2007.

[14] L. L. Fong et al. Gang scheduling for resource allocation in a
cluster computing environment. Patent US 6345287, 1997.

[15] A. Gulati et al. mClock: handling throughput variability for
hypervisor IO scheduling. In Proc. of OSDI, 2010.

[16] S. M. Hand. Self-paging in the nemesis operating system. In In
Proc. of OSDI, 1999.

[17] H. Hoffmann et al. SEEC: a general and extensible framework
for self-aware computing. Technical Report
MIT-CSAIL-TR-2011-016, 2011.

[18] K. Jeffay. Scheduling sporadic tasks with shared resources in
hard real-time systems. In Proc. of RTSS, 1992.

[19] A. Kim et al. A soft real-time parallel GUI service in
Tessellation many-core OS. In Proc. of CATA, 2012.

[20] A. Kivity. kvm: the Linux virtual machine monitor. In Proc. of
OLS, 2007.

[21] H. Kopetz. Real-time systems: design principles for
distributed embedded applications. Springer, 1997.

[22] E. A. Lee et al. The TerraSwarm Research Center (TSRC) (A
White Paper). Technical Report UCB/EECS-2012-207, EECS
Department, University of California, Berkeley, Nov 2012.

[23] J. W. Lee et al. Globally-synchronized frames for guaranteed
quality-of-service in on-chip networks. SIGARCH Comput.
Archit. News, 36(3):89–100, June 2008.

[24] B. Leiner et al. A comparison of partitioning operating systems
for integrated systems. In Proc. of SAFECOMP, 2007.

[25] J. Liedtke. On micro-kernel construction. ACM SIGOPS Oper.
Syst. Rev., 29:237–250, December 1995.

[26] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal of
the ACM, 20(1):46–61, January 1973.

[27] R. Liu et al. Tessellation: Space-time partitioning in a
manycore client OS. In Proc. of HotPar, 2009.

[28] L. Luo and M.-Y. Zhu. Partitioning based operating system: a
formal model. ACM SIGOPS Oper. Syst. Rev., 37(3), 2003.

[29] K. J. Nesbit et al. Multicore resource management. IEEE
Micro, 28(3):6–16, 2008.

[30] R. Obermaisser and B. Leiner. Temporal and spatial
partitioning of a time-triggered operating system based on
real-time Linux. In Proc. of ISORC, 2008.

[31] J. Ousterhout. Scheduling techniques for concurrent systems. In
Proc. of ICDCS, 1982.

[32] P. Padala et al. Automated control of multiple virtualized
resources. In Proc. of EuroSys, 2009.

[33] H. Pan et al. Composing parallel software efficiently with Lithe.
In Proc. of PLDI, 2010.

[34] M. P. Papazoglou and W.-J. Heuvel. Service oriented
architectures: approaches, technologies and research issues. The
VLDB Journal, 16(3):389–415, July 2007.

[35] B. Rhoden et al. Improving per-node efficiency in the
datacenter with new os abstractions. In Proc. of SOCC, 2011.

[36] J. Rushby. Partitioning for avionics architectures:
requirements, mechanisms, and assurance. Technical Report
CR-1999-209347, NASA Langley Research Center, June 1999.

[37] B. Saha et al. Enabling scalability and performance in a large
scale CMP environment. In Proc. of EuroSys, 2007.

[38] D. Sanchez and C. Kozyrakis. Vantage: scalable and efficient
fine-grain cache partitioning. SIGARCH Comput. Archit.
News, 39(3):57–68, June 2011.

[39] A. Sharifi et al. METE: meeting end-to-end qos in multicores
through system-wide resource management. SIGMETRICS
Perform. Eval. Rev., 39(1):13–24, June 2011.

[40] D. D. Silva et al. K42: an infrastructure for operating system
research. SIGOPS Oper. Syst. Rev., 40(2):34–42, 2006.

[41] D. Wentzlaff and A. Agarwal. Factored operating systems (fos):
the case for a scalable operating system for multicores. ACM
SIGOPS Oper. Syst. Rev., 43(2):76–85, 2009.

APPENDIX
A. CELL TYPES

Table 1 summarizes the cell types Tessellation provides.
Non-multiplexed (non-muxed) cells are intended to host
software components with stringent performance require-
ments that demand a high degree of performance isolation.
Time-triggered (TT) cells are for hosting time-predictable
components that can tolerate some latency. Event-triggered
(ET) cells provide flexible event-handling as well as good
responsiveness and resource utilization, which make them
ideal for hosting OS services. Finally, best-effort (BE) cells
are for components without strict timing constraints.

These time-multiplexing policies allow users to easily spec-
ify the desired timing behavior for cells with a certain pre-
cision (currently 1 ms). For example, TT and ET cells
both take the parameters period and active time, where
period > active time. In the case of an ET cell, its reserved
fraction of processing time is given by (active time/period).

The Partition Multiplexing Layer in the Tessellation ker-
nel runs a separate multiplexer on each hardware thread
of the system. The multiplexers, or muxers, control time-
multiplexing of cells. The muxers collectively implement
gang-scheduling using a variant of Earliest Deadline First
(EDF) [26], combined with the Constant Bandwidth Server
(CBS) [3] reservation scheme. The Partition Multiplexing
Layer is then capable of providing all of the scheduling be-
haviors shown in Table 1. We chose EDF for TT cells be-
cause it enables the muxers to directly utilize the timing pa-
rameters specified for these cells. CBS, on the other hand,
isolates each ET cell from other cell activations, and ensures
each ET cell a fraction (f = active time/period) of pro-
cessing capacity on each hardware thread assigned to the
cell. Further, CBS offers ET cells responsiveness by allow-
ing them to exploit the available slack without interfering
with other cells. For short activation time (e.g., for event
processing in server cells), an ET cell is activated with an
immediate deadline if it has not used up its time allocation.

Muxers could schedule BE cells using a hierarchical
scheme, in which CBS reserves a small fraction of process-
ing capacity for BE cells and a round-robin algorithm op-
erates in the time slices given by CBS. For implementation
simplicity, however, the muxers use only CBS to schedule
BE cells. Unlike ET cells, which are activated by events,
BE cells are always kept in the runnable queue. Each
BE cell is given a fixed small reservation (e.g., 2% with
active time = 5 ms and period = 100 ms) to ensure that it
always makes progress.

B. OS SERVICES: TWO CASE STUDIES
Tessellation OS builds upon a service-oriented architec-

ture (see Section 2.2), in which services encapsulate devices
and, in general, resources. Each service can leverage its cell’s
performance isolation and customizable user-level schedulers
to offer service guarantees to applications and services resid-
ing in other cells. Moreover, services may exploit parallelism
to reduce service times or increase service throughput.

Each service in Tessellation comes with a library to fa-
cilitate the development of client applications. The client
libraries offer friendly, high-level application programming
interfaces (APIs) to manage connections and interact with
the services (i.e., they hide most of the details of inter-cell
channel communication). Those libraries also allow applica-

tions to request the QoS guarantees they need from services.
Two services at a mature development state that provide

QoS guarantees are the Graphical User Interface (GUI) Ser-
vice and the Network Service. They are the focus of this ap-
pendix and we describe them in detail below. Additionally,
Tessellation offers a Console Service that prints character
strings from other cells to a serial console (via a serial port).
This service has exclusive access to the console device, and
for a client cell, printing a string is just sending a one-way
message on a dedicated channel to the console service. Thus,
cells do not need to contend and wait for accessing the con-
sole device, and the influence of printing console messages on
each application’s behavior can be controlled independently
and minimized. The Console Service has been instrumental
in collecting the experimental data presented in this paper.

Other services in active development include a Block De-
vice Service and an Object Store Service. The Block Device
Service provides block-level operations with additional QoS
guarantees to applications or other services, and behaves as
a swap pager for individual cells. The Object Store Service
provides persistent storage through a simple interface that
enables applications to put (and retrieve) variable sized ob-
jects in a flat namespace. Due to space constraints, we do
not discuss these services further.

Next, we discuss the implementation of Tessellation’s GUI
Service and Network Service, and examine their ability to
provide QoS guarantees to client cells.

B.1 GUI Service
Tessellation’s GUI Service [19] provides a windowing sys-

tem with response-time guarantees for visual applications.
It resides in a dedicated cell, which encapsulates and has
sole control of the framebuffer device. Therefore, applica-
tions can only draw to the screen by using the GUI Service.

The GUI Service is a rearchitected version of the Nano-X
Window System [1]. It exploits a user-level Earliest Dead-
line First (EDF) scheduler to take advantage of multiple
cores and ensure that rendering jobs with earlier deadlines
are scheduled sooner. The GUI Service supplements the
EDF scheduler with a resource reservation scheme, called
Multiprocessor Constant Bandwidth Server (M-CBS) [7, 8],
to provide different CPU reservations to different rendering
tasks – a big distinction from traditional GUI systems.

We conduct an experiment to evaluate GUI Service’s abil-
ity to provide QoS guarantees to visual applications. The
experiment consists of eight video clients that send 8,000
computationally intensive rendering requests (frames) to the
window system, half at a rate of 30 frames per second (fps),
and half at 60 fps. To compare their performance, we use
both the GUI Service on Tessellation and the original Nano-
X system on Linux. The test platform is equipped with an
Intel 3.4-GHz Core i7 quad-core processor, 4 GB of RAM,
and hyper-threading enabled.

Figure 6 shows the result of our experiment. The tra-
ditional GUI system (represented by Nano-X running on
Linux) runs on a single hardware thread and misses 65%
of deadlines of the 60-fps requests. By contrast, even on one
hardware thread, Tessellation misses only 0.1% of deadlines
(GUIServ(1) in Figure 6), because it can reallocate some of
the CPU reservation from the 30-fps streams. Reallocation
is not necessary when the GUI Service uses more than one
hardware thread, and the overall service times roughly halve
when the hardware-thread count doubles. This suggests that

Cell Type Description Gang-Scheduling Algorithm

Non-Multiplexed
(Non-Muxed)

The cell is given dedicated access to the hardware threads and the
other managed resources.

Permanent activation.

Time-Triggered
(TT)

The cell is active for some time during periodic time intervals. Earliest Deadline First (EDF) [26].

Event-Triggered
(ET)

The cell is activated upon the arrival of an event. Once activated, the
cell remains “runnable” and is multiplexed with other cells until its
user-level runtime requests the cell to yield all the resources via the
cell_yield() system call. Once the cell yields it does not become
runnable until another event arrives.

Constant Bandwidth Server
(CBS) [3].

Best-Effort (BE)
These cells have no strong guarantees, but the kernel ensures that
they have the chance to be activated (i.e., make progress) and are
multiplexed in a fair manner among themselves.

CBS with cells always available for
activation and small reservations.

Table 1: Types of cells according to the time-multiplexing policies.

Tess Tess Tess

Figure 6: Service time for rendering requests. The

numbers above the bars represent missed deadlines; the

numbers in parentheses indicate the number of allocated

hardware threads in Tessellation.

the GUI Service may scale well.
The GUI Service is a good example of the advantages of

two-level scheduling in Tessellation. Implementing the GUI
Service’s customized scheduler on a monolithic kernel (e.g.,
Linux) would require extensive kernel-side modifications, es-
pecially if we wanted to apply it to a single application.
Modifying a general-purpose scheduler to meet the require-
ments of a specific application easily leads to performance
issues for the other applications. However, on Tessellation,
no kernel modification is required; the GUI Service’s sched-
uler sits on top of the PULSE framework (Section 4), is only
445 lines of code, runs completely at user level, and applies
only to the cell hosting the GUI Service.

So far, we have focused on a basic software-based render-
ing pipeline, which makes no use of acceleration capabilities
in graphical processing units (GPUs). The reason is that
using a CPU-based software rendering service is enough for
exploring mechanisms for QoS guarantees; GPU accelera-
tion would not add much on this side and its use is left to
future work.

B.2 Network Service
Tessellation’s Network Service provides access to net-

work interface cards (NICs) through an API similar to the
socket API. Its implementation is based on a modified multi-
threaded version of the lightweight TCP/IP protocol stack
lwIP.3 The Network Service allows the specification of min-

3http://savannah.nongnu.org/projects/lwip/

imum throughput reservations for data flows between NICs
and client cells. The service guarantees that the data flows
are processed with at least the specified levels of through-
put, provided it is feasible to do so with the networking and
computational resources available to the service (e.g., the
aggregate reservation should be less than or equal to the
NIC’s maximum capacity). Moreover, the Network Service
distributes any excess throughput proportionally among the
client cells via an adaptation of the mClock algorithm [15].

The Network Service enforces QoS guarantees by restrict-
ing channel communication. When an application opens a
channel to send or receive data over the network through the
Network Service API, it requests both a guaranteed and a
proportional bandwidth. The Network Service’s access con-
trol mechanism denies guaranteed-bandwidth requests that
would cause the total guaranteed bandwidth to exceed the
NIC’s maximum capacity. The Network Service first en-
forces the request for guaranteed bandwidth and uses the
proportional request to assign the slack of capacity. The
bandwidth-guarantee enforcement takes place at channel
message granularity, where each message contains an in-
dividual remote procedure call such as recv() or send().
While we stopped at the message granularity for implemen-
tation simplicity, bringing this enforcement at finer grain
(i.e., at channel data granularity) is a straightforward ex-
tension.

We evaluate the Network Service in a common client use
case: a user wants an uninterrupted stream of video content
(e.g., Hulu) in a foreground application, while a background
task (e.g., Dropbox) generates bursty network traffic. The
video stream requires 125 KB/s, which is the bandwidth
of an H.264 480p Hulu stream, while the background ap-
plication runs periodically and tries to use all the available
capacity. To realize this experiment, we use two identical
machines, each equipped with an Intel 3.4-GHz quad-core
Core i7 processor and 4 GB of RAM. Both machines are
directly connected over Ethernet via their Intel Pro/1000
1-Gbps NICs. One machine acts as the video source and
runs Linux 3.1.9, while the other, which is the video player
to be evaluated, runs Tessellation. The Linux box runs two
separate socket applications that serve data respectively to
the video-player application and the background applica-
tion running in Tessellation. On the Tessellation box, each
of the two test applications is assigned a dedicated hard-
ware thread, while the network service uses three dedicated
hardware threads.

Figure 7 shows the results of this experiment: the fore-
ground application receives an average 125.2 KB/s through-
put, while the background application periodically uses

140

120

100

40

20

0
0 10 20 30 40 50 60

Background App. (MB/s)

Foreground Throughput-guaranteed App. (KB/s)

Time (s)

T
h
ro

u
g
h
p
u
t

Figure 7: Guaranteeing network throughput in the pres-

ence of greedy applications. This graph shows that the

greedy application is unable to deny service to the ap-

plication with guaranteed service.

around 20 MB/s. The slight dip (around 5 KB/s) in the
foreground application’s throughput that occurs when the
background application starts using the link is a result of
a limitation in our modified mClock implementation. What
happens is that the QoS state of previously dormant connec-
tions is out of sync with virtual time, resulting in boosted
privilege for a brief instant. This problem has a known so-
lution, described by Gulati et al. [15] but, since the effects
of this issue are not disruptive, we did not put additional
implementation effort in porting the solution. Despite the
mClock artifact of our implementation, we achieve a stan-
dard deviation of only 1.65 KB/s for the throughput of the
foreground application; this means that the user will not ex-
perience disruption in the video-streaming applications due
to bandwidth-hungry background tasks.

The Network Service is another example of how the
service-oriented architecture of Tessellation can help mod-
ern clients match users’ needs. One of the key points is
that, aside from one-time system calls to configure the NIC,
the NIC driver4 is completely contained in userspace. This
structure allows the Network Service to avoid having to
make relatively expensive system calls to access the transmit
and receive buffers.

C. RELATED WORK
A number of research efforts have focused on the problem

of adaptive resource allocation to meet QoS objectives in
multi-application scenarios. Some previous work most rel-
evant to this paper includes: AutoControl [32], SEEC [17],
AcOS [6], and METE [39]. Next we present a compari-
son bewteen Tessellation and that previous work focusing
on goals, software infrastructure, and underlying adaptation
mechanisms.

AutoControl, SEEC, AcOS, METE, and other autonomic
computing frameworks incorporate adaptation policies of
various types. Policy-related aspects, such as formulation
of the resource-allocation problem, resource-allocation deci-
sion engines using optimal control or machine learning tech-
niques, and online performance-model estimators, are or-
thogonal to our discussion here. Those adaptation policies
can be implemented in Tessellation’s Resource Allocation
Broker.

AutoControl [32] is a feedback-based resource-allocation
system for shared virtualized infrastructure in data centers,
where applications are hosted in virtual machines across

4Tessellation currently supports the Intel PRO/1000 PCI
(E1000) and Realtek RL8168 adapters.

multiple nodes. It addresses the resource-management prob-
lem at the hypervisor level, and exploits Xen [5] to allocate
CPU and disk I/O bandwidth to mitigate bottlenecks. Au-
toControl and Tessellation have similar characteristics, de-
spite big differences in their target computing platforms –
data centers for AutoControl and a single multicore node
currently for Tessellation. Tessellation implements dynamic
resource allocation at the cell level, and cells resemble some
aspects of virtual machines [5, 20]. Cells, however, are in-
tended to provide better performance isolation and more
precise control over their timing behavior than traditional
virtual machines; besides, cells do not host a complete OS
– only a user-level runtime. In addition, AutoControl and
Tessellation both consider I/O services as shared resources
and dynamically allocate fractions of the services to appli-
cations.

SEEC [17] is a self-aware programming model designed to
facilitate the development of adaptive computing systems
on multicore platforms. It supports a decoupled approach
in which application programmers specify the applications’
goals and report the current progress toward those goals,
while system programmers separately specify the set of ac-
tions system software (e.g., OS and runtime) and hardware
can take to affect the applications. The SEEC framework
implements an observe-decide-act (ODA) control loop to
monitor applications and dynamically select actions to op-
timally meet their goals. SEEC currently supports three
application goals: performance, accuracy, and power. As
SEEC, Tessellation aims at providing a general and exten-
sible framework for self-adapting computing, in particular
through its RAB Service. Similar to SEEC’s Application
Heartbeat API, the RAB Service provides an API for appli-
cations hosted in cells to report their goals and performance
over inter-cell channels. SEEC does not propose changes in
the OS and currently uses mechanisms available in Linux
to implement the actuator functions. On the contrary, our
work on Tessellation focuses on rearchitecting the OS to pro-
vide better performance predictability and adaptive resource
management.

AcOS [6] is a proposal for an autonomic resource-
management layer to extend commodity OSs, such as Linux
and FreeBSD. The authors investigate the application of
autonomic-computing ideas at the OS level to automate
resource allocation based on user-specified application per-
formance goals and enforce system-level restrictions. They
demonstrate different approaches to automate allocation
of cores and processor time in order to meet those goals.
Moreover, AcOS considers maximum processor temperature
thresholds and implements a dynamic performance and ther-
mal management (DPTM) control loop to cap temperature
while still meeting the performance goals of a subset of the
applications. With respect to SEEC, the scope of AcOS is
closer to Tessellation’s. The major difference is that AcOS
only focuses on adaptation and extends commodity OSs,
whereas Tessellation builds support for adaptive resource al-
locations into its novel cell model from the ground up. Also,
neither AcOS nor SEEC in practice consider OS services as
part of the resource-allocation problem.

METE [39] is a platform for end-to-end on-chip resource
management for multicore processors. Its main goal is to
dynamically provision hardware resources to applications
to achieve performance targets. METE leverages feed-
back control to partition shared hardware resources among

co-located applications and uses an autoregressive-moving-
average (ARMA) model to capture applications’ perfor-
mance characteristics. METE considers cores, shared cache
space, and off-chip memory bandwidth as partitionable re-
sources. Since current processors do not support partition-
ing of all those resources, METE has been evaluated in a
simulation environment. Tessellation shares with METE the
interest in exploiting hardware partitioning mechanisms to
guarantee end-to-end QoS. However, while METE assumes
the availability of such mechanisms, Tessellation builds sup-
port for resource partitioning in a new OS model to enable
experimentation on real hardware. We exploit hardware so-
lutions when available and develop software solutions where
hardware support is absent.

Tessellation has similarities to several recent manycore
OSs. The use of message-passing communication via user-
level channels is similar to Barrelfish [9]. However, Barrelfish
is a multikernel OS that assumes no hardware assist for
cache coherence, and does not focus on adaptive resource al-
location. The way Tessellation constructs user-level services
is similar to fos [41]. Services in Tessellation are QoS-aware
and cells are partitioned based on applications rather than
physical cores. Tessellation is similar to Corey [10] in that
we also try to restrict sharing of kernel structures.

Tessellation adopts a microkernel philosophy [25], in which
OS services are implemented in user-space and applications
interact with them via message passing. Unlike in tradi-
tional microkernels, however, each service residing in a sepa-
rate cell is explicitly parallel and performance-isolated, and
includes an independent user-level runtime. The runtime
customization in Tessellation is influenced by Exokernel [12].
However, Tessellation tries to mitigate some of the prob-
lems of exokernels by providing runtimes and services for
the applications. Tessellation has some similarities to the
K42 OS [40]. Both implement some OS services in user-
space, but K42 uses protected procedure calls (PPCs) to
access services, where Tessellation uses user-level channels.

Tessellation shares with the Nemesis OS [16] the emphasis
on ensuring QoS for multimedia applications. Nemesis also
uses an approach around OS services and message passing,
but on uniprocessors.

Resource partitioning has also been presented in
McRT [37] and Virtual Private Machines (VPM) [29]. The
concepts of VPM and cells are similar, but VPM lacks
inter-cell communication and has not been implemented yet.
Gang-scheduling [31, 14] is a classic concept and has also
been applied to other OSs – most similarly in Akaros [35].
However, unlike other systems, Tessellation supports cells
with different timing behaviors.

