A Guide to Property-Based Interoperability
Morad Behandish'? and Vadim Shapiro'?

Hnternational Computer Science Institute, 2Palo Alto Research Center, 3University of Wisconsin-Madison

July 23, 2017

Limited or lacking interoperability has emerged as a central unsolved technical problem in computa-
tional design, synthesis, analysis, optimization, and manufacturing. In addition to being a significant
technological barrier, it has become a major economic problem within the past two decades, costing
the US manufacturing industry billions of dollars every year.

This guide aims to introduce the reader with challenges and opportunities that are common to
most interoperability scenarios in computational design and manufacturing. Its main purpose is to
provide the engineers, researchers, and other technical professionals with a systematic framework
to uniformly think about, formulate, and solve interoperability problems, validate the solutions,
and conceptualize extensions. The central tenet of the framework is the notion of correspondence
between representations and algorithms that are deemed interchangeable with respect to explicitly
declared properties. The concept of ‘property-based’ interoperability is introduced in terms of the
invariance of essential properties in a given data exchange scenario. The main focus will be on
geometric properties, which serve as a surrogate to various physical, material, fabrication process,
and other properties pertinent to design and manufacturing applications. We provide concrete use-
case scenarios for geometric interoperability to serve as examples of how the generic framework is
instantiated into different applications and solution methods.

Sections marked by s provide more in-depth discussions that can be skipped on a first reading.

The anatomy of an interoperability scenario

? Exchanged Info:
H Shapes
Material Structures
Physical Quantities
Representations
and Algorithms

Representations
Qualified in terms of and Algorithms

Accuracy

Precision

Lifespan
Scope
Scale

Contents

1 An Interoperability ‘Dilemma’
1.1 What is Interoperability?
1.2 Scope and Outline e
1.3 State-of-the-Art e e
1.3.1 Data-Centric Approaches
1.3.2 Query-Based Approaches
1.4 A Common Framework

2 Definitions and Formulation
2.1 Basic Definitions
2.1.1 Interchangeability
2.1.2 Interoperability
2.1.3 Imtegration
2.2 More on Invariants® L
2.2.1 Geometry as a ‘Surrogate’™
2.2.2 Transitivity™
2.3 Classification of Interoperability Problems

3 Use-Case Scenarios: CAD-CAD Interoperability
3.1 CAD-CAD Data Exchange Properties
3.2 Transitivity via External References
3.3 Use-Case Schema #1: CAD-CAD Data Exchange
3.3.1 Use-Case #1.1: Single System Solution (Same Representations & Algorithms)
3.3.2 Use-Case #1.2: Standardizing on Representations (with Different Algorithms)
3.3.3 Use-Case #1.3: Data-Centric Exchange (via System-to-System Translators)
3.3.4 Use-Case #1.4: Data-Centric Exchange (Standardizing on Neutral Formats)
3.3.5 Use-Case #1.5: Generic Model Exchange (Procedural or Declarative Recipes)
3.3.6 Use-Case #1.6: Query-Based Exchange (Standardizing on Functional Queries)

4 Use-Case Scenarios: CAD-CAx Interoperability
4.1 CAD-CAE Integration Properties
4.2 Use-Case Schema #2: CAD-CAE Integration
4.2.1 Use-Case #2.2: Standardizing on Representations (with Different Algorithms)
4.2.2 Use-Case #2.4: Data-Centric Integration (Direct or Indirect Data Translation)
4.2.3 Use-Case #2.6: Query-Based Integration (Standardizing on Functional Queries)
4.3 CAD-CAM Integration Properties
4.4 Use-Case Schema #3: CAD-CAM Integration
4.4.1 Use-Case #3.2: Standardizing on Representations (with Different Algorithms)
4.4.2 Use-Case #3.5: Generic Model Integration (Procedural or Declarative Recipes)
4.4.3 Use-Case #3.6: Query-Based Integration (Standardizing on Functional Queries)
4.5 Shape-Material Integration Scenarios
4.5.1 Heterogeneous Shape-Material Modeling
4.5.2 Multi-Scale Shape-Material Modeling

5 Conclusions
6 Acknowledgements

A A Recipe of Action Items for Interoperability

0~ O Uk w W

16
21
23
25
26
27
28

30
31
31
32
33
35
38
41
45
49

53
54
56
57
a8
99
62
64
65

67
70
70
70

72

73

73

1 An Interoperability ‘Dilemma’

Modern design and manufacturing suites have evolved into massive information systems that are
computationally intensive, heterogeneous (in scope, domain, and functionality), distributed (in space
and time), multi-scale, multi-physical, and interactive. In response to the increasing complexity of
the individual components ranging from design tools, simulation codes, and topology optimizers to
manufacturing and assembly planners, the subtasks have progressively grown more specialized within
their different domains of expertise. Consequently, a bewildering variety of models and representa-
tions continue to emerge, in order to support information processing about shape, motion, material
structures, physical behavior, design intent, manufacturability criteria, assembly constraints, toler-
ance specifications, process parameters, and other engineering information whose formal properties
are not fully understood.

The lack of proper formalism dragged alongside a continuous upsurge of innovation and special-
ization leads to nontrivial ‘interoperability’ problems across disparate computational implementa-
tions. Interoperability is a requirement for systematic, modular composition. Problems as diverse
as data exchange, substitution, integration, reconfiguration, and reuse of software components in a
component-based [23] and service-oriented [19] architectures for computational design and manufac-
turing are all contingent upon a formal understanding of interoperability.

Moving forward, we find ourselves on the horns of a major dilemma: we can either try to
restrict the types of information constructs (i.e., representations and algorithms) by premature
standardization, facilitating interoperability while stifling innovation; or we can continue to innovate
without restraint, and deal with the ever more challenging problems of interoperability.

1.1 What is Interoperability?

A common informal definition of ‘interoperability’ refers to the ability of a system, whose interfaces
are completely understood, to communicate and work with other products or systems, present or
future, without any restricted access or implementation [1].

In the context of computational design and manufacturing, interoperability subsumes the afore-
mentioned problems of data sharing, exchange, and translation, as well as the problems of systems
integration. Limited or lacking interoperability has emerged as a central unsolved technical prob-
lem in research, development, maintenance, scalability, and security of such systems, with crippling
effects on further advances in conceptual design, synthesis, analysis, optimization, manufacturing
planning, and productivity gains. In addition to being a significant technological barrier, it has be-
come a major economic problem within the past two decades, costing the US manufacturing industry
billions of dollars every year [11].

From an operational perspective, one can speak of the following classifications:

e ‘Syntactic’ versus ‘Semantic’ Interoperability:
— Syntactic interoperability is limited to sharing and exchanging information using a com-

patible language, when consistency of semantics is either trivial or taken for granted.

— Semantic interoperability is concerned with consistent interpretation of the exchanged
information, with or without identical syntax, and subsumes syntactic compatibility as a
special case (i.e., simplistic solution).!

I According to the IEEE Standard Computer Dictionary [1], the former is also referred to as ‘compatibility’, while
the term ‘interoperability’ alone often implicitly implies semantic interoperability, and shall be taken as such, unless
otherwise specified explicitly, hereafter in this guide.

Example Workflow A Example Workflow B Example Workflow A Example Workflow B

L

CAD CAD —X CAD CAD .
Design Design ‘\ . Design .~ Design S
/ L /

t Y 1 \Y Synthesis ,r/ i // i Synthesis
Material CAE ! Material .‘ CA
Modeling v Analysis ‘_v/('\ Modeling L ‘\ Analysis T

W v Vo Vo

CAE CAM - CAE .~ CAM
nalysis anning nalysis P
Analysi Planni Analysi: lannii

v

Jv

Lateral

(a) (b)

Vertical
Vertical

Figure 1: Interoperability can refer to (a) ‘vertical’ interoperability between in-house components;
or (b) ‘lateral’ interoperability across components developed for different enterprise workflows.

e ‘Vertical” versus ‘Lateral’ Interoperability:

— Vertical interoperability refers to the ability of components and (sub)systems to work
with other components and (sub)systems within organization-specific workflows, where
components are only functional if they can integrate into the rest of the workflow.

— Lateral interoperability is concerned with the (more challenging) problem of developing
components and systems with a more long-term outlook to facilitate interoperability with
other (currently unknown) systems and mitigate potential difficulties upfront.

Figure 1 illuminates the contrast between vertical and lateral interoperability with an (over)simplified
schematic. Real industrial workflows are often much more complicated. The key distinction to em-
phasize is that in vertical integration scenarios, representations, algorithms, and common properties
are known and controlled by a single party. The success of lateral interoperability scenarios, on the
other hand, hinges on the ability for two or more parties to find the common properties between
different representations and algorithms, to which we shall return in Section 2.

1.2 Scope and Outline

This guide aims to formulate and study semantic interoperability in the general context of com-
putational design and manufacturing, and discuss common approaches and alternative solutions
for (vertical as well as lateral) interoperability. The goal is to provide a systematic framework to
formally and precisely define the central concepts, starting from a high-level abstraction of models
and representations of data and processes. This, in turn, will serve as a foundation to uniformly
characterize practical interoperability scenarios and challenges.

The purpose of this document is not to present an exhaustive list of interoperability problems
or solutions, which would require extensive domain knowledge and application-specific strategies.
Rather, it is to provide a set of guidelines for domain experts to characterize and/or measure inter-
operability (or lack thereof) in different use-case scenarios, to understand commonalities between
interoperability challenges, and to systematically approach developing interoperability solutions.

After briefly and informally overviewing the common approaches to and existing challenges in
interoperability in the remainder of this section, the basic definitions of interchangeability, interoper-
ability, and integration are given in Section 2. We advocate a paradigm shift from the unattainable
ideal of ‘model-based’ equivalence of representations and/or algorithms to a practical prospect of
‘property-based’ equivalence (i.e., interchangeability). We discuss the importance of invariance of
the said properties when establishing a correspondence between systems (i.e., interoperability) and

when assembling them into compound systems (i.e., integration). Particular attention is paid to
the role of geometric properties as a surrogate to various other structural, physical, and behavioral
properties that depend to a substantial extent on geometric specifications. The anatomy of an in-
teroperability scenario, a classification of possible settings that one deals with, and a systematic
methodology for verification of interoperability are also presented in Section 2, to be used as a
recipe to systematically generate and examine several use-case examples in computer-aided design,
analysis, manufacturing (CAD/CAE/CAM) in the subsequent sections.

In Section 3, geometric interoperability (e.g., between CAD systems) is delved into, examin-
ing the six major mechanisms that continue to be used for CAD-CAD data exchange, aiming at
preserving shape (e.g., combinatorial, topological, geometric, differential, and integral) properties.
Each scenario is analyzed in terms of the properties, if/how they are carried over from one system
to another, and how their invariance after the exchange can be verified. The common advantages,
drawbacks, and best practices are discussed from a property-based perspective.

In Section 4, we briefly discuss how the role of geometric surrogate properties allows one to
extend these mechanisms to CAD-CAx interoperability and integration, in spite of the indisputable
limitations, with use-case scenarios from CAD-CAE and CAD-CAM integration.

In Section 4.5, we briefly discuss directions for extending the framework to other interoperability
scenarios such as multi-scale material modeling and multi-level system modeling.

Section 5 concludes the document. Appendix A provides a recipe of action items for the reader
to setup their own interoperability scenarios.

1.3 State-of-the-Art

There have been (and continue to be) numerous standardization and unification efforts to address
interoperability challenges in various contexts and applications. The existing approaches can be
divided into four broad categories that are based on

e exchanging generic specifications of procedural (e.g., parametric, generative, or constructive)
or declarative (e.g., constraint-based) models, assuming consistent expressions in different
systems via compact symbolic structures;

e exchanging and converting fully instantiated representations of (presumably) agreed-upon com-
mon models, using either pairwise system-to-system or standardized system-to-neutral format
translators via importing/exporting files;

e packaging functionalities (i.e., services) of some systems into stand-alone libraries accessible
to client systems via application programmer’s interfaces (API);

e standardizing on ‘queries’ defined with respect to common external semantics, which are ex-
changed between systems via interactive send/receive protocols;

or a combination of them. The first two are more broadly characterized as ‘data-centric’ methods,
while the last two are loosely grouped together as ‘query-based’ approaches. In particular, exchang-
ing procedural specifications of generic models and fully instantiated representations of non-generic
(but consistent) models are both viewed as data-centric communication (e.g., via file export/import).
The key distinction is that the former takes semantics for granted while the latter additionally re-
quires representation conversion to make the semantic connection. On the other hand, API-based
client-and-server or peer-to-peer information exchange can be viewed as query-based communication
(e.g., via API function calls), the key distinction being pertinent to whether the semantics are spec-
ified by the developers and presumed by the clients, or if they both appeal to an standard external
reference. However, the conceptual boundaries may not always be clear.

1.3.1 Data-Centric Approaches

Generic Modeling: Circumventing Interoperability Problems? A premier example of the
generic modeling approach is the feature-based methodology for solid modeling [62, 27, 14, 9, 67],
while similar approaches are abundant in various applications of computer-aided technologies (CAx)
to scientific and engineering problems. In each specialized domain, mathematical models of physical
phenomena are proposed, refined, and improved within expert communities as finite ontologies with
(some degree of) consensus on the semantics of their building blocks (e.g., ‘features’)—i.e., what a
‘slot’, ‘pocket’, or ‘hole’ precisely mean and how they are instantiated for a given set of parameters
in two different solid modelers, what composite ‘laminates’ are comprised of, how crystallographic
‘unit cells’ are characterized, and which parameters fully specify ‘atoms’ of nano-structures.

The ambitious goal of the generic modeling approach is to reduce the problem to one of merely
syntactic interoperability, when consistent system-level interpretations (i.e., semantics) can be taken
for granted. Although it may be a viable solution to vertical interoperability in relatively small sys-
tems over a short lifespan, by choosing and fixing generic models upfront and maintaining consistent
semantics (formally or informally) across a single platform, it often becomes part of the problem
rather than a solution for lateral interoperability. Achieving universal semantics, perfect standards,
and consistent support for generic models in different systems is rendered increasingly unrealistic as
design and manufacturing systems grow more complex and multifarious.

Representation Conversions and Neutral File Formats. Most modern design and manu-
facturing systems have developed around industry- or company-specific workflows, through which
engineering information advance in a variety of application-specific data structures or neutral file
formats. Success of such data-centric approaches hinges on the ability to perform representation
conversions and format translations for all relevant aspects of the design and manufacturing infor-
mation, forming what is often called a ‘digital thread’.

In the data-centric approach to interoperability, it is often implicitly assumed that the data
flowing through the digital thread is informationally complete at every stage, in a sense that it
contains all the information required by every relevant downstream application, and its integrity
remains intact throughout the pipeline. This implies a presumption of the existence of common
abstract models, to which the two representations before and after conversion refer, either exactly
or approximately, making them equivalent in some sense.

Unfortunately, the promise of informational completeness turns out to be largely a myth, even
in the case of geometric information, where the notion appears to have a sound theoretical basis.?
In practice, the incompatible assumptions often demand ad hoc heuristic recipes for salvaging the
missing pieces of information, and manual domain-expert interventions break the digital thread,
resulting in costly and error-prone workflows. Among other difficulties, successive back-and-forth
data translations between even a single pair of representations from different systems with (even
slightly) different semantics can lead to serious model degradation, especially in iterative workflows.
This is primarily due to the fact that unless the two representations before and after conversion refer
to precisely the same abstract model-—which is rarely the case—it is extremely difficult to elicit an
equivalence relation between them. In particular, the relation between two models described as
“being approximately the same” is not transitive, and hence is not an equivalence. This poses a
major challenge for interoperability as we will discuss in Section 2.2.2. In practice, it manifests as an
accumulation of errors along the digital thread; namely, small deviations that are either negligible
or repairable in a single conversion can lead to prohibitive discrepancies whose divergent behavior
is not well-understood.?

2This assumption is more explicitly asserted for geometric information, thanks to the defining principles of solid
modeling with a strong emphasis on informational completeness, when the crucial role of unambiguous geometric
description was recognized for computerizing the numerically controlled (NC) machining in 1970s and 80s [59, 64].

3 Anyone who has tried the amusing game of translating a simple paragraph on Google Translate™ back-and-
forth between two languages from dramatically different linguistic families can relate to the intrinsic difficulties of a

A careful assessment of product data technologies [22] reflects that in reality, neutral formats
consist of many different formats and variations, with substantial variations depending on limi-
tations, assumptions, and interpretations of distinct commercial systems. Despite the monumental
PDES/STEP effort that has been ongoing for several decades and has resulted in a body of standards
for the exchange of shape data [2, 34], integrating shape (geometry and topology) representations
from different CAD systems remains imperfect. According to various reports, failure rates ranging
between 5-20% are not uncommon, well over 80% of companies are now using multiple CAD systems
and formats,* and over 40% of professionals are now engaged in some interoperability tasks.?

In addition to the STEP standard(s), de facto specialized standards exist in different application
domains, including IGES for curve and surface data [66], STL and (more recently popularized) 3MF
for additive manufacturing (AM), OBJ for visualization, VRML for virtual reality (VR), FMI for
co-simulation, CGNS for computational fluid dynamics (CFD) analysis, and more.

On the other hand, proprietary system-to-system translators provide by far the most effective in-
teroperability solution between any pair of systems. However, such translators provide no guarantees
and cannot account for incompatible assumptions and representational power of different systems.
Customized translation also leads to an explosion of special purpose translators—growing at least
quadratically with the number of systems—which severely inhibits the ability to systematically add,
extend, or compose new representations and services to keep up with the evolving needs.

The above challenges notwithstanding, data-centric interoperability has become the industry
standard for integrating heterogeneous systems due to its ability to completely decouple the operation
of the individual systems. However, until these challenges are overcome, data-centric approaches
will continue to suffer from robustness challenges and lack of guarantees. This in turns implies that
data centric approaches do not support full automation, are not likely to scale, and may not support
real-time and interactive applications.

1.3.2 Query-Based Approaches

Libraries and Application Programmer’s Interfaces (API). The widespread demand for
integration of different computational design and manufacturing technologies have led to componen-
tization and packaging of different layers into stand-alone libraries that are accessible via application
programmer’s interfaces (APIs). For example, there are numerous APIs that support packaging of
selective solid modeling capabilities and components from stand-alone libraries, including the pop-
ular kernels such as Parasolid, ACIS, OpenNURBS, and OpenCASCADE (based on B-reps), Hyperfun
(based on F-reps), PADL-2 (based on CSG), Meshmixer (based on meshes), and OpenVDB/GVDB
(based on voxels). However, it is important to note that such APIs are usually fine-tuned to the
representation scheme and algorithmic infrastructure they encapsulate. As such, they are not in-
terchangeable in the sense that replacing one component with another is usually difficult, if not
impossible. Moreover, APIs are not necessarily interoperable when they are based on incompatible
mathematical models and representations.

Notably, in the context of geometric modeling, a significant effort (called Djinn [5]) undertook
the challenge of designing a representation-independent API for solid modeling based on canonical
decompositions of the shape that underlies most finite set-theoretic representations [63]. The results
of the effort remained largely academic because such decompositions are nontrivial to compute,
leading to excessive fragmentation of geometric information, and are rarely used in practice.

The major difficulty with API-based interoperability is that it is restricted by the functionalities
that the developers choose to publish for the clients to access through API services, and more im-
portantly, it is reliant on typically non-standard semantics that are predominantly determined by
the evolutionary development process of the libraries. Depending on how meticulously the API ser-

translation-based approach to semantic interoperability.
4Based on a 2010 survey of 269 companies, by the Aberdeen Group, www.aberdeen.com.
5Based on a 2010 “Collaboration & Interoperability” report by LongView Advisors www.longviewadvisors.com.

http://www.aberdeen.com/
http://www.longviewadvisors.com/

vices are documented and their semantics are published—e.g., in terms of their pre-/post-conditions,
internal architecture, exception handling, and alike—proper function at the client’s end is heavily de-
pendent on a set of implicit assumptions about the server’s internal working and interface properties
that are partially untrue or subject to change in subsequent versions.

Queries Standardized via Common External Semantics. An alternative approach advo-
cated in [29, 30] is to standardize on basic queries, which are computable functions or predicates
that encapsulate and abstract details of individual representations. It is radically different from the
traditional data-centric approach in that components and (sub)systems communicate not in terms
of (supposedly) informationally complete representations and file formats, but in terms of standard-
ized queries that provide a means for partial (i.e., incomplete) on-demand information exchange
across communicating components or systems. The query-based approach may also be considered
an extension of using APIs to communicate between different systems, the key distinction being that
queries are defined by common formal specifications as opposed to system-specific implementation
of subroutines that developers choose to expose for other applications.

The query-based approach enables adaptive and interactive communication and avoids global
representation conversions and format translations altogether, along with their susceptibility to
error accumulations. It is disruptive conceptually and technologically, and has proven effective
in several scenarios, including seamless integration of solid modeling with structural simulation
[20], manufacturability analysis for 3D printed parts [49], and computational modeling of material
structures [39]. However, in spite of the promising prospects, the query-based approach is at a stage
of infancy even in the better-understood realm of geometric information. At this time, its power,
formal properties, and practical limitations remain to be established and validated in the broader
context of computational design and manufacturing.

1.4 A Common Framework

Given the great diversity of representation schemes (and format converters), stand-alone systems
(hardware and software), and APIs for computational design and manufacturing, the need for in-
terchanging, sharing, and combining digital product information from different sources has become
greater than ever. The two approaches—data-centric and query-based—represent two extreme meth-
ods of interoperability that have dual properties. The data-centric approach treats information as a
representation of the system’s state or history, while the query-based approach focuses on the process
by which such information is measured, interpreted, utilized, and transmitted. It is conceivable that
other approaches to interoperability are possible, but most of them are likely to be a combination
of the aforementioned flavors.

The purpose of this document is not to advocate for or against a particular approach compared
to the others, nor is it to provide interoperability solutions of either kind. Rather, it aims to provide
a systematic framework to characterize and deploy the data-centric and query-based approaches in
terms of their formal properties, while maximizing advantages and documenting limitations of the
chosen approach to interoperability. This requires a general formulation of interoperability in the
context of design and manufacturing applications; this is the subject of the next section.

The anatomy of an interoperability scenario

Exchanged Info: ?
Shapes =
Material Structures
Physical Quantities
Representations
and Algorithms

Representations
and Algorithms Qualified in terms of

Accuracy

Precision

Lifespan
Scope
Scale

Figure 2: Semantic interoperability of computational design systems relies on qualifying the integrity
of the exchanged information by considering accuracy, precision, lifespan, scope, scale, etc. These
qualifications should be quantified with respect to a common external reference.

2 Definitions and Formulation

It is tempting to assume that the interoperability principles practiced in VLSI electronics, software
engineering, programming languages, and web development are applicable with minor modifica-
tions to computational design of engineering (e.g., electromechanical, thermofluidic, and generally
multi-physical) systems. An important distinction of engineering information is that it cannot be
completely characterized by ontology and type, making it challenging to effectuate a ‘plug-and-play’
(PnP) development style. All such information should be further qualified with the recognition that
computational models in design and manufacturing

e rely on heterogeneous information types (e.g., shape, material, physics, etc.) that come with a
rich body of domain-specific semantics, assumptions, and even contradictions;

e are inherently inezact, requiring them to be accompanied with specifications of accuracy, pre-
cision, resolution, tolerances, etc.;

e are structurally complez, in a sense that they require description at multiple scales (in space
and time) and with multiple views (of form and function);

e have dynamic scope and lifespan, affected by product life cycle and technological innovation.

It is not surprising that interoperability between computational systems in terms of such information-
intensive, multi-scale, multi-view data structures and inevitably fallible algorithms cannot rely on
an idealistic model of equality—e.g., a naive presupposition that a pair of systems, developed for
different purposes and based on different worldviews, can have an identical (i.e., truly equal) concept
of a product’s model. Nevertheless, intuitively it is clear that inteoperability of systems need a notion
of equivalence, at one level of granularity or another, upon which abstract semantic commonalities
of systems may be based. This leads us to the following fundamental principle:

Principle of Interchangeability

Interoperability between distinct systems (possibly rooted in different semantics) requires a no-
tion of equivalence between informational elements of these systems. This notion of equivalence
is hereafter called interchangeability.

In other words, the two-way horizontal arrow that illustrates some form of information exchange
in Fig. 2—regardless of its operational facets, e.g., data-centric or query-based, open-loop or recip-
rocal, sequential or in-parallel, etc.—does not provide a complete picture of interoperability. The
interchangeability of the exchanged information and their interpretations at the opposite ends of
the arrow must be qualified with respect to the properties that need to be preserved throughout
the information exchange, in spite of the differences in terms of application-specific constraints on
the shape (geometry and topology), material structure, physical quantities, manufacturing param-
eters, and other information. The question is of specifying or characterizing the invariants in this
information exchange that define the essence of interchangeability.

On the other hand, in observance of possible semantic differences between the systems—mnone of
which necessarily provides the “ground truth” based on which to qualify the data—the interchange-
ability of the information residing at the opposite ends of the horizontal arrow in Fig. 2 must be
qualified with respect to common semantics that are agreed-upon by the two systems. The inherent
inexactness of representations and algorithms makes this task particularly challenging because the
common semantics must account for some or all of the following: precision of numerical data and
computations, accuracy of algorithms, tolerances of models and representations, as well as their
resolution and scale.

Semantic interoperability of computational systems is defined in terms of the invariants of the
information exchange, that should be precisely specified with respect to common semantics.

The central premise of this document is that any practically realistic interoperability scenario must
explicitly specify and document the aspects of the information exchange that must remain invariant.
These “aspects” (hereafter called ‘properties’) must be made sense of by appealing to a common
semantic reference. Accordingly, any attempt to certify the interoperability of the two systems must
first verify the interchangeability of exchanged information, which, in turn, amounts to inverstigat-
ing if the specified properties are preserved throughout the exchange.

The invariants of an interoperability scenario can be defined as set of concrete properties that
must be preserved throughout the information exchange, regardless of the operational means.

As illustrated by Fig. 3, computing and interpreting the properties of the information carried by
each system with respect to common semantics can be conceptualized by a pair of mappings from
the two systems into a space of properties. If ‘Alice’ A and ‘Bob’ B are a pair of systems whose
interoperability (or lack thereof) is being studied, the property space P is a common data type that
is recognized by both systems. Each system takes the responsibility of correctly computing the
properties on its internal elements (with possibly hidden details) in compliance with the external
semantics—abstracted as the so-called ‘property functions” A — P and B — P in Fig. 3. The
information exchange itself, regardless of its operational means, can be abstracted as mappings as
well, called ‘interoperability maps’ A = B in Fig. 3.

10

The anatomy of an interoperability scenario

?

Interoperability Maps

Representations VERIFICATION Representations

and Algorithms is to test: and Algorithms

“does it commute?”

\ /7
Property P Property
Function Function

? Properties ?

Figure 3: Computing the properties (for qualifying interchangeability) and the information exchange
(for enabling interoperability) are conceptualized as mathematical mappings.

In Section 2.1, we make the above notions precise at a high-level of abstraction, accompanied with
a few simple concrete examples. The goal is to present the common ingredients of interoperability
scenarios in a clear, widely-accessible, and self-sufficient language.

In Section 2.2 we will elaborate on the notion of invariants and present a few central concepts
including transitivity (of interchangeability), external addressability (of common references), the role
of geometry as a surrogate to non-geometric properties, and granularity (of equivalence classes).

In Section 2.3, we classify interoperability problems into four major classes depending on the
known/unknown arrows on the diagram of Fig. 3. The developed abstractions and language are
used to set up interoperability scenarios, examples of which are studied in Section 3.

2.1 Basic Definitions

Before discussing their interoperability, we must first clarify what we mean by ‘systems’:

-
Computational Systems (Fig. 4)

A computational ‘system’ S is a computer implementation of an abstract modeling space C:*

e C = (Mc;F¢) denotes a collection of mathematical ‘models’ (denoted M¢) and mathe-
matical ‘functions’ (denoted F¢) acting on those models, to abstract and explain physical
states and processes, respectively.

e S = (Mg;Fs) denotes a collection of computer ‘representations’ (denoted Ms) and compu-
tational ‘algorithms’ (denoted Fs) computing on those representations, which implement
the aforementioned abstractions.

Hereafter, we shall refer to a pair of generic systems, whose interoperability is of interest, as
‘Alice’ A = (Mp; Fa) and ‘Bob’ B = (Mg; Fg), color-coded as such in all notations and figures.

*Hereafter, entities which belong to the common external reference are denoted via Roman (serif) symbols,
whereas entities which belong to system-specific computational spaces are denoted via Gothic (sans serif) symbols.

11

OBSERVATION SEMANTICS SYNTAX
PHYSICAL MATHEMATICAL COMPUTATIONAL
ENTITIES & PROCESSES MODELS & FUNCTIONS REPRESENTATIONS & ALGORITHMS

Representation Scheme =\ @

sentation (1)
Interpretation .
Function Algorithm
A

Abstractipn

State (1) B

Process

Repres@) @

PRODUCT VIRTUALIZATION

Figure 4: The abstraction paradigm common to many modeling activities (recreated from [72]).

Thus a computational system can be viewed as a syntactic structure factory interpreted by a con-
ceptual map (i.e., ‘semantics’) 75 : S — C which maps representations to models, and accordingly,
maps algorithms to functions. This view is consistent with how representations are traditionally con-
ceived and developed in computer-aided design and manufacturing (Voelcker and Requicha [72])—in
which lexicon the inverse g 1. C — S is referred to as the ‘representation scheme’ [58] (Fig. 4).6

Units of Information: Models and Representations (Fig. 10 (b))

For our purposes, models stand for mathematical abstractions of ‘states’, physical or virtual,
represented in each system via finite symbol structures. They may refer to logical informa-
tion, combinatorial networks, shape (geometry and topology), lattice structures, continuum
space-time distributions (i.e., tensor fields), discrete forms (i.e., co-chains), configurations (i.e.,
motions), tolerance specifications (e.g., GD&T datums), process parameters, and meta-data.

Units of Computation: Functions and Algorithms (Fig. 10 (c))

On the other hand, functions are conceptualizations of ‘processes’, physical or virtual, ranging
from computing local or global numerical properties (e.g., evaluating differential and integral
properties) to transformations of the models (e.g., computing the medial axis transform), com-
binations of two or more models into different models (i.e., performing Boolean or Minkowski
operations), and so on, implemented in each system via computable algorithms or subroutines.
They form the building blocks for computational tasks throughout the digital thread, including
data acquisition, geometric modeling, shape synthesis, physical analysis, manufacture planning,
optimization, inspection, documentation, and archival.

6The modeling itself is also viewed as another conceptual map from a physical referent (e.g., object or process) to
the modeling space, giving rise to the information triplet (object, model, representation) [56, 58]. Similar conceptual-
izations have been proposed by others in different contexts of computer science and engineering, including Scott and
Strachey’s denotational semantics for programming languages [60], Denning’s model of representation transformations
[17], and Cook’s data abstraction paradigm for programming [15].

12

Analysis

Synthesis

OBSERVATION SEMANTICS
PHYSICAL MATHEMATICAL
ENTITIES & PROCESSES

Optimization

~_~

What we do model

What we don’t model

LT P

Mfg. Planning

Material (;EO?TFHC
in Future... Modeling odeling
PRODUCT VIRTUALIZATION

Figure 5: The more realistic picture of computer-aided technologies (CAx), each focusing on partic-
ular aspects of modeling, computing, and reasoning. Geometry plays a central role in abstraction
as well as communication between different CAx components—compare to Fig. 4.

Computer-Aided Technologies. Although the above definition is fairly general—and so are
the subsequent developments—we are primarily interested in computer-aided technologies (CAx),
including but not limited to

e CAD systems for modeling geometric shapes (geometry and topology) with or without anno-
tations (e.g., material structures, GD&T specs, etc.);

CAE systems for analyzing geometric models for simulating physical behavior (e.g., structural,
thermal, aerodynamic, etc.);

CAM systems for manufacturability analysis and fabrication process planning;”

design exploration, shape synthesis, and topology optimization systems;
e multi-scale material modeling languages;
e system modeling languages; and others.

These systems focus on different aspects of a product’s digital model—i.e., modeling, computing,
and reasoning from a different perspective for a specific application—as depicted by Fig. 5.

"The term computer-aided manufacturing (CAM) is often reserved for tool-path generation and machine-level
control activities, and is treated differently from computer-aided process planning (CAPP) used for high-level planning.
Here, we use “CAM” in CAD-CAM integration to broadly refer to all computer-assisted manufacturing activities.

13

Example:
Some CAD B-rep in A

System A (Alice)

&

Read:

PRODUCT VIRTUALIZATION

“is interpreted as”

Example:

Example:

Some 3D manifold in C

Modeling Space (C)

Some CAD CSG in B

System B (Bob)

Read:

“is interpreted as”

Modeling Space (C)

PRODUCT VIRTUALIZATION

Figure 6: The same 3D solid model represented by B-rep and CSG schemes.

System A (Alice)

Blending algorithm in A

System B (Bob)

Blending algorithm in B

(concrete) (concrete)

Example:
Some 3D manifold in C

Example:
Some CAD B-rep in A

&

Example:
Some CAD CSG in B

N

YA
Blending function in C

N
N
(abstract)
Modeling Space (C)
PRODUCT VIRTUALIZATION

Figure 7: The same CAD operation implemented on B-rep and CSG schemes.

.,
7
’
\ ’
Blending function in C

(abstract)
Modeling Space (C)

PRODUCT VIRTUALIZATION

Example 2.1. Consider two traditional CAD software/libraries A = (Ma;Fa) and B = (Mg; Fg).
The representation spaces Ma and Mg are the space of all valid data structures that each system can
instantiate following the rules of a specific representation scheme; e.g., CSG, B-reps, F-reps, voxel
maps, point clouds, etc. [58]. These representations are interpreted via the systems’ y—maps to some
universe of mathematical objects M¢ that exist independently of the representation scheme, and are
(presumably) common between different CAD systems (Fig. 6). Accordingly, Fa and Fg are the space
of different algorithms programmed to operate on those data structure; e.g., Boolean operations,
freeform surface editions, offsets/blends, integral property computations, etc. These algorithms are
interpreted via the systems’ y—maps—by extending the interpretation to their inputs/outputs—to
the mathematical functions acting on the aforementioned abstract models (Fig. 7).

Thus it is conceivable that representations and/or algorithm of A = (Ma;Fa) and B = (Mg; Fg)
can be deemed interchangeable with respect to the common models and/or function in C = (M¢; F¢)
as illustrated by the diagram in 7. Such an idealistic concept of model-based interchangeability—
often called ‘consistency’ in traditional solid modeling literature [58, 57]—will break down as soon
as the systems have different semantics, assumptions, constraints, representational precisions, algo-
rithmic accuracies, etc.

14

Example:
Some CAE mesh in B

&

Example:
Some CAD B-rep in A ’ ’

System A (Alice)

System B (Bob)

Read:
“is interpreted as”

Read:
“is interpreted as”

Example:
Some 3D manifold in C

Modeling Space (C)

Modeling Space (C')

PRODUCT VIRTUALIZATION PRODUCT VIRTUALIZATION

Figure 8: The same 3D solid model represented by B-rep and triangular mesh.

System A (Alice) System B (Bob)

Solution algorithm in B

(concrete)

Example:
Some CAE result in B

i

Does not bclon;, to C ! >6lut 10;1 function in C’
because CAE tasks are not known to CAD (abstract)
Todeling Space (C')
PRODUCT VIRTUALIZATION PRODUCT VIRTUALIZATION

Figure 9: The CAD system has no interchangeable algorithm for CAE analysis.

Example 2.2. For a downstream CAx system B’ = (Mg/;Fg/) that draws upon the CAD model
(e.g., from A in Example 2.1), models in M and their representations in Mg: as well as functions
in Fer and their algorithms in Fg/ can be substantially different than those of the CAD system. The
shape (geometry and topology) information is still central to Mg—sometimes using simplified models
or partial information to the extent that is sufficient for the particular purpose. Additionally, other
types of information may be represented on top of the geometric backbone—e.g., material structures
physical quantities, process parameters, etc. We will see in Section 2.2.1 how this common backbone
can be exploited to draw some form of interchangeability (i.e., equivalence) between unequal elements
of the two systems.

Examples of Mg/ are simplified (e.g., polygonized and de-featured) mesh structures augmented
with discretized physical fields for CAE, decomposed or sliced representations and cutter/nozzle
trajectories for CAM, homogenized material models at different size scales, reticulated (i.e., lumped)
networks for system modeling, etc. In addition, the CAx system offers task-specific algorithms
Fg/ that implement new functionalities (not recognized by the CAD system) related to physical
simulation, fabrication planning, material characterization, system dynamics modeling, etc.

15

System A (Alice)

\

\
Is Interpreted to \
YA

(a)

System B (Bob)

/

/
¢+ Is Interpreted to
B

Models/Representations

[] [J o 0o
o [J o 00
Logic

Combinatorics
Topology

Geometry

Lattice Structures
Tensor Fields
Tensor Co-chains
Configurations
GD&T Specs
Process Parameters
Meta-data

(b)

Functions/Algorithms

_— —
_ —

Data Acquisition
Concept Generation
Modeling

Synthesis
Analysis/Simulation
Topology Optimization
Manufacture Planning
Assembly Validation
Inspection
Documentation
Archival

()

Common Modeling Space (C)

Figure 10: A schematic of systems A and B and their (presumably) common modeling space. The
models/representations (bullets) are operated on by functions/algorithms (arrows).

2.1.1 Interchangeability

The simple (and quite universal) information model presented in Fig. 4 is helpful in conceptualizing
computational modeling efforts. In particular, it provides a first shot at defining a ‘model-based’
interchangeability (i.e., ‘consistency’ as defined by Requicha [58]):

Model-Based Interchangeability (Fig. 10)

Given systems A = (Ma;Fa) and B = (Mg; Fg) and a common modeling space C = (M¢; F¢)
to which they both map their elements via y5 : A — C and g : B — C, respectively:

e A pair of representations in Ma and Mg (denoted mp € Ma and mg € Mg) are called
model-based interchangeable (or ‘“y—interchangeable’ for short, denoted ma = mg) if they
both represent the ezact same model, i.e., ya(ma) = vg(mp) = m¢ (where me € M¢).

e A pair of algorithms fa € Fa and fg € Fg are similarly defined y—interchangeable if they
both implement the same function, i.e., fa = fg if ya(fa) = 18(fg) = fc (where fc € Fc).

Accordingly, the systems A and B have ‘total’ y—interchangeability with respect to C if they
both cover the entirety of C by their interchangeable elements. The interchangeability is called
‘partial’ if it is total over a proper subset of semantic space C' C C.

_ J

Example 2.3. For CAD systems, the space of mathematical models/functions C is universal—e.g.,
widely accepted choices (for M) are orientable manifold cell complexes or semianalytic ‘r-sets’ in
3D [56], along with set-theoretic and topological operations on them (for Fc). Let A and B be
two arbitrary CAD kernels implementing that space—e.g., Parasolid and ACIS, or pick your own
from examples given in Section 1.3.2. They may use different representations schemes (e.g. different
flavors of B-reps, meshes, CSG, features, or combinations of them) and different algorithms optimized
for each scheme. Nevertheless, they are deemed y—interchangeable as long as their mathematical
~v—interpretations are consistent.

16

Even for the example of CAD-CAD interchangeability given above, where semantics are fairly
universal, there are at least two main problems with the model-based approach in practice; namely,

e model-based interchangeability is never total, i.e., it is rarely the case for two systems based on
different representation schemes, to have the same expressive power, i.e., to be able to represent
the same extent of models and compute the same extent of functions residing in a superset of
their modeling spaces C. In reality, different representations are suitable for different tasks,
explaining their existential diversity in the first place.

e model-based interchangeability is never ezact, i.e., even for the representations and/or algo-
rithms of the same nature (e.g., B-rep in A versus B-rep in B) where one would expect perfect
semantic consistency in an ideal world, exact interchangeability is challenged due to discrep-
ancies in representation precision semantics and/or algorithmic accuracies and guarantees.®

Thus one has to speak of partial and inexact interchangeability even in the familiar case of CAD-CAD
interchangeability with seemingly consistent and universally agreed-upon semantics.

More importantly, although Fig. 4 was a realistic picture in the not-so-distant past when there
were only a handful of academic or industrial implementations per task, it does not suffice to reflect
the current reality, which looks more like Fig. 5. Today, computer-aided technologies (CAx) have
grown ever so diverse in computational tasks and representation/algorithmic schemes per subtask.’
They are increasingly more focused on different aspect of the engineering information models and
more specialized on near-optimal treatment of narrower (but deeper) areas of modeling, simulation,
planning, optimization, etc.

Nevertheless, these different models/representations and functions/algorithms for different CAx
applications ought to have something in common, in order to make interchangeability meaningful,
and to enable interoperability by virtue of preserving those common aspects. We generically refer
to those commonalities as ‘invariant properties’ (or ‘invariants’ for short). These invariants could be
topological properties (e.g. homology or homotopy type), metric properties (e.g., Hausdorff distance
from a reference set), differential properties (e.g. continuity or smoothness), integral properties,
statistical descriptors, and so on. The invariants could be also defined experimentally or empirically,
for example by prescribing the expected behavior of representations and/or algorithms with respect
to reference data sets or test cases (e.g., membership test against a large number of points).

The semantics for interchangeability are given as a space of properties that are commonly
stipulated by both systems. Interchangeability of elements is certified by matching properties,
and interoperability of systems hinges on preservation of properties upon information exchange.

The space of properties is hereafter denoted via P := (Mp; Fp) which includes models of properties
(denoted Mp) and functional relationships between them (denoted Fp). If a system S = (Ms;Fs)
intends to interoperate with other systems with respect to a subset of these properties, it must come
with a ‘property function’ us : S — P that maps every internal computational element to an external
property. The property functions must be well-defined and computable, at least in principle. When
the property is implemented using the authoring system’s own internal algorithms and published to
its client systems, they must be able to recognize the same type of properties. This leads to the
more general notion of ‘property-based’ interchangeability:

8There are many examples: choices of precision (e.g., 1076 vs. 10712), error quantifiers (e.g., absolute vs. relative),
truncation rules (e.g., round half-up vs. half-down), number system (e.g., binary vs. decimal basis), floating-point
arithmetics (e.g., single- vs. double-precision), and many others.

90ne quick look at Wikipedia’s incomplete list of the famous CAx vendors is enough to grasp the scale of the
expected interoperability challenges: en.wikipedia.org/wiki/List_of_CAx_companies.

17

https://en.wikipedia.org/wiki/List_of_CAx_companies

System A (Alice) System B (Bob)

i 1
! 1
!]
! 1
! 1
| \ \ 1
! 1
1 1
] [] Equivalence (
\)

o ! i
\
.\ @ °/
\
\\ \ /I
AY
1
3
3

Models/Representations

[] [J o 0o
[] [J o 00
Logic

Combinatorics
Topology

Geometry

Functions/Algorithms

_ s

Data Acquisition
Concept Generation
Modeling

Synthesis

7/
YA B Y
) < > { /e Lattice Structures Analysis/Simulation
AN V4 d Tensor Fields Topology Optimization
b (&
. (b) (©)
i ® o ./ Common Properties (i.e., Invariants)
Is Certified to Have I Has Is Certified to Have
HA ~—Yuc. B y . .
. 1 ~ Syntactic Properties Hausdorff Deviation
// \\ Regularity GD&T Constraints
(a)] : Manifoldness Measures/Integrals
A " Homeomorphism Probabilistic Metrics
\\\ /// Homology Physical Conditions
S~=-" Homotopy (d)
Invariant Property Space (P)

Figure 11: A schematic of systems A and B and their common property space. To obtain the latter,
models/representations (bullets) and functions/algorithms (arrows) are grouped into equivalence
classes (wedges) based on the properties they share, imposing a partitioning on the modeling space.

Property-Based Interchangeability (Fig. 11)

Given systems A = (Mp; Fa) and B = (Mg; Fg) and a common property space P = (Mp; Fp) to
which they both map their elements via pup : A — P and pug : B — P, respectively:

e A pair of representations in Mp and Mg (denoted ma € Ma and mg € Mg) are called
property-based interchangeable (or ‘u—interchangeable’ for short, denoted ma £ mg) if
they both possess the same property, i.e., ua(ma) = pg(mg) = mp (where mp € Mp).

e A pair of algorithms fa € Fp and fg € Fg are similarly defined p—interchangeable if they
both implement the same function, i.e., fa = fg if ua(fa) = ps(fg) = fp (where fp € Fp).

Accordingly, the systems A and B have ‘total’ y—interchangeability with respect to P if they
both cover the entirety of P by their interchangeable elements. The interchangeability is called
‘partial’ if it is total over a proper subset of property space P’ C P.

Properties of Interchangeability. It might appear at a first glance that the distinction between
the modeling space C = (M¢; F¢) (with semantic map s : S — C) and property space P = (Mp; Fp)
(with property map us : S — P) is merely an artificial one. In fact, if models are viewed as
what captures all computable properties, model-based interchangeability is to claim property-based
interchangeability for every possible property, which is unrealistic.

Figure 11 illustrates the differences between property-based p—interchangeability and model-
based y—interchangeability. Each property in P can be viewed as a common aspect of a collection
of models in C, forming an equivalence class in C (hereafter called an ‘interchangeability class’)
illustrated via green wedges in Fig. 11. In other words, the P—space corresponds to a partitioning

18

of the C—space such that elements that are “similar enough” by virtue of the properties we care
about are grouped together.'9 Their differences are deemed irrelevant.

Interchangeability Certificates: Invariant Properties (Fig. 11 (d))

The computable properties that can be used to certify interchangeability in computational
design and manufacturing include syntactic and semantic properties, the latter including but
not limited to topological properties such as regularity, manifoldness, connectivity, homeomor-
phism, homology, homotopy type, etc.; geometric properties such as metric, affine, and differ-
ential properties (e.g., local curvatures) integral properties including Hausdorff measures (e.g.,
volume, surface area, curve length, and cardinality) and other ‘lumped’ properties, variation
metrics including Hausdorff distance or GD&T deviations with respect to external references
(elaborated in Section 2.2.2), shape descriptors such as Minkowski functionals, probabilistic
measures such as multi-point correlation functions, physical properties such as satisfaction of
governing conservation or constitutive equations, compatibility conditions, boundary/initial
conditions, and many more.
_ J

Example 2.4. Let A and B be two CAD software systems using different representation seman-
tics, precisions, accuracies, etc. When shape information are exchanged between them, the loss of
information may be inevitable to some extent, depending on the system-specific constraints on both
ends. Thus the representations before and after conversion may not be representative of the same
exact model (i.e., ya(ma) # vg(mg)). However, it is conceivable that one can come up with a set
of properties whose invariance throughout the translation indicates “good enough” conservation of
model integrity (i.e., pa(ma) = ug(mg)). It can be a combination of combinatorial properties (e.g.,
B-rep cell complex homology), topological properties (e.g., homeomorphism to a reference), and
geometric properties (e.g., being within tolerance zone of a reference).

Example 2.5. Let A be a CAD system and B be a CAE solver. Shape information is translated
from the designed model with freeform surfaces and feature semantics to a polyhedral mesh (possibly
approximated, simplified, or de-featured) before it is analyzed. This means that some information is
lost in the transfer, and the CAE model is not the same as the CAD model (i.e., ya(ma) # vys(ms)).
Yet to guarantee correctness of the analysis results, certain combinatorial, topological, and geometric
properties of the shape should be preserved after the meshing process (i.e., pa(ma) = pg(mg)).
The only properties that are considered relevant are those which can affect the CAE solution; for
example, those that can ultimately affect analysis activities such as enforcing boundary conditions
and integrating governing equations.

We should be standardizing on the properties that remain invariant when exchanging informa-
tion across heterogeneous representations/algorithms implementing diverse models/functions.
Standardizing on representations (e.g., neutral file formats) or algorithms (e.g., constructive
procedures) is limited, as it counts on the illusory promise of model-based interchangeability.

10Technically, P = C/é is the quotient space of C modulo equivalence via pc : C — P, where ps := (¢ 07s).

19

System A (Alice) System B (Bob)

System A (Alice) System B (Bob)

Figure 12: Interchangeability as a coloring: colors are properties and brushes are p—functions.

Summary of Interchangeability. To summarize Section 2.1.1, property-based interchangeability
can be viewed as a consistent coloring of two systems (Fig. 12). If the color palette is the common
semantic reference, each system has its own canvas (i.e., computational space of representations and
algorithms) and its own brush (i.e., property functions), meaning that it is responsible to correctly
paint its own computational elements (i.e., assign properties to them).

Interchangeability goes only as far as discovering to what extent the two systems have equivalent
representations and/or algorithms. It establishes an implicit many-to-many association within and
across equivalence classes in each system. It is implicit in the sense that one can test and decide
(i.e. answer “is true or false?”) the relation mp £ mg for a given mp € Ma and mg € Mg, by asking
each system to separately compute the properties pa(ma) and pg(mg), then externally check if the
two are equal pua(ma) = pg(mg). However, we do not yet have enough machinery to go from one
element to another across the two systems while preserving the properties—which is the ultimate
goal of interoperability. In particular:

1. How does the sending system (e.g., A) check if for any one of its elements (e.g., representations
and algorithms) the receiving system (e.g., B) has any interchangeable elements at all?

2. If there exists one or more interchangeable elements in the receiving system’s end, how are
they chosen, i.e., what is/are the property-preserving mapping(s) between A and B?

In the next section, the notion of ‘interoperability’ is formally defined by the ability of the systems
to do the above, i.e., by establishing a correspondence (called an ‘interoperability map’) between
the systems that preserves the properties.

20

B Interoperates with A A Interoperates with B

System A (Alice) System B (Bob) System A (Alice) System B (Bob)

Figure 13: Interoperability as a correspondence that is faithful to the coloring in Fig. 12.

2.1.2 Interoperability

Informally, interoperable systems are not only capable of discovering the extent of their partial in-
terchangeability, but also aware of a precise correspondence between their interchangeable elements.

Property-Based Interoperability (Fig. 13)

Let A = (Ma;Fa) and B = (Mg;Fg) be partially interchangeable systems with respect to
P = (Mp;Fp) to which they both map their elements via pa : A — P and pug : B — P,
respectively. A given map nag : A — B is called an interoperability map (or ‘n—map’ for short)
if it preserves the properties, i.e., if its outputs and inputs are p—interchangeable.

e Given a pair of representations my € Ma and mg € Mg associated via mg = nag(ma),
I .
one has ma = mg, i.e., ua(ma) = pg(mp).

e Accordingly, if an algorithm fao € Fa is mapped to an algorithm fg € Fg they must be
interchangeable for all combinations of inputs and outputs.

Accordingly, the receiving system B is said to be ‘interoperable’ with the sending system A if
a specific n—map is given from A to B (explicitly or implicitly).

Properties of Interoperability. A few points are worth emphasizing to interpret the above
definition: First, unlike interchangeability, interoperability is a non-symmetric relation.

e Practically, this means that one system can correctly interpret and use the information received
from the other system—where “correctly” means up to property-based interchangeability. But
it may not be the case for the inverse information stream. For example, when a CAE system
is said to interoperate with a CAD system, it must be able to understand shape data from
CAD (e.g., exported to mesh or locally queried on-demand) but the CAD system may not be
able to make sense of the deformations or other physical analysis results from CAE.

21

e Theoretically, this is because the n—map may not be bijective, thus not necessarily invertible.
Multiple elements in the same equivalence class in A may collapse to a single element in B,
and other elements in the same equivalence class in B may not be covered by the map at all.

Secondly, it is not sufficient to merely know or assert the existence of an interoperability map.
Interchangeability alone suffices to know that there are infinitely many n—maps that satisfy the
above conditions.

e Practically, once we reject the idealistic expectation of model-based interchangeability, the
n—map is inevitably lossy and is not unique. For example, when two CAD systems use
dramatically different semantics, their lossy data exchange can be set up in various ways, e.g.,
preserving topological properties at the expense of G¥—continuity or vice versa, trading off
combinatorial structure to preserve geometric accuracy, etc.

e Theoretically, this is captured by the fact that p—interchangeability is a many-to-many binary
relation from A to B. One can come up with various choices of outputs for a given input,
leading to different many-to-one refinements (i.e., functions) for the n—map.

Thirdly, unlike the property functions that must be separately implemented and published by each
individual system explicitly, the interoperability map is collectively specified by the two systems,
either explicitly or implicitly—which is one of the fundamental differences between data-centric and
query-based approaches, respectively.

e Practically, this means that the map need not be a one-time translation process (e.g., as in
data-centric approaches). The requirement is that for every element in the sending system, the
receiving system knows precisely, unambiguously, and deterministically what the corresponding
element in the receiving system will be. The actual process could be a one-time data-centric
conversion, interactive/reciprocal query-based reproduction, or a combination of the two.

e Theoretically, it means that the maps pua : A — P and ug : B — P are computable algorithms
that return a unique property per element, whereas the map 7ag : A — B need not be a
conversion algorithm. It suffices for the question (ma, mg) € nag to be decidable.

Finally, computing the properties of every pair of elements at the two ends of an interoperability
mapping can be delegated to either system, simply because (by definition) the results must match.

e Practically, this means that interoperability allows every computation that depends on the
invariant properties alone to be outsourced to the receiving system, with the integrity of the
computations being guaranteed up to algorithmic interchangeability. This is fundamental to
query-based CAD-CAE, CAD-CAM, and presumably CAD-CAx applications in which com-
puting geometric properties are delegated to the CAD system, while CAx system is concerned
with the x-tasks that it is specialized for.!!

e Theoretically, this is compactly expressed via pua = (ug o nag) or pug = (ua © 7a)—using
whichever n—map whose cost (e.g., of translation or querying) is already paid—the properties
in one system can be obtained “for free” from the properties computed by the other system.

Following the coloring metaphor used earlier in Fig. 12, the interoperability map can be viewed
as a color-preserving transformation, i.e., one that does not leave the color bands specified via
pu—interchangeability, as illustrated in Fig. 13. In other words, two systems are interoperable (in
either or both directions) if there are guarantees that going back-and/or-forth between them will
preserve the invariant properties.

H1n software development, this practice is commonly known as the principle of ‘separation of concerns’ (SoC).

22

2.1.3 Integration

Informally, integration refers to a specific form of composing two interoperable systems together, in
which the interchangeable elements on the two ends of the interoperability map are associated.

-

Property-Based Integration (Fig. 14)

Let A = (Ma;Fa) and B = (Mg;Fg) be partially interchangeable systems with respect to
P = (Mp; Fp) and interoperable via nag : A — B. A is ‘integrated’ into B to obtain a composite
system in which the n—map related elements are paired together, i.e.,

e Given a pair of representations in Ma and Mg (denoted ma € M and mg € Mg) asso-
ciated via mg = nag(ma), the two constituent representations are paired together into a
composite representation mag := (ma, mg) of the composite system.

e Accordingly, if an algorithm fo € Fp is mapped to an algorithm fg € Fg they are paired
together as a composite algorithm fag := (fa, fg).

Thus integration is a subset of the Cartesian product (A x B) to pairs of elements that not only
posses the same properties but also sit at the two ends of the interoperability map.

J

Once again, in terms of the coloring metaphor used in Figs.

12 and 13, the integration of two

interoperable systems amounts to “fusing” them together into a new system in which interchangeable
elements in the sending system are migrated to join those of the receiving system (Fig. 14).

23

B Interoperates with A

System A (Alice) System B (Bob) A Integrated into B

A Interoperates with B

B Integrated into A System A (Alice) System B (Bob)

Figure 14: Integration as a pairing of interchangeable elements within the color bands in Fig. 13.

24

System A (Alice) System B (Bob)

Analogous to Computational Elements

I1SO 286
q:ui #
<z

“Gauged” by B

e

\ “Gauged” by A
against properties

T

. . against properties
Analogous to the External Reference

Image Source: ClipArt ETC, Florida Center for Instructional Technology (etc.usf.edu/clipart)

Figure 15: Property-based interchangeability viewed as a (virtualization of) inspection gauging.

2.2 More on Invariants*

The philosophical motivation for the Principle of Interchangeability—presented at the beginning of
Section 2—can be traced to part interchangeability for mechanical assemblies, which was the cor-
nerstone of mass production and economies of scale after the industrial revolution [31]. Although
no two parts in a production line can be manufactured to exact congruence, they are deemed inter-
changeable if one can be replaced with the other without a compromise of form, fit, and function [30].
Historically, parts were certified by using inspection (e.g., ‘go/no-go’) gauges. Later, the mathemat-
ical basis for part interchangeability came into existence with the development and standardization
of geometric dimensioning and tolerancing (GD&T) [3]. This basis allows a precise specification of
nominal shape and tolerance zones. Any part whose net manufactured shape is within the specified
tolerance zones is fit to function and is interchangeable with any other part of such shape, assuming
a correct nominal shape design.

To draw an analogy with property-based interchangeability of software systems, if parts are
substituted with computational elements (i.e., representations and algorithms), the gauges are vir-
tualized by properties—or more precisely, by the certification of the elements against a set of common
properties, as illustrated in Fig. 15. A few lessons can be learned from this analogy:

1. For mechanical assemblies, “function” is assumed to be fully determined by proper “fit” (e.g.,
standardized into various classes of fit specifications [4]), which, in turn, is accomplished by
constraining the “form” (i.e., GD&T specifications). In a sense, form properties serve as
surrogates to the behavioral properties. By analogy, geometric interchangeability can be used
for indirect inference of physical invariants in many CAx-CAx interoperability scenarios.

2. For inspections, parts are never compared to each other. This is because for a pair of parts,
“being within some tolerance of one another” is non-transitive, hence would not yield an equiv-
alence relation.'?> The requirement of transitivity is the historical incentive behind “golden”
master parts and gauges. By analogy, it is the primary reason behind the indispensable need
for an external reference to specify common semantics for the properties.

12An equivalence relation = is one that is reflexive (i.e., P = P), symmetric (i.e., Py = Py iff P, = P1), and
transitive (i.e., P = P> and P> = P3 implies P; = P3).

Being within some e—tolerance (e.g., defining P1 &~ P> as d(Pi, P2) < €) does not yield a transitive relation because
d(P1, P2) < € and d(P2, P3) < € do not imply d(P1, P3) < e—in fact, the best one can hope for is d(P1, P2) < 2¢ due
to triangle inequality (assuming d is a metric) leading to an error accumulation that grows linearly with the number
of comparisons. On the other hand, by fixing a “golden” master part Py and defining P; = P as d(Pp, P1) < € and
d(Py, P2) < € (at the same time) yields a transitive (thus equivalence) relation with no error accumulation.

25

3. Parts can be deemed interchangeable with respect to some “features” while being dramatically
different (or even specified incompletely) with respect to others. Analogously, computational
systems can have partial interchangeability with respect to some elements, while others could
be different, unspecified, partially specified, or under ongoing development.

Below, we elaborate on the implications of some of the above observations for interchangeability of
computational design and manufacturing information.

2.2.1 Geometry as a ‘Surrogate’*

In CAD-CAx interoperability scenarios, interchangeability is usually specified in terms of shape (i.e.,
combinatorial, topological, and geometric) invariants alone, since the shape properties is all CAD
system can understand and compute. However, in most cases a specific CAx application on the
other end must deal with “x-aware” properties that extend well beyond shape information, e.g.,
involving physical conditions for analysis, planning, material properties, and so on. Nevertheless,
most industrial workflow tend to use shape properties as ‘surrogate’ properties, whose invariance
directly or indirectly implies that of ‘de facto’ properties. This is not surprising because traditionally,
shape information serves as a backbone to all product development activities; it is where the design
process begins, while physical solutions are not known a priori. For example,

e CAD-CAE interoperability: what we truly care about is interchangeability of the solutions
of the initial/boundary value problem—e.g., between the computed FEA simulation on mesh
approximation and the hypothetical solution on the exact CAD model. However, since the
latter is not available, we assume that interchangeable specifications automatically ensure
interchangeable solutions. For example, in addition to any quality measures imposed by the
analysis application, meshing algorithms must preserve the relevant shape properties that
support application of boundary conditions and integration algorithms.!'3

e CAD-CAM interoperability: what we truly care about is interchangeability of the solutions
of the manufacture process planning problem—e.g., between the 3D printing plan for sliced
approximation and the hypothetical planning on the exact CAD model. However, since the
latter is not available, we assume that interchangeable specifications automatically ensure
interchangeable solutions. For example, in addition to any quality measures imposed by the
planning application, slicing algorithms must preserve the relevant shape properties that are
consequential in the spatial reasoning and path planning algorithms.

e Multi-scale material modeling: what we care to preserve when transitioning across the scales
is physical behavior (e.g., captured by constitutive relations). However, when physical be-
havior is not known a priori, it is common to use geometric surrogates from which most
physical properties are inferable. In essence, the preservation of the physical behavior across
the scales—e.g., between microstructure simulation and equivalent bulk (i.e., average) be-
havior, related by ‘homogenization’—can be often inferred from geometric signatures such as
correlation functions, Minkowski functionals, and other deterministic or probabilistic material
structure descriptors under certain assumptions (e.g., periodicity and ergodicity).

e CAE and system model interoperability: once again, the interchangeability of the solutions
is the ultimate goal; for example, of the partial differential equations (PDE) specified and
solved in 4D space-time by the CAE system on the one hand, and of the differential-algebraic
equations (DAEs) specified and solved using lumped-parameter models (e.g., used in Modelica),
on the other hand. Since the solutions are not known a priori, the interchangeability of
specifications in terms of B/I conditions and stimuli—e.g., between surface distributions for
CAE and lumped system-level coefficients, related by ‘reticulation’—are relied upon.

13However, this may not be enough to assure quality of the computed approximation, and one appeals to additional
geometric notions such as mesh quality as a surrogate for properties of the functional analysis space.

26

System A (Alice) System B (Bob) Modeling Modeling

Space Space

Example:

Example:
Some CSG in B

Some B-rep in A
Interchangeability

Conversion map .
al Equivalence Class

No Error

Accumulation

Error
Accumulation
External

Reference

Common Modeling Space (C) cee (b) (C)

Figure 16: A B-rep to B-rep conversion in (a) with and without error accumulation in (b, c).

We shall elaborate on surrogate properties on a case-by-case basis in Section 4.

2.2.2 Transitivity*

The first observation mentioned above reveals a fundamental reason behind the failure of data-
centric approaches to interoperability. When two computational systems (e.g., two CAD kernels)
use different representations and algorithms, discrepancies are inevitable in their modeling semantics,
computing precision, and other factors. Analogous to the incongruent manufactured parts mentioned
earlier (Fig. 15 (a)), discrepant computational entities must be compared to a common reference
(e.g., a “golden” master) and never to each other. This is not the common practice in most data
exchange scenarios. For example, CAD-CAD data exchange facilitated via specialized system-to-
system translators or third-party healing/repair utilities come either with implicit assumptions and
no guarantees, or at best with guarantees in terms of a two-way comparison. For instance, they could
guarantee upper bounds on deviations of the receiving system’s converted model (e.g., a rectilinear
mesh) compared to the sending system’s original model (e.g., a curvilinear B-rep). Similar practices
are abundant, in polygonization and mesh generation for CAD-CAE integration or slicing and tool-
path generation for CAD-CAM integration, to name a few, most of which are based on a two-way
comparison, without appealing to a third-party external reference.

The lack of transitivity starts becoming a problem as soon as computational design tasks are
composed into a closed loop for automation. For example, a typical design automation workflow
involves a synthesistanalysis loop (e.g., the one in Fig. 1) in which the geometry, topology, and
material structure are optimized over hundreds or thousands of iterations, requiring as many data
exchanges between CAD, CAE, CAM, material modeler, topology optimizer, and other modules.
Every data exchange that merely guarantees upper bounds on the errors/deviations per exchange
will suffer from error accumulations that grow rapidly with the number of exchanges.

Example 2.6. Consider a repeated geometric data exchange between two systems A and B which
are based on different representation schemes (Fig. 16 (a)) and rely on geometric approximation to
achieve interoperability. For example, A could model solids bounded by trimmed NURBS surfaces,
while B could be restricted to voxelized models or polygonal mesh boundary representations.

The cumulative error can grow without restraint if the guarantees are given by bounding the
conversion errors (i.e., €1, €3, - -) before and after each conversion (Fig. 16 (b)). And this scenario
does not even account for dramatic mutations that can happen at each cycle due to major semantic
differences between such systems. On the other hand, if every conversion’s accuracy is certified with

27

respect to a fixed set of externally accessible properties (Fig. 16 (c¢)) the error can be contained.
Such properties can be, but are not limited to GD&T specifications with respect to external datums
(e.g., reference points, axes, or planes) rather than internal features, Hausdorff distance from a fixed
voxel map, radial basis, or polyhedral approximation, etc.

One could use a third (possibly simpler) system or representation device (e.g., STL format) to
specify the reference geometries. It need not be as expressive as A and B, as long as it adequately
serves the purpose of providing externally accessible references to measure deviations from.

The utility of using external references to obtain a transitive interchangeability and control error
accumulation will be demonstrated with more examples in Section 3.

2.3 Classification of Interoperability Problems

Having defined the bolts and nuts of an interoperability scenario (simplified in Fig. 17), we are now
in a position to classify the types of scenarios that one deals with into a few major classes. Assuming
that we know what the computational elements (i.e., representations and algorithms) in each system
are made of, there are two main questions left to answer:

e Do we know the properties that we care to preserve? What are the ‘invariants’ of the problem?
e Do we have a map (interoperable or not) to related the elements from one system to another?
Depending on the answers to these two questions, four different types of problems typically arise:

1. Verification problem arises when the answer is positive to both questions. The invariants are
known, and a map is given—without necessarily knowing how it was developed and what it
guarantees. The problem is to verify if the two are consistent; i.e., does the interoperability
map preserve the properties?

e Under restricted conditions or simplifying assumptions, one may be able to theoretically
prove the invariance (a priori verification).

e When theoretical guarantees are not known, one can test the invariance via computational
experiments; for example, exhaustive testing on a large enough number of samples or
targeted testing for fewer hard benchmark problems (a posteriori verification).

2. Correspondence problem assumes that the target invariants are given, and the question is how
to construct a map (either explicitly or implicitly) that establishes correspondence between
the models and/or algorithms in the two systems that preserves those invariants.

3. Characterization problem arises often in practice: a correspondence map is already given (per-
haps by a helpful translation software vendor or collaborator), but the question is what in-
variants are preserved by this map? Without further qualifications, the question may appear
academic, but at the very least should be able to characterize the correspondence map in terms
of the properties that are critical to the application in hand.

4. Innovation: is when nothing is given, as with emerging applications and innovative solutions.
The goal is to complete the picture iteratively and convert it to one of the above problems.

The idea is illustrated in Fig. 18. The problems grow harder as we move down the list. Eventually,
the goal is to complete the picture and convert the problem to one of verification, which is more
straightforward—at least conceptually, but not necessarily computationally.

28

Interoperability Maps

Known or Unknown?

Representations
and Algorithms

Representations
and Algorithms

Property
Function

Property
Function

Properties

Known or Unknown? Known or Unknown?

Figure 17: The simplified anatomy of an interoperability scenario: what parts do we (not) know?

CHARACTERIZATION INNOVATION

2(P)? oo G ER

VERIFICATION

e

Unknown

Property
Functions

(=
; U
o
C
X~
Known Interoperability Unknown
- Map(s) o

Figure 18: There are four major types of interoperability scenarios depending the known/unknown
status of the invariant properties and interoperability map (shown on the two axes).

29

3 Use-Case Scenarios: CAD-CAD Interoperability

“Therefore geometry is founded in mechanical practice, and is nothing but that part of
universal mechanics which accurately proposes and demonstrates the art of measuring.”

Isaac Newton, Principia, 1687

In this section and the next, we present a few concrete interoperability scenarios along with their
advantages, challenges, and best practices.

We begin with the more familiar case of CAD-CAD data exchange, not only because it is the
most studied and the best understood, thanks to decades’ worth of research efforts, but also in
recognition of the importance of geometric properties to surrogate non-geometric properties. This
role has lead to the historical role of geometric modeling as a medium to support various product
development activities ranging from conceptual design and detailed modeling to shape synthesis,
analysis, process planning, optimization, inspection, documentation, and archival.

The interoperability challenges and scenarios discussed in this section readily apply to data shar-
ing and exchange between solid modeling software, ranging from commercial packages to open-source
libraries or in-house solutions, shape synthesis tools (e.g., for shape and topology optimization), data
acquisition tools (e.g., point clouds obtained from 3D cameras, scanners, or CMMs), and other ge-
ometric representation media.

Once the range of possibilities and challenges for geometric interoperability are understood, we
will discuss CAD-CAx interoperability in Section 4.

Synopsis: Use-Case Scenarios

To review the terminology presented in Section 2 and provide an outline, we will discuss the
interoperability scenarios for two systems, ‘Alice’ A = (Ma;Fa) and ‘Bob’ B = (Mg; Fg), color-
coded as such in all notations and figures:

e Each system has its own set of representations (Ma and Mg) and algorithms (Fa and Fg)
which may or may not implement a common modeling space—i.e., interpret to the same
or different models and/or functions, respectively.

e The property-based interchangeability is tested by means of a pair of property functions
pua A — P and pg : B — P, whose semantics are specified with respect to a common
property space P. Each system is separately responsible for correct interpretation and
implementation of its property function by adhering to the common specification.

e Each interoperability scenario is characterized by the properties in P that (supposedly)
remain invariant under the action of an interoperability map nag : A — B, which is a
functional correspondence between interchangeable elements (from A to B).

Accordingly, characterization (i.e., finding invariants), correspondence (i.e., establishing a map),
and verification (i.e., testing if the map preserves invariants, as it is supposed to), are discussed.

30

3.1 CAD-CAD Data Exchange Properties

The discussion in this section does not focus on any particular properties. As we discussed in the
last section, these properties are and should be determined by specific interoperability needs and
applications. However, for illustration purposes we may invoke examples from the following broad
classes of “shape” properties:

e combinatorial properties: the topological structure of the underlying cell complex or parts of
it that are precisely preserved (e.g., simplicial structure, incidence/adjacency relations, etc.);

e topological properties: the topological structure of the shape itself, even if it is described using
a different cell decomposition (e.g., homology, homotopy, homeomorphism, manifoldness, etc.);

e geometric properties: the metric properties (e.g., distances, sizes, and tolerances), affine prop-
erties (e.g., colinearity, parallelism, and convexity), group properties (e.g., symmetry), etc.;

o differential properties: the local neighborhood properties of the shape and/or its boundary
(e.g., normal and curvature constraints, G¥ —continuity, etc.);

e integral properties: measures (e.g., cardinaltiy, curve length, surface area, and solid volume),
moments, Euler characteristics, Minkowski functionals, etc.;

and possibly others, depending on specific applications. For example, what is typically referred to
as ‘design intent’ is often encoded into parametric CAD models as sketch or feature constraints
(e.g., cocentricity, coaxiality, parallelism, perpendicularity, tangency, etc.) or dimensioning and
tolerancing (e.g., size, angle, and freeform) can be characterized as combinations of the above classes
of properties. The classification itself (e.g., whether a property is topological or geometric, or both)
is not of primary concern. The main point is that the properties that one wishes to preserve must
be explicitly specified. Some properties are qualitative, enforced via standard equivalence relations
(e.g., homeomorphism) without the need for redefining the property function from scratch. Some
will depend on quantitative, but universally well-defined property types (e.g., scalar-, vector-, or
generally tensor-valued) and property functions (e.g., measures or integrals). Others require explicit
specification of a common reference, recognized and accessible by both systems, with respect to
which certain measurements need to be made to enforce constraints (e.g., upper bounds on Hausdorff
distance or GD&T deviations). One way or another, property-based interchangeability has to satisfy
the transitivity requirement discussed in Section 2.2.2 and exemplified below for geometric cases.

3.2 Transitivity via External References

Importantly, we also recognize that most of geometric data is inherently imprecise, and numerical
algorithms operating on it involve inevitable approximations.!* This means that the properties,
with respect to which interchangeability and interoperability are certified, should accommodate
tolerances to data errors/noise and other inaccuracies. As discussed in Section 2.2.2, it is crucial
that all approximation and tolerancing schemes rely on external references in order to guarantee
an equivalence relation (by enforcing its transitivity), or at least to control error accumulations
and model degradation in iterative data exchange scenarios. For example, tolerances specified with
respect to an internal feature (e.g., some B-spline edge or face) in a NURBS-based B-rep system A
cannot be properly interpreted by a CSG or polyhedral B-rep system B. Even if the two systems
appear to have similar representational capabilities (e.g., both understand B-splines), there are a
number of unsolved issues with persistently addressing internal references (e.g., persistent naming)
that make external references a safer choice with respect to which deviations can be quantified and
constrained in various manners. Example quantifications are upper bounds on Hausdorff distance

14 Arguably, this is the primary reason why interoperability has remained an unsolved problem over the decades.

31

to common mesh approximations, GD&T tolerance specifications using common datum references,
constraints on integral properties averaged on voxels over a fixed common grid, membership and/or
distance specifications over a densely sampled common point cloud (with or without tolerances),
and so forth.

In general, defining interchangeability with respect to qualitative (e.g., combinatorial) properties
are less subjective than quantitative (e.g., metric) properties, because the former typically do not
have to deal with precision, accuracy, and tolerances. Examples of the former are logical expres-
sions and graph-like structures that define incidence/adjacency relations in a mesh. The need for
additional references such as GD&T datums, voxel maps, point clouds, and other neutral geometric
constructs are mostly exclusive to quantitative (e.g., metric) properties of the shape.

3.3 Use-Case Schema #1: CAD-CAD Data Exchange

Here we present the six most common approaches to geometric interoperability—tagged Use-Cases
#1.1-1.6. While it is conceivable that other scenarios can be generated, either obtained as combi-
nations of these methods or constructed from scratch using the general principles given earlier, the
following is an assortment of representative examples than spans a broad range of possibilities:

1. Use-Case #1.1: standardizes on the system, using the same representations and algorithms.
It leads to trivialized conditions of interoperability in which virtually all properties are pre-
served (i.e., model-based interoperability), but is limited in its applicability, expendability,
scalability, and ability to support innovation.

2. Use-Case #1.2: standardizes on the representations, using possibly different algorithms. It
leads to broader and straightforward (even if nontrivial) interoperability that preserves prop-
erties computed using the common subset of algorithms, but remains fairly limited. Arguably,
without algorithm interchangeability, same representations are not really the same due to in-
complete semantics coming from algorithmic inconsistencies (i.e., how the data is being used).

3. Use-Case #1.3: uses system-to-system translators that are optimized to preserve as many
properties as possible, based on a deep (e.g., developers’) knowledge of their internal architec-
tures. It leads to the most widely used industrial solutions, but lacks formal guarantees, sees
unpredictable failure rates, and requires recreating translators for every pair of systems.

4. Use-Case #1.4: standardizes on neutral formats, and uses system-to-/from-neutral file trans-
lators. It simplifies the process by requiring every new system to interoperate with the standard
format, but at the same time limits the preserved properties to those inferable from the neutral
format, leading to larger failure rates in the presence of conversion errors and inaccuracies.

5. Use-Case #1.5: standardizes on generic recipes (i.e., procedural or declarative “programs”),
and uses a common language to exchange largely symbolic construction recipes. It minimizes
numerical data content (hence susceptibility to numerical errors) of the exchange mechanism
itself, at the expense of overlooking the possibility of inconsistent interpretations of each system
when internally instantiating/evaluating the recipes.

6. Use-Case #1.6: standardizes on a collection of queries (i.e., functional semantics), usually
in a form of formally defined APIs. It eliminates error-prone translation altogether and also
prevents semantic misinterpretations. However, the preserved properties are restricted to those
computable from a finite composition of queries. Its power, formal properties, and practical
limitations are yet to be understood and validated.

In each use-case, we examine the landscape and provide concrete examples, carefully analyzed in
terms of which properties can be preserved, what the property functions look like, what the in-
teroperability map is, and how it can be verified. The aforementioned attributes, advantages, and
drawbacks, are put into perspective followed by guidelines (i.e., “best practices”).

32

CAD System (A) CAD System (B)

Identity map between A and B

(or map the differences

in flavors/versions)

VERIFICATION

“does it commute?”

N\ Common Models ¢
7 N

&,

Space of properties

Any property Any property

function function

(same as B’s) (same as A’s)

Combinatorial | Topological | Geometric | Differential | Integral

Figure 19: Use-Case #1.1: When the same representations (bullets) and algorithms (arrows) are
used in both ends, the verification of invariance becomes trivial for both: all properties are preserved.

3.3.1 Use-Case #1.1: Single System Solution (Same Representations & Algorithms)

Basic Idea/Setup. Using the same CAD system is the safest and simplest interoperability solu-
tion (i.e., A = B), including both representations (i.e., Ma = Mg) and algorithms (i.e., Fa = Fg).
This scenario should not be confused with standardizing on the same representation scheme (e.g.,
NURBS-based B-reps) or algorithmic methodology (e.g., isogeometric analysis).'® Here, the idea is
to use the same CAD software/kernel to power all activities in a workflow.

A slightly different scenario is obtained when A and B are different “flavors” or “versions” of the
same system, due to small (and carefully documented) nuances between their representations (e.g.,
Ma # Mg) and/or algorithms (e.g., Fao # Fg). As long as they have the same core data structures
and algorithms, the following discussion applies only to the core subsystem.

Examples. Standardizing on the system is a simple and viable (but limited) solution to both
vertical and lateral interoperability (Fig. 1):

e For vertical interoperability (same workflow, different tasks), it is common for companies,
universities, or research labs to choose a particular PLM software package, or standardize on
a geometric kernel, for all computational tasks throughout the entire enterprise.

e For lateral interoperability (different workflows, same tasks), common choice of systems is
convenient as it minimizes the need for additional manual adjustments and/or collaborative
software development to make sense of exchanged data between two enterprises. All it takes is
to send a file—if it works using X in one end, it must work using X in the other end as well.'6

In fact, the viability of the PLM business model largely relies on its safe solution to (in-house)
interoperability, in spite of its clear limitations in scalability to heterogeneous systems and services.

151n other words, a statement such as “use NURBS-based B-reps for all tasks” is not strong enough for this scenario.
L6For examples, OEM suppliers (e.g., for automotive companies) may have no choice but to purchase the same CAD
system as their customers to be able to interoperate with them.

33

Properties. Any property that is computable from the information content of the common rep-
resentations in Ma = Mg is automatically preserved across all components using the same sys-
tem/kernel, noting that algorithms in Fa = Fg that compute those properties are also the same. In
other words, using the same system in fact achieves the model-based interoperability (discussed in
Section 2.1.1) for all valid representations and algorithms within the system.

Accordingly, the property functions include every combination of computable functions that
the system offers, as long as the same ones are chosen for both (i.e., ua = pg). For example,
if both systems are based on a CAD kernel X, every program that calls the same sequence of X
subroutines—and noting else except trivially equivalent instructions and assignments—must return
the same results for the same data in both systems. This in effect is a trivial solution to the
characterization problem because all properties are invariant.

Interoperability Map. Obviously, the interoperability map is the identity function on A = B.
This is a trivial solution to the correspondence problem. For example, if both systems use the same
exact CAD kernel X, this simply means that the data is passed identically from one system to another
without any changes or conversions. Since algorithms are also identical, the semantics remain intact,
too.

Verification. The verification problem is also solved trivially, since the identity function preserves
all properties. This is the simplest example of when a theoretical proof exists, eliminating the need
for sampling or benchmarks, as discussed in Section 2.3.

Note, however, that this excludes a different type of verification pertaining to the proper usage of
the same system—e.g., checking if both systems that are based on X are actually using X correctly
and consistently. In other words, we are not talking about internal integrity of the systems, which is
largely taken for granted for widely tested commercial systems, but to a lesser extent for open-source
libraries, beta-prototypes, and work-in-progress.

Advantages. The main advantage of this approach is the finest form of (i.e., model-based) interop-
erability. The key is an assumption that the system internally guarantees a sound implementation—
in the sense that equivalence classes of representations and algorithms within the system are well-
defined and properly used.!” This is a reasonable assumption for commercial-strength systems and
seasoned users, and is a matter of practicality; but it should not be taken for granted, as a number
of fundamental problems remain unsolved (e.g., robustness of geometric operations).

Drawbacks. The approach essentially avoids most of the challenging interoperability issues, but
is limited in scope and applicability as it does not support many common and important scenarios:

e Standardizing on an existing technology and system is at odds with innovation, which often
depends on new representations and algorithms invented and optimized specifically to support
new approaches and new applications.

e There is no guarantee (or even reason to believe) that solutions based on adaption of a single
system will interoperate with any other system.'®

e The scope of interoperability is limited only to a common core (representations and algorithms)—
in both vertical and lateral interoperability scenarios. Thus, broad claims of interoperability
do not apply to different versions of the same system or different tasks relying on different
assumptions and/or algorithms.

17Note that there are usually multiple ways to perform the same computations in the same system. Different users
or application may use the same system differently, and the system must guarantee internal interchangeability.
18Indeed, such interoperability prospects are often intentionally restricted as a matter of business strategy.

34

In summary, this approach simplifies interoperability in the short-run and within a restricted scope,
but does so at the expense of scalability and innovation, in the long-run. In particular, it does not
leave any “hooks” for future interoperability with any other system or enterprise solutions.

Best Practices. To qualify under this use-case scenario, one should use the exact same represen-
tations and algorithms, avoiding different flavors as much as possible. If different flavors or versions
of the same system are used, one must be very clear about the core components that are common
between them as well as the changes—not just in syntax but also in semantics. The properties must
depend solely on the shared core, if they are to enjoy the trivial a priori verification. Invariance of
all other properties may require a posteriori verification.

A common pitfall is the temptation to assume that similar flavors of (presumably) the same
representations and algorithms interoperate, without going through an explicit enumeration of their
assumptions and constraints. This fails because the interpretation inconsistencies can and will
compromise the invariance of properties.

One must be cautious about improvements (e.g., version control) and never assume they will not
affect future use in downstream applications. Backward compatibility should be documented in the
language of preserved properties and the mapping from each version to the next.

3.3.2 Use-Case #1.2: Standardizing on Representations (with Different Algorithms)

Basic Idea/Setup. The next use-case is for A # B, when both systems still use the exact same
representations (i.e., common internal data structures) as before (i.e., Ma = Mg). But they may
use them inconsistently via different algorithms (i.e., Fo # Fg). This could be due to different
algorithms implementing (presumably) the same function, which may come with different guarantees
(e.g., different accuracy). This could also be due to new operations being added, old operations going
obsolete, or improvements/modifications of previous algorithms in evolving implementations.

Examples. A frequently encountered example is of two systems that are capable of working with
the same representation scheme (e.g., NURBS-based B-reps, polygonal mesh B-reps, voxel maps,
etc.) or data formats (e.g., STL), but are not necessarily equipped with the same algorithms. Some
algorithms may not exist in either system—e.g., A is equipped with topological operators (e.g., Euler
operators) while B can only make geometric modifications (e.g., moving vertices or control points).
In these cases, it is clear that such algorithms are not included in interchangeability classes.

A more subtle situation where the answer is not as clear is when both systems are equipped with
the same geometric operations (e.g., testing membership, computing bulk properties, predicting in-
tersections, etc.) performed in completely different ways. For instance, the same point membership
classification operation on B-reps can be implemented using ray tracing, winding numbers, or a num-
ber of other techniques. These algorithms, despite approximating the same mathematical function,
may come with completely different behaviors and guarantees in terms of accuracy and applicability.

Properties. Any property that is computable from the information content of the common rep-
resentations in Ma = Mg is preserved, only if at least a subset of algorithms in Fy # Fg that
are sufficient to compute those properties are also chosen to be the same. This special subset of
common algorithms are specifically charged to compute the property functions, and their identical
implementation in both systems guarantees property-based interchangeability of representations on
which they compute. If this subset is extended to the entire algorithm space (i.e., FA = Fg), the
interoperability scenario transforms to that of Use-Case #1.1.

35

CAD System (A) CAD System (B)

Identity map between A and B

(or map the differences

in flavors/versions)

VERIFICATION

“does it commute?”

N\ Common Models | #
N 7

Any property Any property

function function

(same as B’s) (same as A’s)

{

Space of properties

Combinatorial | Topological | Geometric | Differential | Integral

Figure 20: Use-Case #1.2: When the same representations (bullets) are used in both ends, with
possibly different algorithms (arrows), the verification of invariance is no longer trivial for the latter:
all properties are preserved as long as they are computed using the same algorithms.

For example, it is entirely possible that two systems using identical representations or data for-
mats could compute inconsistent results on them, be it point membership test, integral properties,
metric or topological properties. But if the membership algorithms are identical, other computations
that depend solely on that membership computation can be made consistent as well. If all other
computations are purposefully composed from membership tests alone, algorithm interchangeability
is achieved.' But this is rarely the case in practice, resulting in partial algorithm interchangeabil-
ity. In essence, the characterization problem amounts to identifying the proper subset of identical
algorithms that cover the properties that we care about.

Interoperability Map. The interoperability map for the identical representations is the identity
function (similar to Use-Case #1.1). The limitation is that interchangeability and interoperability
are restricted to the representations in Ma = Mg but not necessarily the algorithms in Fa # Fg—
except, of course, the identical subset of algorithms that implement property functions. If the
common subset is known, the solution to the correspondence problem is straightforward for repre-
sentations, but limited in applicability to the remaining (i.e., non-identical) algorithms.

For example, if point membership test is used to define the properties, computing the test on
the same representations using the same algorithm is automatically consistent. But the guarantees
that one can obtain on a different computation (e.g., distance to boundary) are not trivial unless
the distance algorithm does not make calls to anything other than the said membership test.

Verification. The verification problem is also solved trivially or in a straightforward fashion, when
there is a priori guarantee of invariance of properties that depend on the common representations
alone—or the common core component in different flavors or versions. This excludes algorithms that
are different in the two systems, for which a posteriori verification may be required—i.e., certifying
if the two different implementations of the same function are interchangeable, by checking if they
preserve the relationship between input/output properties.

19With this special composition, the interoperability scenario transforms to that of Use-Case #1.6, where the burden
of model-based interchangeability is shifted from representations (of supposedly identical models) to algorithms (of
supposedly identical functions), to which we shall return.

36

For example, if the documentation accompanying a version change of a CAD kernel X shows that
all geometric constraints for sketching (e.g., symmetry, parallelism, coaxiality, etc.) are implemented
in the same fashion as before, the user can trust that every property of a model that relies on those
constraints will remain invariant. However, if the update had to do with the way constraints are
enforced or solved, it may be necessary to test the invariance of the properties one-by-one—e.g., on
samples that sufficiently spans the space of models and/or constraints.

Advantages. Standardizing on representations (or core data structures) is the next safest and
easiest approach after Use-Case #1.1 when one needs algorithmic variety. Consequently, it supports
some innovation, at least more than the previous use-case, within the limitations of the preserved
structures. Although reasoning about the interoperability map is not always trivial, it is straight-
forward for the representations (or common subset of algorithms) when the differences are properly
documented, though not so much for the remaining algorithms.

Drawbacks. This approach inherits many limitations of the Use-Case #1.1:
e Using the same representation schemes still limits flexibility and innovation to a great extent.

e Although representation interchangeability is obtained for free, there is still no straightforward
path to guarantee algorithm interchangeability. This often creates a misleading appearance of
interoperability, which in fact may not be adequate.

e One again, there is no guarantee (or even reason) to expect interoperability with any other
systems that do not use the same representations.

Discrepancy in the algorithms of the two systems becomes especially problematic in the face of
robustness problems. For example, even though different PMC algorithms (e.g., using ray tracing,
winding numbers, etc.) on the same representations could yield different results, it is expected that
they can be made interchangeable by picking the right tolerances to errors near the boundary. This
is not necessarily true for intrinsically non-robust computations [18], for instance, when comput-
ing minimum feature size (i.e., distance to medial axis). For such computations, small upstream
perturbations can lead to large downstream discrepancies.

Best Practices. To qualify under this use-case scenario, the two systems must share the exact
same representations. Once again, if different flavors or versions of the same system are used, it is
important to carefully document the common core and differences, and look for invariant properties
that are known to depend on the common core. For all other properties, their invariance should be
checked in a posteriori verification.

A common pitfall is the temptation to assume that representation interchangeability implies
algorithm interchangeability. It is possible that different versions of the same system use the same
representations in entirely different ways, and despite syntactic similarities, algorithms may not be
interchangeable. The latter can be discovered through a posteriori verification.

37

CAD System (A) CAD System (B)
A’s format B’s format

Import Import

VERIFICATION

“does it commute?”

Property Property

function function

Space of properties

Combinatorial | Topological | Geometric | Differential | Integral

Figure 21: Use-Case #1.3: Representations (bullets) are converted via export/import to/from A
and B’s file formats, whose interchangeability can be verified by testing them against the properties
that should be preserved. Interchangeability of algorithms (arrows) remains a challenge.

3.3.3 Use-Case #1.3: Data-Centric Exchange (via System-to-System Translators)

Basic Idea/Setup. Direct system-to-system representation translation is one of the most popular
interoperability solutions that is widely embraced by industry. The translation software are often
designed to take into account not only the specific representation differences, but also a knowledge
of how representations are used by the interoperating systems.

Note that translation in this use-case is by direct translators and does not require an intermediate
(e.g., neutral) file format (Use-Case #1.4).

Examples. Most product lifecycle management (PLM) suppliers often provide export/import sup-
port for other systems’ file formats. When representation schemes in the two systems are similar
(e.g. B-reps with the same type of curves and surfaces), translation amounts to matching the cor-
rect data types in the two systems. Even though these translator are improved over time with new
versions, failures do occur (e.g., due to incompatible precision semantics). Moreover, as in Use-Case
#1.2, interchangeability of the two representations is not sufficient to guarantee interoperability of
the systems developed with different assumptions and algorithms.

Hence in practice, “interoperability solution” providers enhance the translation with a variety of
data ‘quality’ diagnostics and validation tools, as well as repair and simplification for model re-use
in other CAD systems or downstream CAE/CAM applications. It is often unclear what metrics
of quality are used, and what properties are assumed indispensable for model re-use, while others
can be forgone. More importantly, the quality checking, comparison, validation, and repair utilities
almost never appeal to external references to ensure transitivity (see Section 2.2).

When representations schemes are very different (e.g. B-reps versus voxel maps or CSG trees),
translation takes on the form of representation conversion. Representation conversions may or may
not be always possible, could be one- or bi-directional, and could be either lossless or lossy. Important
example of data-centric lossy translation are polygonization/meshing of curved surfaces and volumes,

38

voxelization of arbitrary volumes, slicing 3D volumes into stacks of 2D surfaces, hierarchical bounding
volume (HBV) approximations such as oriented bounding box (OBB) trees, octrees, and sphere-
trees, point cloud sampling, and other shape approximation schemes. Each simplifies the shape and
captures some (but not all) of it properties for a particular purpose, e.g., faster collision detection,
easier motion planning, discretization for downstream CAE/CAM, etc. Each simplification can be
conceptualized in terms of the information that is preserved (i.e., invariant properties) as it is critical
for the particular purpose, at the expense of losing information that is disposable.

Properties. Unlike the previous use-cases, there is no reason to expect that model properties
(or those of a dominant core) will be preserved by the translation process when the systems use
dramatically different assumptions, semantics, and representation schemes. Different translators
and convertors focus on preserving some properties while inevitably sacrificing others. There has
to and will be trade-offs between combinatorial, topological, geometric, differential, and integral
properties exemplified at the beginning of this section. In this use-case, the properties need to
be determined one-by-one by a careful and exhaustive analysis of the translation algorithm, which
amounts to a non-trivial characterization problem.

For example, consider converting between two CAD kernels directly via export/import to/from
their native file formats. The developers may intend to preserve the net shape properties, without
guaranteeing the same construction history. They may additionally choose to preserve the shape
constraints that capture the design intent if both systems support the same semantics. In either
case, one should explicitly enumerate the properties that are preserved as well as the ones that
will be lost in the translation—e.g., due to lack of support or different semantics in the receiving
system. In addition, one should recognize the widely common numerical errors in translation as
well as the differences in representational precisions of the two systems. The interchangeability of
measurements (e.g., distance, size, angle, etc.) performed on the representations before and after
translation can be qualified with respect to external references—e.g., tolerance specifications with
respect to established datums, Hausdorff distance to a fixed point cloud. etc. This is where the
trade-offs will be decided—e.g., how narrow the tolerance zones can be chosen without compromising
the invariance of topological properties.

Furthermore, unlike the previous use-cases, there is no common representation/core to rely on
for computing the property functions. The property functions are computed via entirely different
algorithms for different representation schemes (e.g., for B-rep versus CSG) and the burden of each
function’s correctness is on the authoring system. There is no way to prescribe how to implement
them in general, and the success of data-centric interoperability depends on how successfully each
system delivers its property function.

Interoperability Map. The interoperability map in this use-case is a representation conversion,
usually implemented as a format translation process, (export+import operations via files). Opera-
tionally, it can be done in several different ways, for example:

e A saves to its own file format, and B knows how to import A’s format.
e A knows how to export to B’s file format, and B loads its own format.

e A third-party system knows how to import A’s format and export it as B’s format—making it
their business to maintain a knowledge of both systems’ assumptions and constraints—so that
A and B save and load to their own formats without worrying about conversion.

All three options may be available for dominant CAD systems. As a matter of business strategy,
it is also common for system A to support native import of models created in system B, without
providing any means for exporting models back to B.

39

Verification. A priori verification in this use-case is difficult, if not impossible, as theoretical
guarantees for the correctness of conversion algorithms are limited. Even when translation does
not involve representation conversions, precise semantics of interoperability is implicit in selection
of data types, numerical accuracy of algorithms, assignment of tolerance zones, and other specifics
internal to the interoperating systems.

To perform a posteriori verification, on the other hand, one needs to show that the conversion does
not compromise the invariance of the properties. For example, when converting between two different
CAD kernels, assuming that property functions and translators (i.e., save+import, export+load,
or third-party solution) are both available, the verification amounts to testing if the properties
(computed separately by each system) match before and after translation. The same can be done
for polygonization/meshing, voxelization, reconstruction, etc.

If the interoperability maps are given in both directions A — B and A < B, converting back-
and-forth between the two systems, no matter how many times performed, must keep the model
within the same interchangeability class. As a matter of fact, one can precisely quantify model
‘degradation’ (in one conversion or multiple round trips) in the language of preserved or compromised
properties. If the first attempt at verification fails (e.g., due to error accumulation) one can either
redo correspondence by revisiting and improving the translation (i.e., interoperability mapping); or
redo characterization by relaxing the interchangeability conditions—i.e., revisiting the properties to
obtain a more coarse-grained partitioning into interchangeability classes. For instance, for each
sampled model, one can perform membership/distance tests over a large number of points (e.g., on
a fixed grid) and compare how the representations in each system respond. If verification fails in a
larger fraction of tests than desired, one can relax the constraints (e.g., use larger tolerances), and
try again.

Advantages. Arguably, direct system-to-system translators have offered the most effective and
practical solution to date to CAD-CAD data exchange. This is primarily because one can exploit
the specific characteristics of the particular sending and receiving systems to maximize the efficacy
of interoperability—unlike the case with neutral file formats (Use-Case #1.4). The caveat is that
this approach to interoperability does not provide guarantees without characterization, i.e., unless
the invariant properties are explicitly worked out and documented by the translator developers.
Compared to the next two use-case scenarios, direct translation allows semantic interoperability
by directly appealing to the shape properties than one cares about, rather than relying on lossy
intermediate structures (i.e., “semantic bottlenecks”) such as neutral file formats (Use-Case #1.4) or
procedural recipes (Use-Case #1.5). In other words, the rich information content of the sending and
receiving systems’ representation schemes (as much as it is supported by both) can be preserved—
e.g., shape constraints that capture the design intent, physical annotations (e.g., for CAE), tolerance
information (e.g., for CAM), etc. As systems evolve in complexity and expressive power in future
versions, the translators need to evolve as well to accommodate mappings between newer features.

Drawbacks. Direct system-to-system translation has also a few significant disadvantages, namely:

e To move beyond syntactic interchange of data, direct translation must have intimate knowl-
edge of internal workings of the interoperating systems, and possibly access to internal data
structures and conversion algorithms/source-code.

e Even with such knowledge, precisely characterizing what is being preserved is usually difficult
or impossible, when the systems’ properties and assumptions are not fully documented.

e Trade-offs need to be made when deciding which shape properties (e.g., combinatorial, topo-
logical, geometric, differential, and integral) to preserve, which is challenging—especially for
CAD-CAD data exchange where particular downstream application is not known at the time
of translation

40

e Once again, representation interchangeability does not guarantee algorithm interchangeability.
The receiving system may still use the model for tasks it is not meant for. For example, a
smoothed model for visualization may not be precise enough for manufacture planning.

e Last but not least, the number of translators grows quadratically with the number of sys-
tems.?? In addition to being costly and inefficient, this approach to interoperability also stifles
innovation, as introduction of any new system demands a large number of translators.

The most common reason for the failure of this scenario is the lack of guarantees or explicit
enumeration of invariants. A more subtle issue is that even when there are well-described guarantees
for data quality, they are almost always based on a comparison of the ‘downstream’ model (in B) with
the ‘original’ model (in A), rather than an external ‘master’ model. As discussed in Section 2.2.2,
this compromises transitivity and provides ground for error accumulation in iterative applications
with hundreds or thousands of data translation events (see Example 2.2.2).

Best Practices. Direct translation interoperability solutions should begin by explicitly enumer-
ating the invariants, then providing the correspondence solution that preserves them. Otherwise, the
characterization problem (i.e., finding the preserved properties) of a given translator poses serious
unsolved challenges. The specification of invariants also allows rigorous formulation of verification
protocols for developing third-party diagnostics and repair tools.

In case of black box translators, without source-code or proper documentation of the invariants,
characterization becomes a matter of trial-and-error, which is unfortunately the current norm in
industrial applications. There exist rich catalogues on model degradation and CAD data ‘quality’
using various taxanomies of qualitatively different modes of failure. They range from syntactic vs.
semantic, topological vs. geometric, global vs. local, to other classifications including notions of
punctures (e.g., holes and gaps) versus overlaps (e.g., intersections and clashes), degenerate shape
features, abnormal size (e.g., too small or too large) elements, inconsistent orientations, and numer-
ous other failure events that can be tested.

3.3.4 Use-Case #1.4: Data-Centric Exchange (Standardizing on Neutral Formats)

Basic Idea/Setup. The N? translation challenge of Use-Case #1.3 is usually addressed by stan-
dardizing on ‘neutral’ file formats (e.g., STEP, IGES, and other de facto standards such as STL).

In principle, this appears to provide some interoperability—only as rich as the neutral format’s
expressiveness—for all systems that can import/export such a neutral format. But it should be
clear that this interoperability solution is subject to many of the limitations of the Use-Case #1.3.
Additional difficulties arise when the interoperating systems A and B are communicating indirectly
through the neutral format N and are unaware of the assumptions and internal implementation
details made in the other system.

Examples. The PDES/STEP effort is the representative example for this use-case. It is a growing
standard that aims to accommodate as much shape detail as most representation schemes in common
usage can handle. The main challenges with STEP are its “flavor” diversity, which defeats the
standardization purpose, and limited expressiveness (e.g., for specifying manufacturing tolerances).
In addition to the STEP standard(s), de facto specialized standards exist in different application
domains, including IGES for curve and surface data [66], STL, OBJ, and VRML for polygonal mesh

20This is sometimes referred to as the ‘N2 problem’, N being the number of CAx systems (see also Footnote 9).

41

CAD System (A) CAD System (B)

VERIFICATION

“does it commute?”
Export, Export,

Neutral format

Property Property

function function

Space of properties

Combinatorial | Topological | Geometric | Differential | Integral

Figure 22: Use-Case #1.4: Representations (bullets) are converted via export/import to/from neu-
tral file format (e.g., STEP), whose interchangeability can be verified by testing them against the
properties that should be preserved. Interchangeability of algorithms (arrows) remains a challenge.

data, and many other application specific formats. The STL (based on triangular surface mesh) is
particularly popular in many applications, including but not limited to 3D printing, because of its
simplicity and wide applicability. If both A and B use mesh-based internal representations, STL
can be used effectively without approximation (assuming consistent storage precisions). But when
exchanging information between higher-order representations, STL is at best an approximate neutral
representation to be used as an external reference with respect to which the quantitative properties
can be measured (e.g., upper bounds on Hausdorff distance).?!

Even simpler than STL (in both primitives and composition rules) are voxel maps. They provide
a great device as a generic set of coordinate axis-aligned “rulers” that are externally addressable for
measuring geometric properties. In addition, it provides a basis for geometric hashing as a special
form of partitioning the modeling space into interchangeability classes, where two models that ‘snap’
to the same collection of voxels can be deemed interchangeable.

Many other example are conceivable, ranging from algebraic surfaces of various orders and dis-
cretizations to groupings of balls and point clouds. One important point to remember is that as
neutral representations becomes simpler to use, they may also turn lossier, requiring additional as-
sumptions to recover the lost information. This, in turn, makes it harder to provide an inverse map
(i.e., import) as discussed below for separated verification for A 2 N and N = B. Although neu-
tral formats are predominantly representation devices with no algorithmic content, it is conceivable
that the standards can grow to accommodate algorithms, for example to accommodate procedurally
defined 3D printed shapes.??

Properties. Similarly to the previous use-case, the properties are specified with the recognition
of trade-offs between shape (i.e., combinatorial, topological, geometric, differential, and integral)
properties exemplified at the beginning of this section. The main difference is that here, the prop-

21Tt is worthwhile emphasizing that if the STL data is used as an intermediate step—i.e., export from A to N
and import from N to B—then the case belongs here to Use-Case #1.4. However, if the STL data is used solely
as an external reference for measuring properties, but is left out of the system-to-system conversion—i.e., direct
export/import via native file formats of A and B—then the case belongs to Use-Case #1.3 discussed earlier. The two
scenarios have very distinct attributes and should not be confused.

228ee also Use-Case #1.5 in which the standardization is on construction procedures, which are predominantly
algorithmic.

42

erties must be computable purely from the neutral format’s information content. In other words,
the properties cannot depend on the information that is lost upon exporting to the neutral format,
as expected. This immediately reveals the inherent limitation of this approach; namely, one’s in-
variance guarantees can be only as good as their neutral format. If a property cannot be captured
by N, it cannot be guaranteed to remain invariant either, as the information is channeled through
N—to which we referred earlier as a “semantic bottleneck.”

The ISO 10303 standard for product data representation and exchange [2] has grown significantly
to include not only nominal shape specifications, but also design intent, tolerancing, manufacturing
data, and more, with ongoing research efforts in each direction. This evolution of the neutral format
effectively expands the space of available invariant properties but, intrinsically, remains incomplete
as new material structures, fabrication processes, and technical challenges emerge. For example,
geometric dimensioning and tolerancing (GD&T) standards are a key component of any neutral
standard for description of mechanical components; in contrast, as of today, no neutral standards
provide support for exchange of toleranced geometric data in the presence of modeling errors.

When simplified and approximate shape representations (e.g., STL meshes, VDB voxel maps,
PCD point clouds, etc.) are used as the neutral format, the scope of properties that can be pre-
served are further limited. For instance, converting to STL results not only in a loss of the constraints
that capture design intent and/or dimensioning and tolerancing, but also in a decay of the shape
properties. In particular, piecewise linear approximations lead to geometric errors and loss of differ-
ential properties (e.g., curvature and G*—continuity). Voxel maps do not preserve surface normal
information altogether, point clouds also lose topological properties, and so on. Note that each
of these simplifications or approximations are useful in their own limited capacity—determined by
as many of the properties as they retain, but preservation of metric properties requires additional
external references against which such properties can be measured.??

Similarly to the previous use-case, the property functions are computed via entirely different
algorithms, and the burden of each function’s correctness is on the authoring system. The same
applies to the neutral format and its semantics for computing the properties from the exported
data. Additionally, the properties computed by the two systems and on the neutral format must
agree, i.e., exporting the data to the neutral format N (from A and B) followed by pn : N — P must
give the same result as ua : A — P and pg : B — P, respectively. For example, if STL is being used,
and one cares to preserve a particular integral property (e.g., total volume or surface area inside a
given bounding box), the polygonization step in export to STL must preserve that property, such
that pa and pg, computed on their respective internal representations, and py, computed on the
STL mesh, yield the same results—or agree up to a pre-specified tolerance.

Importantly, when computing the properties from N’s semantics, one cannot use additional as-
sumptions that are not part of the standard. For example, if the neutral format is voxel-based, any
property that depends on the lost surface normals should not be taken as an invariant, unless the
assumptions used in recovering the surface normals are made explicit in the specifications of the
neutral format.

Interoperability Map. In this use-case the interoperability map is a compound process that can
be broken down into 1) export from A to N, followed by 2) import from N to B—with or without
interruption by third party healing/repair tools discussed in Use-Case #1.3.

Once again, developing the export/import utilities subjected to specified conditions on what
is preserved at each step is solving the correspondence problem. If one is already given a legacy
export/import solution without any such specifications, one encounters the harder characterization
problem. In each case, preserved properties are the common part (i.e., intersection of) the set of
properties preserved from A to N (i.e., export) and from N to B (i.e., import).

23Nevertheless, simplified representations themselves may serves as such external references (e.g., for Use-Case #1.3)
even if they are not ideal for an intermediate step in the translation process.

43

Verification. The a posteriori verification problem can be significantly simplified if both systems
can separately guarantee property-based interoperability (using the same external semantics for
properties) with the neutral format. Specifically:

e Both systems’ export/import functions to/from the neutral format are inverses of each other up
to interchangeability with respect to the specified invariants; i.e., converting back-and-forth
between each systems’ internal representation and the neutral format keeps the properties
invariant, no matter how many times it is repeated.

e The common part (i.e., intersection of) invariant properties in A = N and N & B conversions
covers the set of properties that one desires for A & B interoperability.

In other words, the transitivity of interchangeability with the neutral format allows one to decompose
the verification problem to independent ones that do not need collaboration between the developers
of A and B, as long as they both can work with the common standard.

For example, if A and B exchange CAD data via STEP, as A &2 STEP = B (arrows denoting
export/import), to verify that the composite export+import maps A &= B preserve a given property,
it is sufficient to verify that each of A = STEP and STEP & B preserve the same property. This, in
turn, can be done by back-and-forth testing the export/import utilities of each system individually
against STEP—perhaps repeated in multiple round trips to amplify the errors for a more revealing
analysis. The transformations may or may not change/degrade the model after enough iterations;
however, the properties must not change.

Advantages. The main advantage of using neutral file formats is to centralize the interoperability
through a common standard and reduce the number of translators from quadratic in Use-Case #1.3
to linear. Every time a new system or representation scheme emerges, it need not interoperate with
all previous systems, but need only support export/import to/from the neutral format. Of course
it takes more than simply providing such functionalities, and the two-way verification with N is in
order with respect to specified invariants. Additional advantages include:

e It is generally easier to figure out what properties are being preserved, in contrast to the direct
translation scenario in Use-Case #1.3, when they depend solely on the neutral standard’s
semantics—which are usually better documented and widely available on the public domain.

e As discussed earlier, verification can be decomposed to two separate tasks, performed in isola-
tion between each system and the neutral standard, without requiring the system developers
to work together for a direct system-to-system verification.

e The third party neutral format, if used properly, can provide an external reference for transitive
interchangeability with respect to quantitative properties, capping error accumulation.

Drawbacks. Despite the appeal of simplified and approximate representations as a neutral ex-
change standards, they offer few guarantees, preserve few properties, and do not enforce transitivity
under multiple exchanges. The resulting information loss makes the aforementioned verification
process (based on inverting export to import) harder to achieve, as mentioned earlier.

At the other extreme, in an effort to accommodate more information and preserve more proper-
ties, the highly expressive STEP standard has turned into a superset of “flavors” of different formats
with subtle differences. No single flavor is sufficient for all purposes—as is the case with systems
and representation schemes—and an attempt to capture the difference by allowing varieties defeats
the standardization purpose.

It is difficult to incorporate tolerances to standard formats to formalize interchangeability in the
presence of errors, which may explain why geometric accuracy and tolerance information continue to
be missing from STEP. The challenge is to incorporate externally addressable references that would

44

allow to ‘hash’ different representations into interchangeability classes. The voxel maps appear
particularly attractive for this purpose, though other representations may be used as well. Until this
difficulty is resolved, having export/import functions that are inverse to each other up to property-
based interchangeability cannot be taken for granted due to round-off or approximation errors. This
in turn implies that data-centric translation is not likely to achieve satisfactory transitivity and
mitigate model degradation.

Last but not least, even as the neutral standards mature and keep growing, they are often based
on premature decisions that may be incompatible with new representations and algorithms, stifling
the innovation.

Best Practices. The choice of a neutral format boils down to a trade-off between expressive
power for carrying more properties and simplicity to develop translators than can preserve them.
This can be viewed as a trade-off between the scope of characterization and feasibility of establishing
correspondence, respectively. In essence, the neutral format must be simple enough to be usable by
interoperating parties without confusions about semantics, inconsistent implicit assumptions (e.g.,
approximating properties that are lost)—but not too simple, such that it misses important semantic
information.

It is a common pitfall to assume highly expressive standards (e.g, STEP) are lossless, when they
are not. One must be aware of the limitations of the chosen format and whether it is sufficient for
the purpose at hand—e.g., voxel maps might be perfectly adequate for preliminary synthesis and
topology optimization iterations, but may not be expressive enough for the final design.

One should be wary of flavor diversity of standards and the resulting semantic inconsistencies.
It is best to be upfront and consistent on which flavors are used throughout the workflow. Having
an explicit specification of invariants facilitates re-thinking the choice of flavors in future or interop-
erating with other flavors. It is best to go with the bare minimum that supports the properties.

When it comes to developing the standards for neutral file formats, it is best to shift the focus
to the properties one cares to preserve, rather than arbitrary decisions based on syntactic simplicity,
expressive generality, etc. It is generally ill-advised to enlarge the standard to support as much
representational variety as possible without worrying about semantic inconsistencies.

3.3.5 Use-Case #1.5: Generic Model Exchange (Procedural or Declarative Recipes)

Basic Idea/Setup. To mitigate the difficulties in Use-Cases #1.2, #1.3 and 1.4, stemming from
incompatible interpretations of fully instantiated CAD models in different systems, an alternative so-
lution is to standardize on the construction recipes for instantiating CAD representations, instead of
standardizing on the representations themselves. Such construction recipes are often called ‘generic’
models and include both procedural (e.g., parametric, generative, or constructive) and declarative
(e.g., constraint-based) descriptions of CAD models.

The generic models are largely symbolic and compact structures that are formally defined by
external syntax and semantics. When two systems A and B with different representations and/or
algorithms, agree on such a generic modeling language L, their interoperability is reduced to each
system’s ability to interpret the generic models—with or without internally producing fully instanti-
ated CAD representations. Examples of the operations and relations based on which generic models
can be built are Boolean operations, Minkowski operations, sweeps/unsweeps, offsets/blends, mo-
tions/deformations, dimensioning and assembly constraints, and a full range of application-specific
feature-based representations.?*

24Philosophically, rather than export/import to/from a neutral format for the ‘state’, this scenario aims to

45

CAD System (A) CAD System (B)

Read + Write Procedure

Read + Write Procedure
VERIFICATION
“does it commute?”
Write Write

Procedural language,

Property Property

function function

y

Space of properties

Combinatorial | Topological | Geometric | Differential | Integral

Figure 23: Use-Case #1.5: Procedural recipes are interchangeable with algorithms (arrows) that
construct the representations (bullets) separately in each system. The responsibility of evaluating
them correctly, in compliance with the common semantics, is assumed by the systems.

Examples. The constructive solid geometry (CSG) representation scheme for solid modeling is
a classic example of a basic procedural language, whose operations (namely, Boolean operations
and rigid motions) have universal semantics. Thus if they also agree on a finite set of primitives
and how they are parameterized,?® A and B are guaranteed in advance to produce interchangeable
representations—an example of a priori verification.

This approach extends in a straightforward fashion to many other operations, transformations
and constraints. Unfortunately, exchange of generic models becomes problematic for more complex
operations whose semantics depend on evaluation or interpretation of other simpler operations.
Notable examples include edge blending operations that may be defined in several (incompatible
and order-dependent) ways. Feature instantiation operations often require references to previously
instantiated edges and faces; unfortunately, not only these edges and faces are subject to numerical
errors, but also these references may not be persistent under different algorithms or even under
change of parameters in the same system.

Below, for the purpose of this discussion, we assume that generic models are described in the
common language L with unambiguous semantics, but in practice a number of fundamental prob-
lems remain unsolved including persistent naming, robust computing (e.g., for intersections), and
consistent semantics (e.g., for blending) mentioned above.?%

It is worthwhile also pointing to a more practical application of this use-case scenario, which is
for shape synthesis and optimization. A major benefit of exchanging parameterized construction
procedures instead of the final result is that the information can be treated as a family of shapes,
rather than a single one. Thus it supports automation through iterative synthesis+analysis, enables
encoding design intent into the procedures, facilitates inferring gradient information, etc.

Properties. The reasoning must be clear by now: the preserved shape (e.g., combinatorial, topo-
logical, geometric, differential, and integral) properties must be computable from the generic model

write/read to/from a common language for the ‘process’ that generates it.

250One can argue that agreeing on geometric primitives (e.g., semialgebraic halfspaces) is also subject to nuances in
precision semantics (e.g., round-up errors). Nevertheless, defining interchangeability for primitives is a much simpler
task than it is in general for evaluated representations in data-centric methods (Use-Cases #1.3 and 1.4).

26There is a rich body of literature on feature-based solid modeling (27, 14, 62, 65, 54, 9, 55, 67, 28].

46

semantics alone. Any system-specific assumption or decision that cannot be inferred from the pro-
cedural or declarative content should not be used to define properties. Accordingly, the properties
are restricted to those fully specified by the language semantics and cannot be extended to those
that are left to the systems’ discretion.

Importantly, unlike previous use-cases, many shape constraints that capture the design intent
(e.g., symmetry, parallelism, coaxiality, etc.) as well as manufacturing intent (e.g., manufacturable
features, dimensioning and tolerancing, etc.) are preserved and transferred via predominantly sym-
bolic structures, minimizing or eliminating their susceptibility to numerical errors.

Similarly to the previous use-case, the property functions are computed via entirely different
algorithms, and the burden of each function’s correctness is on the authoring system. The same
applies to the procedural language and its semantics for computing the properties from the common
procedure. Importantly, a property function defined on the procedural representation/program
pL : L — P precisely specifies how the property is computed from the program’s static structure
alone, independently of which system will be eventually compiling it.

For example, take two CAD systems, based on any internal representation scheme (e.g., B-rep,
hybrid B-rep4+CSG, etc.) that exchange information via CSG trees, caring to preserve a particular
integral property (e.g., total volume or surface area inside a given bounding box). Then computing
that property over either system’s evaluated representation—i.e., after separately instantiating the
same CSG tree into their own internal data structures—must agree, meaning that it is possible to
compute it directly on the CSG tree in the first place. If the two cannot agree precisely, one can
specify tolerances as upper bounds to the deviation of the properties computed in each system from
that of the exact property computed on the CSG tree (serving as the external reference).

Interoperability Map. Conceptually, the interoperability map is a compound process that can
be broken down into 1) write from A to L, followed by 2) read from L to B. The write/read in this
case are not necessarily file export/import (unlike file-centric methods in Use-Cases #1.3 and 1.4),
though files are viable containers to use among other possibilities (e.g., real-time message passing).
Here, the writing refers to the process by which the procedural and/or constraint-based recipe is
retrieved from the sending system (i.e., A), and the reading refers to the instantiation of the recipe
by the receiving system (i.e., B). These can be done in a number of ways:

e Each system can choose to base its internal computing on the procedure itself, postponing its
evaluation (e.g., ‘lazy’ evaluation methods). The advantage of minimizing ‘side-effects’ in this
case is could be overshadowed by consequent performance limitations.

e Each system can choose to maintain a construction history at all times alongside its evaluated
internal representation (if there is one). The obvious challenge is that of maintaining internal
consistency (i.e., interchangeability) for such ‘hybrid’ representation schemes.

e The alternative is to instantiate the procedural recipe upon reading, and attempt to reconstruct
it on-demand upon writing by re-parameterization of the shape (i.e., shape factorization). As
with most feature recognition/retrival problems, it is unlikely that this process can be fully
automated in a reliable fashion, partly because there is no unique answer in general.

In general, the procedural input can be fully evaluated, partially evaluated, maintained alongside
evaluated into a hybrid representation, etc. In all cases, the interoperability problem is shifted to
each system’s own assurance of internal consistency (e.g. correct boundary evaluation from CSG).

Verification. Regardless of how the systems decide to go about write/read of generic model recipes
to solve the correspondence problem mentioned above, the verification problem can be decomposed
into two separate tasks for A = L and L & B. Verifying that these tasks are inverse of each other up
to interchangeability implies that repeatedly applying them back-and-forth to an arbitrary model
will leave the specified properties intact.

47

Advantages. It is appealing to standardize the semantics for data exchange based on higher-level,
largely symbolic feature-based models than, for example, neutral file formats (Use-Case #1.4). The
fact that they are unevaluated—thus do not usually include computed numerical values—make proce-
dural models less affected by the robustness issues and model degradation. The validity and correct-
ness are guaranteed by design; in this sense, constitutes the “cleanest” form of interoperability—or
illusion thereof, when formal semantics issues are not fully resolved.

The unique feature of this scenario is that it allows exchanging not only single models, but also
parametric families of models, in which a lot more information is encoded including but not limited
to design intent, manufacturing intent, and gradient information (e.g., sensitivities for shape and
topology optimization).

Drawbacks. The main drawback of this approach—which can easily go unnoticed—is the lack of
any guarantees for semantic consistency. The systems assume the responsibility of enforcing correct
semantics internally. The way each one interprets and instantiates each instruction or feature in the
procedural recipe (e.g., what a ‘hole’ or ‘pocket’ mean to A vs. B) is taken for granted. One can
attempt to standardize virtually all significant features, their attachments, and placement conditions
using various ontologies—e.g., classifying features to generative, modifying, and referencing features
[13, 12]. However, correct and consistent interpretation of such definitions requires solving the
open problems of order-dependence, persistent naming, and robustness. These challenges may be
compounded by the practical difficulties of ensuring that procedure write/read in different systems
are in fact inverses of each other up to interchangeability.

Best Practices. Generic model-based interoperability is well positioned to circumnavigate the
need for externally representing a ‘master’ model—e.g., external geometric references anchored to
control error accumulation in Use-Cases #1.3 and 1.4. The price is a semantic “trap:” the language
must provide construction semantics to the last possible detail, and each system is responsible for
enforcing them internally. One should not assume that syntactic interoperability (e.g., ability to
write/read the language L and instantiate it to always valid structures) on the part of the systems
is sufficient.

The method works best for universally accepted concepts (e.g., Boolean or Minkowski operations)
that are representation agnostic, without any controversy on math/semantics. For example, a global
blend defined as a morphological opening/closing with a ball—in turn, defined as a sequence of mor-
phological dilation/erosion (i.e., Minkowski operations)—has well-defined representation-independent
semantics. A local blend (e.g., of a particular edge or vertex), on the other hand, references internal
representation elements and is susceptible to interoperability issues due to ordering rules, persistent
naming, and robustness.

Extending the language without restraint—using arbitrary new definitions, assumptions, and
constraints to enhance its expressive power—is ill-advised. Every such decision should be made
in observance of what it takes to fully specify the semantics, handling complicated scenarios (e.g.,
overlapping blends), ordering rules for constraint resolution, etc. These rules must be documented
for both systems to adhere to.

48

CAD System (A) CAD System (B)

Evaluate + Comprehend Queries

Evaluate + Comprehend Queries

VERIFICATION

“does it commute?”

Evaluate Evaluate

Universal queries

Comprehend

Property Property

function function

Space of properties

Combinatorial | Topological | Geometric | Differential | Integral

Figure 24: Use-Case #1.6: Queries are simple functions that from the building blocks for the
interchangeable algorithms (arrows) in each system, from which the representations (bullets) can be
reconstructed, up to interchangeability, by evaluation+comprehension.

3.3.6 Use-Case #1.6: Query-Based Exchange (Standardizing on Functional Queries)

Basic Idea/Setup. Query-based interoperability is radically different from the other use-case
scenarios in that it aims to bypass the CAD model exchange problem altogether. Unlike data-
centric or procedural methods (Use-Cases #1.3-1.5), the model may never need to be transferred in
its entirety (e.g., via export/import files or write/read programs). Moreover, unlike Use-Cases #1.1
and #1.2, A and B may have dramatically different representations and algorithms. Rather, the
systems retain their own copies separately at all times, and communicate small packets of information
only when the need arises (i.e., via send/receive queries).

The ‘queries’ are computable functions whose semantics are specified with respect to a com-
mon reference. They depend on the nature of the tasks at hand, for which information about the
exchanged model is needed [30]. Similar to the property functions, the burden of their correct
implementations in compliance with the common semantics is assumed by A and B separately.

Examples. Consider a scenario in which A and B exchange information via points only, i.e.,
no higher-dimensional simplices (e.g., edges or faces) are exchanged. All that passes through the
system boundaries are 3D coordinates of a finite number of query points—with respect to a common
Cartesian coordinate system—sampled (at once or adaptively) in the interior or on the boundary of
the shape in question. If the systems also agree on the semantics of a few other basic questions about
the bounding box, types and number of primitives, internal rules and constraints for parameterizing
the primitives (e.g., maximum polynomial degree) and other information, they could (but do not
have to) reconstruct one another’s models after a finite number of exchanged queries up to any
desired fidelity, accuracy, and resolution—or more generally, up to an arbitrary specification of
property-based interchangeability relation.

This basic sampling scenario can be extended to sampling higher-dimensional spatial elements,
e.g., sending/receiving simplices or simplicial complexes or performing set-membership classification

49

(SMC) [69], computing distance and integral properties, querying spatial intersection measures (e.g.,
asking “what fraction of this voxel is inside?”), and so on. Increasingly complex queries corresponding
to nontrivial geometric tasks may be constructed from simpler queries.

Properties. The properties that one cares to preserve must be computable from the queries
alone—or more precisely, from a finite sequence of queries. This observation blurs the distinc-
tion between the properties and queries. The queries (and hence the properties) range from global
attributes (e.g., dimension and bounding box) to local questions (e.g., membership and distance).
They can request combinatorial, topological, geometric, differential, and integral information, as long
as the underlying mathematical concepts are universal, non-controversial, representation-agnostic,
or otherwise recognized and agreed-upon by both systems.

Under common assumptions (e.g., on bounding box size, maximum resolution, and minimum
feature size), these point membership and distance-to-boundary queries are sufficient to compute
most practically significant geometric and topological properties after a finite number of queries,
without explicit exchange of representations or files.

The query object (i.e., ‘candidate’ set) need not be a point either; for example, B can send
simple higher-dimensional elements (e.g., line segments, polygons, and polyhedra) to query average
measures of their intersection against the solid (i.e., ‘reference’ set) in A. Alternatively, B can ask A
to generate its own set of points (e.g., sampled over a surface), and so on. See [30] for more details.

Obviously, the results computed by property functions must not depend on system-specific as-
sumptions, and must be obtainable (in principle) from the common semantics for queries—which
may be defined analytically, computationally, or empirically. For example, one can choose the prop-
erty function as the collective response of a system to a large number of PMC tests (e.g., sampled
on a uniform grid in a bounding box). As long as the point cloud and the meaning of PMC is the
same for both systems, it is a valid interchangeability certificate between A and B. The same can be
done using distance queries (with or without tolerances) on a common grid, measure queries over a
common voxel map, etc.

Interoperability Map. Unlike the previous use-cases, solving the correspondence problem should
not be viewed as an attempt to develop an explicit data conversion process. Rather, the goal is
to understand the process by which the receiving system (i.e., B) can reconstruct the model in the
sending system (i.e., A) in its own representation scheme, even though it may never do so in practice.

In other words, the correspondence problem in this use-case is to establish an implicit association
between A and B’s internal representations and algorithms, while allowing each system keep them
hidden and query them on-demand for partial information.2”

Verification. The verification task reduces to certifying the correspondence between all primitive
queries and their composition rules. While the task is nontrivial, it is clearly defined, assuming
that common semantics exist as a result of characterization. Furthermore, with common reference
semantics in place, verification of queries becomes a question of compliance and certification of
the primitive queries in the individual systems A and B with respect to that semantics. Once such
compliance is established, the correspondence is also verified for every property that can be described
by a valid composition of the primitive queries.

Advantages. The main advantage of the query-based approach is that it lends itself well, almost
by design, to the property-based interchangeability paradigm. The queries serve as a basis to
span both property functions and interoperability map (e.g., by purely functional composition).

27 An important question is, what is the minimal set of (preferably “simple”) queries, along with a set of basic
composition rules that suffice for establishing such a correspondence?

50

Consequently, if the information exchange is channeled through the queries alone, without any
exceptions or “hacks,” the query-based interoperability map preserves the properties (by design).

The approach can support variety of formal semantic models. For example, one could extend the
abstraction of ‘crisp’ solid models, with binary membership semantics and deterministic queries, to
‘fuzzy’ solid models with real-valued membership grades, density functions, and probabilistic queries
[75, 44, 76] without changing the main framework.

Furthermore, solving the correspondence problem in this use-case does not require access to
source-code or collaborative development between A and B. This has significant economic and
strategic implications, as query-based information exchange respects proprietary internal structures.
Moreover, it abides by the same modularity, data hiding, and encapsulation principles that have made
object-oriented programming [45] a great success in software engineering. These principles allow fine-
granularity, agility (in adapting/extending to new abstractions), and support for the development of
open and composable software architectures. The query-based approach to interoperability supports
building resilient workflows by self-correcting, interactive, and adaptive data exchange. Errors are
grounded rather than accumulated by constant re-iterations.

Drawbacks. Despite the great promise of query-based interoperability, its power, formal proper-
ties, and practical limitations remain to be understood. Here are a few caveats to keep in mind:

e The queries must be formally defined with respect to standardized semantics that are mutually
agreed-upon by all interoperating systems. This task is not trivial and has not been attempted.
The interoperability guarantee extends only as far as the standard. For example, if the standard
does not deal with errors and accuracy, the interoperability guarantee would not extend to
properties that depend on them.

e Similar to the procedural methods (Use-Case #1.5), the burden of implementing and certifying
correctness of queries and their compliance with the standard lies with the authoring system—
though the simplicity and universality of basic queries (e.g., membership and distance) makes
it easier to do so in contrast to complex procedural features and operations.

e What is a good set of primitive queries? In principle, keeping the interfaces as small as possible
is what distinguishes queries from large data exports in data-centric methods (Use-Cases #1.3
and 1.4) and their complications. However, the modularity and data hiding benefits that come
with smaller interfaces are sometimes at the expense of computational performance.?®

e The approach is fairly recent and is not supported by the existing systems and infrastruc-
tures. Its wide application requires reformulating many applications and algorithms in terms
of queries, which is nontrivial.

Best Practices. The benefits of query-based approaches over data-centric methods are realized
only when the interfaces are as small as possible. Many light and simple queries are preferable to few
large exchanges with complicated semantics. The approach works better in practice when the query
input/output data are based on simple types—e.g., real-valued coordinates and distances—rather
than complex combinatorial structures. The larger and messier the queries become, the more may
they become susceptible to the limitations of data-centric or procedural exchange (Use-Cases #1.3—
1.5). It is best to take a “minimalistic” approach and add queries only when absolutely necessary,
along with their assumptions and semantics (e.g. as pre-/post-conditions [45]).

Hacks and shortcuts to improve the performance are ill-advised from an interoperability perspec-
tive. If keeping the queries at the bare minimum would result in prohibitively slow algorithms, one
can “batch” them together into larger queries.

28The rapid growth in high-performance computing (HPC) offsets this disadvantage to a great extent. As long as
the queries used fairly independently with little synchronization overhead, the query-based approach is well-suited for
massive parallelization (e.g., on GPUs).

o1

Summary of CAD-CAD Data Exchange Scenarios. Since the inception of solid modeling,
the CAD-CAD data exchange has been approached as a problem in model-based interoperability,
starting from a premise of informational completeness, where the ultimate goal is to preserve the
shape integrity as much as possible. Our analysis reveals that the only true solution that achieves
model-based interoperability is that of Use-Case #1.1 which eliminates the interoperability bottle-
neck by adopting the same system across all applications. However, in most realistic scenarios (e.g.,
Use-Cases #1.2-1.6), it is unlikely to be able to preserve everything; trade-offs need to be made
depending on which properties one cares the most about. This is the essence of the property-based
interoperability approach.

In general, it is conceivable that best performance is achievable by a combination of the data-
centric, procedural, and query-based methods, as long as one is aware of the pros and cons. In
particular, if A and B have commonalities (e.g. in their combinatorial data structures), it may make
more sense to exploit it, at the expense of the drawbacks discussed in Use-Case #1.2. If any form
of representation conversion is added to the mix, one should be aware of the drawbacks discussed in
Use-Cases #1.3 and 1.4.

52

4 Use-Case Scenarios: CAD-CAx Interoperability

CAD-CAx interoperability usually appears as system integration: the CAD system is integrated
into the CAx system (e.g., CAE and CAM among others) in a manner that allows the CAx system
to perform tasks relevant to a particular type of engineering activity. The shape information is
provided by the CAD system, and (often partially) utilized within the CAx system, using the same or
different representation schemes. The six use-case scenarios discussed for geometric interoperability
in Section 3 for CAD-CAD data exchange apply to this mode of CAD-CAx interoperability. Rather
that repeating their properties, we focus on the shape-dependent tasks that are required by the CAx
activities and normally are not directly supported by CAD systems.

Surrogate Properties. Shape properties plays a dominant role in CAx activities as well. In
addition to some—but not necessarily all—of the shape (i.e., combinatorial, topological, geometric,
differential, and integral) properties that need to be preserved, other properties may be of interest
as well, depending on the CAx application. However, these properties may not be known a priori, in
which case the shape properties are used as a surrogate to certify interchangeability, as elaborated
in Section 2.2.1. This is due to at least two reasons:

e The CAD system A does not necessarily have the capacity of representing and interpreting the
additional semantics processed by the CAx system B (e.g., physical fields, fabrication plans,
and material structures). Thus its property function pua : A — P cannot be expected to capture
such properties.

e Even if the capacity to represent such information is added to the CAD system A (e.g., for
visualization purposes), there may not exist a standardized external base of comparison to
certify the interchangeability of the exchanged non-geometric information between A and B.

In the following sections, we shall discuss these issues in the context of two CAD-CAx integrations:
CAD-CAE and CAD-CAM.

Trade-Offs and Prioritization. In many CAD-CAD data exchange scenarios between similar
systems, the ultimate goal is to make the transfer as lossless as possible, preserving as many shape
properties that the two interoperating systems’ differences allow. This is aspired without a particular
downstream application in mind, which makes it harder to pass judgements about which properties
matter more than others to decide the trade-offs. In contrast, CAD-CAx integration provides a
“context” to make such decisions from a pragmatic viewpoint:

e CAD-CAE integration (Sections 4.1 and 4.2) cares about correct physical simulation, which
can be broken down to a few fundamental operations, e.g., computing volume and surface
integrals, enforcing boundary conditions, assembling/solving linear systems, and so on.

e CAD-CAM integration (Sections 4.3 and 4.4) cares about correct fabrication planning, which
can be broken down to a few fundamental operations, e.g., identifying unit actions, high-level
sequence planning, tool-path generation, enforcing tolerance specifications, and so on.

In each CAx activity, it is not always practical to preserve all shape properties due to differences in
representation semantics. Thus preserving the subset of shape properties that influence the above
operations the most, should be prioritized in each integration scenario.

CAD and other CAx systems usually serve different purposes that depend on different forms
of computations. These computations often lend themselves better to some representations and
algorithms than others. Nonetheless, these representations and algorithms must agree on common
references for the meaning of these computations.

53

4.1 CAD-CAE Integration Properties

For the purpose of this discussion, we assume that the CAE system’s task is to solve a well-posed
initial/boundary value problem defined over the geometric model provided by the CAD system.
Generally speaking, the CAE analysis

e accepts the CAD model, which usually includes descriptions of shape (geometry and topology),
material properties, and assembly relationships;

e accepts the initial/boundary conditions, which are associated with the CAD model’s bound-
aries and interfaces with other elements; and

e computes the physical response, typically in the form of spatio-temporal fields which are as-
sociated with (and may or may not be communicated) to the CAD model.

We restrict ourselves to the most common case of finite element analysis (FEA), in which the tasks
are usually achieved as follows:

1. Assume that the solution is represented by a linear combination of basis functions whose
supports cover the CAD model. The linear combination of the basis functions define a space
of admissible solutions, meaning that they satisfy the imposed initial/boundary conditions.

2. The coefficients of the basis functions are selected to minimize some functional determined by
the weak form of the initial/boundary value problem. This tasks requires numerical integration
of (functions of) basis functions and their derivatives over the supports of basis functions that
are contained inside the domain. These integrals populate a linear system of equations that is
solved for the coefficients of the basis functions.

3. The solution expressed as a linear combination of basis functions is associated with (points of)
the CAD model, for example, as a deformation, temperature, stress, etc.

Thus, in addition to the usual CAD tasks, a CAE system must support the following tasks. Each
task’s successful completion require preserving certain properties, discussed below:

e Task 1 (a): Associate prescribed initial/boundary conditions with portions of the CAD
model’s boundary, at discrete time instants or over continuum time intervals.

— Property: (Portions of) the CAD model’s boundary and attributes prescribed over them.

— Property-based Interchangeability: Subsets of the boundary (e.g., surface patches,
and in some cases curve segments and points) that are decorated in the CAD model
with annotations pertaining to physical behavior must match with specifications of the
physical analysis problem in terms of initial and boundary conditions to be enforced.

e Task 1 (b): Associate prescribed internal/external regions of the CAD model with material
properties and body effects, at discrete time instants or over continuum time intervals.

— Property: (Portions of) the CAD model’s internal or external regions and attributes
prescribed over them.

— Property-based Interchangeability: Subsets of the interior/exterior (e.g., volumetric
cells, and in some cases lower-dimensional elements) that are decorated in the CAD model
with annotations pertaining to physical behavior must match with specifications of the
physical analysis problem in terms of material properties (e.g., stiffness, conductivity, and
so on) and body effects (e.g., gravity, electromagnetic fields, and so on).

54

Interchangeability with respect to boundary conditions does not imply that the supports of basis
functions need to conform to the boundary, though that could simplify their enforcement by assigning
them to individual finite elements. The ultimate goal is to ensure that the solution field, represented
in a linear basis with conforming or non-conforming supports, is admissible, i.e., interpolates the
constrained valued on the boundary:

e Task 2: Enforce prescribed initial/boundary conditions (typically for Dirichlet conditions) on
linear combinations of basis functions.

— Property: Admissibility of the spatio-temporal field(s).

— Property-based Interchangeability: The spatio-temporal solution defined over the
CAE model as a linear combination of the basis functions must take on the specified values
and derivatives at specified locations/times, at least within a well-defined tolerance with
respect to an external reference.

e Task 3 (a): Perform volumetric numerical integration over the supports of basis functions
contained inside the CAD model.

— Property: Volume integrals computed over a finite number of bounded domains.

— Property-based Interchangeability: Computing the integrals over a finite number of
bounded domains must match between CAD and CAE representations of geometric model
(if different), at least up to some approximation. The domains are typically described as
the intersection of support functions with the geometric model.

e Task 3 (b): Perform surface numerical integration over portions of the boundary (typically
for Neumann boundary conditions).

— Property: Surface integrals computed over a finite number of bounded domains.

— Property-based Interchangeability: Computing the integrals over a finite number
of bounded domains must match between CAD and CAE representations of geometric
model (if different), at least up to some approximation. The domains are the same as
those deemed interchangeable in Task 1 (a); namely, surface patches on the boundary,
and in some cases (e.g., impact forces) curve segments and points (degenerate integral).

If the supports of basis functions conform to the boundary, the volume and surface integrals become
simplified, since the integral domains match with the supports of basis functions (i.e., 3D mesh cells)
and their boundaries (i.e., 2D mesh faces). For non-conforming supports, such as those common in
meshless/meshfree analysis methods, the volume integrals over the supports that partially intersect
the geometric model near its boundary must account for the local geometry in one way or another,
while surface integrals are typically handled by surface meshing (e.g., triangulation).

e Task 4: (Optional) Associate the solution computed by the CAE system with the geometric
model authored in the CAD system (e.g., visualization of fields or deformation).

— Property: Consistency of the domain and/or boundary parameterizations.

— Property-based Interchangeability: The analysis results are mapped back onto the
CAD model, often by re-parameterizing the internal/external domains or boundary sur-
faces and curves. The parametrizations need to match in terms of spatial coordinates at
least up to some approximation (e.g., depending on visualization resolution).

Re-parametrization is particularly challenging near the boundary, for both approximately conforming
and non-conforming supports of basis functions.

55

CAD System (A) CAE System (B)

CAD-CAE Interoperability Map

VERIFICATION

“does it commute?”

Property Property
function function

Space of surrogate properties

Combinatorial | Topological | Geometric | Differential | Integral
(Persumably) implies

Space of de facto properties

Figure 25: CAD-CAE interoperability verified up to invariance of surrogate properties.

To be clear, CAD-CAE integration may involve other tasks, such as computation of field sensi-
tivities with respect to the CAD design variables, but we will limit our discussion in this document
to interoperability with respect to the above tasks and properties only.

Depending on the mechanism for CAD-CAE interoperability and each system’s representation
schemes, these tasks may be challenging to varying degrees. For example, Task 1 (a) is trivial in
any CAE system that supports references to the solid model’s boundaries (e.g., B-rep surfaces),
though persistent referencing can become challenging in situations such as changing parametric
models. Task 3 (a) is relatively straightforward if the CAD system supports surface triangulation;
Task 4 is supported by any CAD system that has access to shading and texturing algorithms. The
interoperability challenges in these tasks are reduced to dealing with triangulation, shading, and
texturing inaccuracies. Tasks 2 and 3 are more challenging in general.

4.2 Use-Case Schema #2: CAD-CAE Integration

By analogy to the shape data exchange scenarios in Section 3 (Use-Case Schema #1), here we present
3 out of 6 conceivable scenarios for CAD-CAE integration:

1. Use-Case #2.2: standardizes on a common basis to represent both geometric domains and
spatio-temporal fields. Depending on the discretization scheme, it facilitates performing some
of the above tasks and preserving shape properties without conversion. However, either or
both systems become limited in their capabilities and performance as different representations
and algorithms are suitable for CAD and CAE computations.

2. Use-Case #2.4: relies on representation conversion, and encompasses mesh generation with
or without simplification, de-featuring, mesh healing/repair, and any other preprocessing. The
CAD system can independently operate on representations that fit modeling activities best, as
long as it supports meshing that suits CAE activities. However, meshing is hard to automate
and comes with no guarantees without additional processing, which, in turn, may compromise
shape properties pertinent to the aforementioned analysis tasks.

3. Use-Case #2.6: relies on complete delegation of geometric computations required by the
CAE system to the CAD system. The global geometric information are never explicitly rep-
resented in the CAE system—or minimized to a bare minimum. Rather, the information is
queried locally and lazily when needed by the aforementioned analysis tasks.

56

4.2.1 Use-Case #2.2: Standardizing on Representations (with Different Algorithms)

Basic Idea/Setup. The setup is similar to those of Use-Cases #1.1 or 1.2. The CAD system
(i.e., A) and the CAE system (i.e., B) use the same representations (i.e., Ma = Mg), or at least the
same core data structures, but differ in the algorithms (i.e., Fo # Fg)—mnamely, Fa is a collection
of algorithms that support geometric modeling operations such as Boolean operations, free-form
surface editions, and so on, while Fg is a collection of algorithms to support physical simulation,
including integral computations, solving linear systems, and so on.

Examples and Interoperability Problems. Common representations used to support both
CAD and CAE for “seamless” integration (i.e., no conversion) are voxel maps, polyhedral mesh,
and higher-order curvilinear mesh.

Voxel-based representations are popular in topology optimization (e.g., SIMP method) and
biomedical applications (e.g., 3D imaging), and are gaining popularity for visualization and geo-
metric modeling (e.g., OpenVDB). Voxelization provides the simplest basis for FEA analysis, as
the uniformity of the support functions allows assembly-free formulation and solution of the linear
systems of equations. Despite being ideal for CAE, it is less so for CAD due to nonsmooth bound-
aries (“chessboard” patterns) that fall short in representing functional surfaces, lack of semantics
for normal/curvature information, lack of closure under rotations, and other issues.

Polyhedral mesh-based representations dominate the FEA software systems, as they facilitate
enforcing Dirichlet and Neumann boundary conditions, computing volume and surface integrals
(Tasks 2 and 3), and assembling the linear system of equations for CAE, while providing some
degree of modeling freedom for CAD. Despite several early attempts, finite element mesh is too
restrictive as a primary representation for CAD since geometric operations ranging from Boolean
operations to sweeps and projections become nontrivial.

Isogeometric analysis emerged from the recognition of a need for a common basis to represent
both free-form geometric models in CAD and solution fields in CAE (e.g., using NURBS). For these
higher-order finite element representations, enforcing Dirichlet boundary conditions is complicated
and can be done in different ways with tradeoffs (e.g., ‘strong’ versus ‘weak’ enforcement methods)
(Task 2). Neumann boundary conditions are satisfied in a similar fashion as in standard FEA.
Computing volume and surface integrals require mapping to the parametric space and depend on
more complex quadrature rules (Task 3). Although it has been largely successful for bivariate B-
splines (e.g., analyzing shells) many problems remain to be solved for trivariate B-splines, trimmed
surfaces, and so on. An additional benefit of these methods is that mapping the results back to
CAD (Task 4) is particularly easy as re-parameterization is not needed. Since both CAD and CAE
use the same geometric basis in this use-case scenario, shape-related properties remain invariant
with the representation. The correspondence and characterization become trivial, and verification is
guaranteed a priori. Of course, the elimination of the interoperability problem as such comes at an
additional cost of case-specific challenges with making the same representation work for both CAD
and CAE applications.

57

4.2.2 Use-Case #2.4: Data-Centric Integration (Direct or Indirect Data Translation)

Basic Idea/Setup. The setup is similar to that of Use-Cases #1.3 and 1.4. Uunlike the previous
use-case, the CAD system (i.e., A) and the CAE system (i.e., B) use dramatically different repre-
sentations (i.e., Ma # Mg) and algorithms (i.e., Fao # Fg), accepting the reality that it is difficult to
make a single common representation scheme support both activities without a compromise.

The CAD representation is first exported to a different (and often approximate) representation
that lends itself better to the CAE tasks. As with Use-Cases #1.3 and 1.4, the conversion can be
done in multiple stages, directly or indirectly through an intermediate neutral file (e.g., STL).

Examples and Interoperability Problems. Mesh-based analysis has turned into an industry
standard for computational physics. Examples of mesh-based CAD-CAE integration are abundant
in both commercial PLM systems (e.g., SolidWorks integrated with COMSOL MultiPhysics) and
open-source libraries that provide APIs to various CAD systems (e.g., ENGYS).

Traditional FEA solvers require the geometric models to be tessellated into high-quality polyhe-
dral mesh. Both tetrahedral and hexahedral mesh generation are extensively studied disciplines, and
so are mesh-based analysis methods (e.g., FEM and CFD), their various extensions (e.g., X-FEM,
G-FEM, and others), and their convergence and sensitivity characteristics. High quality tetrahedral
meshing is easier to obtain for complex solid models, whereas hexahedral meshing remains chal-
lenging in general, though it is considered more desirable for higher-fidelity physical analysis with
fewer finite elements. Both methods are known to have failure modes in complex practical scenarios
without strong theoretical guarantees. One practical solution is to remove small features that can
complicate meshing, though are perceived to have little impact on analysis, manually or automat-
ically. Another approach to alleviate meshing failures is to inspect a flawed mesh for topological
problems (e.g., non-manifoldness), geometric problems (e.g., slivers), and other issues, and attempt-
ing to heal them automatically. Once the CAD model is converted to a good quality mesh, analysis
operations (Tasks 1, 2, and 3) are straightforward and their properties are well-understood on the
polyhedral representation, as discussed in Use-Case #2.2.

Voxelization is another, arguably simpler solution based on representation conversion. Al-
though unpredictable failure modes observed in conforming mesh generation are eliminated in non-
conforming voxel maps, it comes at a cost of losing important topological properties (e.g., small
voids) or geometric properties (e.g., surface normal/curvature) that can impact physical simulation.
It is not often clear what the proper voxel resulting is, to avoid these problems without incurring
excessive time/storage costs. Voxel maps require further assumptions for assigning the boundary
conditions and body effects to voxel elements after conversion (Task 1 (a, b)), enforcing boundary
conditions on non-conforming voxels (Task 2), and integrating over the implicit boundary cutting
through the voxels (Task 2 (b)), whereas volume integrals turn into simple discrete summations
(Task 2 (a)). A additional advantage of voxel maps is prefect parallelization (e.g., on GPUs).

By converting the representation to one that can gracefully handle analysis operations (Tasks 1, 2,
and 3), the CAD-CAE integration problem is effectively turned into one of geometric interoperability,
studied in the context of CAD-CAD data exchange (Use-Case Schema #1). Thus the first step to
ensure property-based interchangeability of the geometric representations, which were extensively
studied in Use-Cases #1.3 and 1.4 based on data-centric translation.

The challenge to address specifically in this use-case scenario is to identify which shape properties
are proper surrogates for physical analysis (Tasks 1, 2, and 3). We are not aware of a rigorous theory
to support this, and practical solutions appeal to arbitrary assumptions. For example, converting to
polyhedral meshes or voxel maps is based on the implicit assumption that higher-order differential

58

properties (e.g., surface curvature) that are lost in translation do not matter. High-resolution vox-
elization relies on the implicit assumption that small topological features (e.g., internal voids) that
are not captured by uniform sampling can be omitted. The soundness of these assumptions depends
on the physical problem at hand; for instance, while small features may not impact compliance and
deformations in a structural analysis problem, they will certainly change the strength and fatigue
life of a model due to stress concentrations. Similarly, surface curvatures are more important in
dynamic problems that deal with mechanical contact (e.g., cams and followers).

To make the matters more complex, mesh simplification and de-featuring may violate shape
interchangeability in the hopes of minimally affecting physical simulation, i.e., behavioral inter-
changeability. But the heuristics used in manual or automatic de-featuring are not always (though
should be) driven by examining their impacts on simulation (Tasks 1, 2, and 3). Similarly, mesh re-
pair and ‘beautification’ algorithms should consider the ultimate impacts when modifying the overall
shape or individual elements. Some of these effects are understood qualitatively in the context of
mesh ‘quality’—e.g., small aspect ratios tend to result in better analysis results. Below, we formalize
these in the language of interoperability:

The correspondence problem is to develop conforming or non-conforming mesh generation algo-
rithms, including voxelization as a special case with repeating elements, such that shape properties
that can impact the analysis operations (Tasks 1, 2, and 3) are preserved. The extent to which the
generated mesh conforms to the boundary of the original (i.e., master) CAD model can be formal-
ized in terms of interchangeability with respect to shape (geometry and topology) properties. For
instance, conforming tetrahedral or hexahedral meshes can (in principle) approximate the same solid
with coarser resolution and fewer elements than voxel maps. The approximation is qualified by the
invariance of geometric and topological properties of the mesh compared against the CAD model in
terms of Hausdorff distance, homology, manifoldness, or any other set of pre-specified properties.

The characterization problem is to examine a given mesh generation algorithm, possibly followed
by de-featuring and clean-up if necessary, and identify which shape properties are preserved along
with their implications for physical/behavioral properties. Since it is difficult to theoretically reason
about these properties, one solution is to investigate them on representative benchmark problems for
which near-exact solutions are either known theoretically or computed by alternative methods. In a
sense, this require making informed speculations on the significant properties, forming hypotheses,
and testing them iteratively in a verification setting by trial-and-error.

4.2.3 Use-Case #2.6: Query-Based Integration (Standardizing on Functional Queries)

Basic Idea/Setup. The idea is similar to that of Use-Case #1.6. As before, the CAD system
(i.e., A) and the CAE system (i.e., B) use dramatically different representations (i.e., Ma # Mg) and
algorithms (i.e., Fa # Fg). However, in this case B tries to minimize its explicit representation of
geometric information and, to refer to the original CAD model when such information are needed
for physical simulation.

What makes query-based CAD-CAE integration attractive is how it delegates the geometric
computations of analysis operations (Tasks 1, 2, and 3) back to where they belong i.e., on the
solid model, by the solid modeler. Thus instead of translating the model to a new approximate
representation scheme (e.g., a de-featured mesh or voxel map of fixed granularity) and trying to
preserve geometric properties in this lossy translation, the geometric information are queried on-
demand to an adequate granularity.

59

Examples and Interoperability Problems. Although commercial strength implementations of
this kind (e.g., [21, 20]) are not as widespread as those of Use-Cases #2.2 and 2.4, many existing
meshless/meshfree analysis methods (e.g., immersed boundary methods [53, 46, 50], radial-basis
point cloud methods [47, 38], etc.) can in principle be encapsulated in a functional form to emulate
a query-based integration scenario.

The defining characteristic of a query-based approach is that every geometric computation for
the purpose of physical analysis in B is supported by a finite collection of queries asked from A
(sequentially or in parallel). Ideally, B need not have an exploit global representation of geometry
and should query everything in a local and lazy fashion.

In query-based analysis, the basis functions have inevitably non-conforming supports due to the
separation of concerns. Omne way to enforce Dirichlet boundary conditions (Task 2) is to modify
the basis functions by ‘enrichment’ functions; for instance, the distance function or a smoothed
distance-like field whose isolevel set conforms to the geometric model. Since this information is
not available explicitly, B obtains it implicitly by querying A for the distance to the boundary at
a finite number of points. On the other hand, volume integral computations (Task 3 (a)) over
partially overlapped domains can be performed by multiplying the integrands with the domain’s
indicator (i.e., characteristic or Heaviside) function. This implicit adaptation to the geometric model
is supported by membership (i.e., inclusion: inside/outside) queries against A. Different sampling
policies can be used; for instance, B can sample the query points B and bounce them against A
viewed as a ‘black box’ that responds to batch membership queries, or it can request A to carefully
select quadrature points for better accuracy. Similar compositions of queries are possible for surface
integral computations (Task 3 (b)),?? needed to enforce Neumann boundary conditions.

There are more elaborate alternative methods for both integration and enrichment of basis func-
tions, some of which are more popular and effective than the simple ones illustrated here. The point
of this discussion is that query-based approaches implicitly reference the geometry by local queries,
without ever producing a complete explicit picture. The minimal requirements are membership and
distance queries, while other queries can help achieve better performance or accuracy.

Most physical analysis problems can be composed from a finite number of membership and dis-
tance queries, which are supported by most CAD systems. The CAE system can thus delegate fun-
damental geometric computations to the CAD system, while focusing its attention and specialization
on performing task-specific computations on the answers to those queries—in this case integration,
setting up and solving systems of linear equations, etc. In general, the key to the success of query-
based approaches is to formulate the interfaces in terms of queries that are consistently interpreted
by both systems with respect to a common external reference. It is best to keep the interface as
small as possible, and queries as simple as possible, to facilitate agreements on semantics.?°

In a query-based approach, the interoperability map is implicit. The correspondence problem is
solved by setting up the queries and restating the standard analysis operations (Tasks 1, 2, and 3)
purely in terms of a composition of responses to a finite collection of queries. The surrogate shape
properties are automatically preserved (by design) because the property function is computed by
the same party that contains the geometric data (i.e., the CAD system).?! As such, the approach
provides a priori verification for free, only with respect to surrogate shape properties, but requires a
posterior verification with respect to behavioral aspects.

29 A practical compromise is to use a surface mesh to specify boundary conditions (Task 1 (a)) and discretize surface
integrals over the polygonal (e.g., triangular or quadrilateral) elements (Task 3 (b)). 2D meshing is not as much of
a bottleneck as 3D meshing, so its substitution with pointwise queries is less advantageous. This is an example of a
combined data-centric and query-based method to achieve the best of both worlds.

30Otherwise, every data exchange can be viewed (in principle) as a large query, blurring the boundary between
data-centric and query-based approaches.

31Mathematically, unlike the other use-cases in which a posterior verification amounts to checking if ug = (#aonas)
(i.e., whether the triangular diagram in Fig. 17 commutes), in this case the CAE system’s geometric property functions
are defined as the composition pg := (ua o mag) in the first place.

60

Summary of CAD-CAE Integration Scenarios. Solving the weak form of initial/boundary
value problems reduces to a linear system of equations that is assembled from a knowledge of
initial /boundary conditions and integral computations over specified subsets of a geometric domain.
As such, the CAD-CAE integration relies on interoperability of shapes and fields supported by them
(describing physical behavior), whose models are unified by implicit description of shapes as fields
such as indicator or distance functions.?? However, model-based interchangeability is even more
challenging in this case than that of shapes alone. Property-based interchangeability, on the other
hand, is achievable by focusing on properties that matter to predict physical behavior.

Most existing computational physics solvers are broadly categorized into mesh-based and mesh-
free methods, which highlights the fundamental difference between how they address these inter-
operability tasks. Polyhedral mesh generation is among the common approaches to constructing
approximately conforming 3D (tetrahedral or hexahedral) cells to support the basis functions. The
faces of the cells that conform to the boundary provide a straightforward means to assign and en-
force boundary conditions (Tasks 1 (a) and 2). The volume and surface integrations (Tasks 3 (a, b))
are also reduced to those of polyhedral and polygonal domains, fully overlapped with the geometric
model’s interior and boundary, for which quadrature rules are well-established. However, accurate
and high-quality meshing is difficult to automate. Most meshing algorithms come with no guaran-
tees, and industrial workflows often depend on costly manual mesh simplification (e.g., de-featuring)
and/or arbitrary heuristics for mesh healing/repair solutions. On the other hand, mesh-free methods
circumnavigate these challenges by decoupling the geometric model from the analysis basis. How-
ever, they have to deal with locally incorporating the geometric information to quantify its effects on
the integrals computed over the intersection regions within partially overlapped supports. Therefore,
while mesh-based analysis fits better into a data-centric setting (i.e., geometric model passed “over
the wall”), meshfree analysis lends itself better to a query-based setting with interactive and local
streaming of geometric information on-demand.

32Every shape (i.e., set of points in 3D) can be implicitly described by a sub-/super-level set of a real-valued scalar
field. The most useful such fields are the binary indicator function (useful for integration) and signed distance function
(useful for enrichment).

61

4.3 CAD-CAM Integration Properties

For the purpose of this discussion, we assume that the CAM system’s task is to convert the geo-
metric specifications modeled in the CAD system to an ordered sequence of manufacturing actions.
Generally speaking, the CAM analysis

e accepts the CAD model, which usually includes descriptions of shape (geometry and topology),
material properties, and assembly relationships;

e accepts the dimensioning and tolerancing (e.g., GD&T) specifications, typically annotated on
the CAD model’s interfaces for fit/assembly; and

e computes a process plan for a set of AM/SM actions that lead to the fabrication of the part’s
nominal shape, respecting the tolerance specs.

We restrict our attention to additive and subtractive (AM/SM) process planning, in which the tasks
are usually achieved as follows:

1. Assume that the material deposition or removal actions are modeled by sweeping a process-
specific class of 3D shapes (e.g., nozzle/tool profile) along a process-specific class of rigid
motions that characterize the machine’s degrees of freedom (DOF). The swept region charac-
terizes the interior (for AM) or exterior (for SM) of the action’s geometric effects.

2. The manufacturing processes are broken down into manageable pieces that represent discrete
manufacturing actions in such a way that there exists one or more process plans, defined as
ordered sequences of those actions, that would sweep the entire internal (for AM) or external
(for SM) space of the nominal geometric model and satisfy its tolerance specs.

3. If multiple plans exist, choose a subset of them that minimizes some cost function; for instance,
in terms of machine hour-rates, tooling cost, material cost, and probability of failure.

Thus, in addition to the usual CAD tasks, a CAM system must support the following tasks. Each
task’s successful completion require preserving certain properties, discussed below:

e Task 1 (a): Associate prescribed dimensioning and tolerancing specs to portions of the CAD
model’s boundary, along with other constraints pertaining to surface quality.

— Property: (Portions of) the CAD model’s boundary and attributes prescribed over them.

— Property-based Interchangeability: Subsets of the boundary (e.g., surface patches,
and in some cases curve segments and points) that are decorated in the CAD model with
annotations pertaining to manufacturing qualification must match with specifications of
the process planning in terms of dimensioning and tolerancing constraints to be enforced.

e Task 1 (b): Associate prescribed internal/external regions of the CAD model with material
properties and spatial process parameters pertaining to material deposition/removal rates,
temperature, and so forth.

— Property: (Portions of) the CAD model’s internal or external regions and attributes
prescribed over them.

— Property-based Interchangeability: Subsets of the interior/exterior (e.g., volumetric
cells, and in some cases lower-dimensional elements) that are decorated in the CAD model
with annotations pertaining to manufacturing qualifications must match with specifica-
tions of the process planning in terms of material properties (e.g., gradation, hardness,
and so on) and process parameters (e.g., deposition rate, laser power, and so on).

62

The assignment of these specifications to subsets of the boundary or interior/exterior need not
depend on any objective or general-purpose notion of independent manufacturing features, though
feature-based decomposition appear to be the most intuitive. With the current state of technology,
surface specifications such as tolerance and roughness datums are usually met by finishing processes
in machining, while volumetric properties such as material gradation usually pertain to additive
processes in printing, but they do not have to be.

e Task 2: Enforce manufacturing specifications, including nominal geometry of the CAD model,
dimensioning and tolerancing, and material properties.

— Property: Manufacturability with a given set of manufacturing capabilities.

— Property-based Interchangeability: There must exist one or more sequence(s) of
manufacturing actions that produce the target part’s nominal shape and pass its GD&T
specifications. Each action is emulated by sweeping portions of the interior (for AM) or
exterior (for SM) of the target part by the shapes defined by available machine instruments
(e.g., nozzle/tool profiles) along motions restricted by machine DOFs.

e Task 3 (a): Find one or more (or enumerate all) process plans, i.e., sequences of manufacturing
actions whose execution leads to a part that satisfies the specifications.

— Property: Geometric and dimensioning specifications and material properties.

— Property-based Interchangeability: The simulated outcome of execution of the se-
quence of manufacturing actions in the planned order, modeled procedurally in terms of
set operations (e.g., union for AM and subtraction/intersection for SM) applied to the
swept regions per manufacturing action must satisfy the specifications.

e Task 3 (b): Find one or more near-optimal process plans that minimize a cost function,
subject to the above constraints (single or multi-objective optimization).

— Property: Feasibility and optimality of the process plans.

— Property-based Interchangeability: The cost of manufacturing, which depends on
the sequence of actions, should be minimized while satisfying the design specifications
and manufacturing constraints. The cost function is usually proportional to the volume
of deposited or removed material in each action, where the proportionality coefficients
for each action depend on machine hour-rates, material deposition or removal rates, tool
utilization and wear, price of materials, and so forth.

Different feasible process plans are often found, leading to the same nominal geometry and other
design specifications (e.g., GD&T and material properties). Their manufacturing cost varies; for
instance, a process plan that uses combined AM+SM actions may potentially be offer more efficient
fabrication than a pure AM or pure SM sequence. At a lower level, a machining process plan that
removes larger volumes using a heavy-duty tool (i.e., ‘roughing’) to obtain a near-net shape before
shaving it down to obtain the desired tolerances (i.e., ‘finishing’) is much more time-/cost-effective
than a process plan that uses a single tool for both. All of these process plans may be interchangeable
with respect to the design specifications, but not with respect to cost requirements.

e Task 4: Perform low-level process planning, such as tool path generation within each manu-
facturing action its and translation to machine instructions.
— Property: Realizability (at least in the limit) of the near-optimal process plan

— Property-based Interchangeability: There exists one or more low-level realizations
of the high-level plans, with sufficiently high-resolution discretization (e.g., to G-code),
sufficiently dense space-filling tool path generation, and so forth.

63

CAD System (A) CAM System (B)

CAD-CAM Interoperability Map

VERIFICATION

“does it commute?”

Property Property
function function

Space of surrogate properties

Combinatorial | Topological | Geometric | Differential | Integral

(Persumably) implies
Space of de facto properties

Figure 26: CAD-CAM interoperability verified up to invariance of surrogate properties.

To be clear, CAD-CAM integration may involve other tasks, such as in situ simulation of melting
and mixing for 3D printing or chip formation for machining, but we will limit our discussion in this
document to interoperability with respect to the above tasks and properties only.

Depending on the mechanism for CAD-CAM interoperability and each system’s representation
schemes, these tasks may be challenging to varying degrees. For example, Task 1 (a) is trivial in any
CAM system that can accesses GD&T datums on the solid model’s boundaries, assuming that the
CAD system internally supports dimensioning and tolerancing. Task 3 (a) becomes easier if the CAD
semantics (e.g., feature-trees) provide explicit information about independent features (e.g., holes,
pockets, slots, and so on) with specialized tooling. Task 4 requires generating low-level machine
code per action, which is easier if the actions are based on noninteracting features extracted from
the CAD system. Tasks 2 and 3 are more challenging in general.

4.4 Use-Case Schema #3: CAD-CAM Integration

By analogy to the shape data exchange scenarios in Section 3 (Use-Case Schema #1), here we present
3 out of 6 conceivable scenarios for CAD-CAM integration:

1. Use-Case #3.2: standardizes on a common basis to represent both geometric shapes and
manufacturing motions. It is the most obvious way to preserve shape properties. However,
since process planning requires supporting complex shape and motion interactions, the rep-
resentations that provide sufficient utility for those process-specific computations are fairly
limited for fine-tuned CAD modeling.

2. Use-Case #2.5: standardizes on a symbolic language (feature-based or otherwise) that maps
to geometric models as well as manufacturing processes. For scenarios in which the sequence
of manufacturing actions can be inferred from the CAD model semantics and design intent,
procedural integration provides a straightforward solution. When such semantics are not
available, the manufacturing actions can be identified by feature recognition, whose drawback
is the lack of universal semantics. Alternatively, the systems can converse using the language
of Boolean logic at a bare minimum.

3. Use-Case #3.6: relies on complete delegation of geometric computations required by the
CAM system to the CAD system. The global geometric information are never explicitly
represented in the CAM system—or minimized to a bare minimum. Rather, the information
is queried locally and lazily when needed by the aforementioned analysis tasks.

64

4.4.1 Use-Case #3.2: Standardizing on Representations (with Different Algorithms)

Basic Idea/Setup. The setup is similar to those of Use-Cases #1.1 or 1.2. The CAD system
(i.e., A) and the CAM system (i.e., B) use the same representations (i.e., Ma = Mg), or at least the
same core data structures, but differ in the algorithms (i.e., Fo # Fg)—mnamely, Fa is a collection
of algorithms that support geometric modeling operations such as Boolean operations, free-form
surface editions, and so on, while Fg is a collection of algorithms to support manufacturing planning,
including accessibility analysis, tool-path planning, and so on.

Examples and Interoperability Problems. A number of commercial strength PLM packages
come with integrated CAD-CAM solutions for machining (e.g., turning and milling), 3D printing,
EDM wire-cut, sheet metal stamping, and other processes. Some offer turnkey CAD-CAM solutions
in a single environment, while others offer plug-ins (e.g., Mastercam for SolidWorks). Many of these
solutions directly use the CAD representation (e.g., B-reps) to generate low-level machining actions
such as offset tool path generation (Task 4). However, high-level spatial planning (Tasks 2 and 3)
often relies on user input to identify individual features (e.g., pockets) or make cost-effective choices
pertaining to fixturing and toolset.

Volumetric enumerations such as voxels are popular as a common basis for spatial planning.
The main reason is the ease with which configuration space (i.e., C—space) computations and mor-
phological operations such as Minkowski operations, dilation/erosion (i.e., sweep/unsweep), which
are fundamental to spatial reasoning for simulating both AM/SM actions (Task 2), can be imple-
mented on voxels using methods from image and signal processing. Further, Boolean expressions
that simulate sequences of these basic actions (e.g., union for AM and subtraction/intersection for
SM) (Task 3) reduce to fast bitwise operations on voxels. Both classes of operations can be com-
puted rapidly by massive parallelization (e.g., on GPUs). However, voxel representations of swept
volumes poorly approximate smooth surfaces resulting from contour-machining actions. A bigger
issue is that axis-aligned voxelizations are not closed under rigid rotations. Although coordinate
axis-aligned grids of voxels correspond to discrete subgroup of rigid motions for digitization of sim-
ple classes of sweeps—for instance, translational sweeps used in 3—axis milling or revolute/helicoidal
sweeps for turning—general rigid motions for high-axis multi-task CNC machines cannot be digi-
tized.

Another example is using stacks of 2D slices to represent 3D printed parts. As with voxel maps,
sliced geometry supports very limited modeling activities such as Boolean and Minkowski operations,
but not free-form surface editions. Therefore, it makes a poor CAD representation, despite being
ideal for integration with 3D printing software and low-level planning activities such as infill structure
and support structure generation for a stack of slices or contour generation per slice (Task 4).

Since both CAD and CAM use the same geometric basis in this use-case scenario, shape-related
properties remain invariant with the representation. The correspondence and characterization be-
come trivial, and verification is guaranteed a priori. Of course, the elimination of the interoperability
problem as such comes at an additional cost of case-specific challenges with making the same repre-
sentation work for both CAD and CAM applications.

65

4.4.2 Use-Case #3.5: Generic Model Integration (Procedural or Declarative Recipes)

Basic Idea/Setup. The setup is similar to those of Use-Cases #1.5. Unlike the previous use-case,
the CAD system (i.e., A) and the CAM system (i.e., B) use dramatically different representations
(i.e., Mp # Mp) and algorithms (i.e., Fa # Fg).

The CAD representation is first exported to a largely symbolic procedural recipe, which can be
interpreted by the CAM system for process planning. As with Use-Case #1.5, the generic model may
be feature-based (e.g., generative) or constraint-based (e.g., declarative), and may include algebraic
operations, global or local modifications, parametric or variational constraints, etc.

Examples and Interoperability Problems. CSG trees are prominent examples for this use-
case,? as long as their primitives capture basic manufacturing actions that respect machine DOFs
and minimum feature size constraints. For example, uniaxial turning is restricted to axisymmetric
primitives whose external space is sweepable by the available tool inserts. 3—axis milling contributes
primitives that are translational sweeps to cover the part’s external space at a given fixture configu-
ration. 3D printing contributes primitives that are translational sweeps to cover the part’s internal
space at a given build orientation. For a given collection of primitives, Boolean operations model
discrete material deposition or removal actions (Task 3), while discrete rigid motions model re-
fixturing. Importantly, Boolean logic provides the basis to decouple spatial reasoning, encapsulated
by the generation of primitives by geometric modeler, from combinatorial search, which is the lan-
guage of AI planning/search embedded into the process planner. The challenge is that modeling is
almost never based on the same primitives that represent unit manufacturing steps, which means
that the CAD representation needs to be converted to the procedural representation for CAM.

Feature-based representations are quite popular for manufacturing process planning.?* However,
feature-based methods fail frequently in the presence of complex interacting features [70]. New levels
challenges are introduced due to tolerance specifications. Particularly, datum features need to be
assigned correctly and tolerance stack-ups should be accounted for, using GD&T standards, which
are difficult to automate for complex features.

On the other hand, there are feature-free methods that compute manufacturing primitives in
terms of maximal depositable/removable regions for a fixed build/fixture configuration and a given
nozzle/tool profile, without colliding with the surrounding obstacles. These regions are not tied
to any specific feature semantics, and can be computed using fairly universal definitions based on
mathematical morphology (e.g., opening/closing operations). The Minkowski operations from which
these morphological constructions are derived can be added to the CSG semantics alongside Boolean
operations, to form the basis for effective “seamless” integration of CAD and CAM systems.

This scenario assumes that the design construction in A can be exported into a procedural
recipe (e.g., CSG trees) in terms of a finite number of basic manufacturing actions, and B can
reproduce them for manufacturability analysis (Task 2), manufacturing planning (Task 3), and tool-
path generation (Task 4). The key is to make sure that both systems agree on the representation
of primitives and semantics of operations applied to them. In the case of CSG trees based on
Boolean operations with possible extensions to cover Minkowski operations, diation/erosion (i.e.,
sweep/unsweep), and opening/closing, the common semantics are provided by mathematical mor-
phology. The challenge remains to represent the geometric primitives consistently, such that the

331n fact, developing computational foundations to support CAD-CAM (particularly for NC machining back then)
was the very motivation for emergence of CSG as a representation of choice for solid modeling in the 1970s [72].

34The mapping from the CAD model to a feature-based recipe can use methods ranging from convex volume
decomposition [52, 35] and graph-based heuristics [32, 74] to rule-based pattern recognition [71, 6].

66

as-designed and as-manufactured models are interchangeable with respect to manufacturing specifi-
cations (e.g., GD&T).

The difficulty with feature-based methods is the lack of a common standard for feature semantics
on which to base the properties for interchangeability. There is no consensus on a correct definition
of ‘features’ across design and manufacturing literature, and most ad hoc definitions restrict one
to taxonomies of narrow usability. But once the semantics are agreed-upon for manufacturing
operations, the primitives can be represented by both systems in simple parametric terms and the
exchange becomes largely symbolic. Feature-free methods do not suffer from arbitrariness of feature
semantics, as morphological notions such as maximal depositable/removal regions are well-defined
mathematically. However, interchangeable representation of primitives is more difficult in this case,
because complex C—space morphological operations lend themselves better to sampling (e.g., point
clouds or voxels) than CAD-friendly representations (e.g., parametric B-reps). Below, we formalize
these in the language of interoperability:

The correspondence problem is to establish a decomposition of the CAD model to atomic building
blocks based on which a procedural recipe (feature-based or otherwise) can be constructed and used
by the CAM system for manufacturability analysis (Task 2), manufacturing planning (Task 3), and
tool-path generation (Task 4). The evaluation of the as-planned model must be interchangeable
with the original as-designed model with respect to manufacturing specifications (e.g., GD&T), con-
sidering both high-level sequence of actions and low-level representations (e.g., G-code), as well as
tolerance stack-ups. For feature-based methods, the interoperability map comprises of feature recog-
nition and rule-based construction of ontologies. For feature-free methods, it relies on a combination
of C—space morphological operations.

The characterization problem is to examine a combinatorial space of procedural recipes (feature-
based or otherwise), on which a manufacturing process planner operates, and identify the invariant
properties. For dimensioning and tolerancing, this is to check what subset of GD&T specifications
are satisfiable by one or more process plans constructed using the discrete space of atomic building
blocks. While it is possible to reason about some nominal geometric properties prior to detailed
planning simulation, it is harder to do so for tolerance requirements and material properties. For
characterizing those properties, viable process plans may need to be tested individually. In a sense,
this require making informed speculations on the significant properties, forming hypotheses, and
testing them iteratively in a verification setting by trial-and-error.

4.4.3 Use-Case #3.6: Query-Based Integration (Standardizing on Functional Queries)

Basic Idea/Setup. The idea is similar to that of Use-Case #1.6. As before, the CAD system
(i.e., A) and the CAM system (i.e., B) use dramatically different representations (i.e., Ma # Mg)
and algorithms (i.e., Fo # Fg). However, in this case B tries to minimize its explicit representation
of geometric information, and to refer to the original CAD model when such information are needed
for fabrication planning.

What makes query-based CAD-CAM integration attractive is how it delegates the geometric
computations of planning operations (Tasks 1, 2, and 3) back to where they belong i.e., on the
solid model, by the solid modeler. Thus instead of translating the model to a new approximate
representation scheme (e.g., feature-based or rule-based ontologies or voxel maps) and trying to
preserve geometric properties in this lossy translation, the geometric information are queried on-
demand to an adequate granularity.

67

Examples and Interoperability Problems. Although commercial strength implementations of
this kind (e.g., [49, 48]) are not as widespread as those of Use-Cases #3.1 and 3.2, many existing im-
plicit/analytic computing methods (e.g., FFT-based C—space computing [33, 16], measure-theoretic
morphology [42, 43, 8], etc.) can in principle be encapsulated in a functional form to emulate a
query-based integration scenario.

The defining characteristic of a query-based approach is that every geometric computation for
the purpose of physical analysis in B is supported by a finite collection of queries asked from A
(sequentially or in parallel). Ideally, B need not have an exploit global representation of geometry
and should query everything in a local and lazy fashion.

The separation of concerns to geometric and spatial reasoning (handled by A) and logical and
combinatorial reasoning (handled by B) has tremendous advantages for hybrid AM/SM process
planning. The AI planning/search literature has myriad techniques to offer for manipulating finite
logical expressions, converting them from one standard form to another, and find optimal paths
in combinatorial state spaces by B. Geometric reasoning, on the other hand, deals with infinite
(often continuum) Boolean operations (e.g., sweeps) best dealt with by A. Once the decision is
made to break the manufacturing processes into discrete pieces, each encapsulating swept volumes
per AM/SM action, A and B can interoperate using the common language of Boolean logic. Impor-
tantly, what makes this scenario different than the others is that B manipulates Boolean expressions
symbolically, while every evaluation of union and intersection operations are delegated to A. Mathe-
matically, Boolean union/intersection on geometric pointsets correspond to disjunction/conjunction
on their indicator functions. The algorithmic implication is that B can sample the manufactur-
ing workspace to an arbitrary resolution and evaluate Boolean formulae in terms of manufacturing
primitive locally by membership queries to A.

On the other hand, the individual manufacturing primitives themselves can be evaluated in at
least two different ways. It is either performed by internal algorithms in A if its geometric modeling
engine supports Minkowski operations, dilation/erosion (i.e., sweep/unsweep), opening/closing, and
so on. If A does not support morphological operations, B can locally evaluate them in a query-
based fashion, as well. Mathematically, Minkowski operations on geometric pointsets correspond
to convolutions on their indicator functions. The algorithmic implication is that B can sample the
part and tool geometrise to an arbitrary resolution and evaluate convolutions by integrating over
membership queries to A. For morphological operations that involve lower-dimensional motions
(e.g., sweeps along tool trajectories) a similar formulation is possible in terms of distance queries.??
Moreover, convolutions can be converted to simple pointwise multiplications in the Fourier domain
as a result of the convolution theorem, implemented rapidly and in parallel (e.g., on GPUs) using
fast Fourier transforms (FFT). In general, the key to the success of query-based approaches is to
formulate the interfaces in terms of queries that are consistently interpreted by both systems with
respect to a common external reference. It is best to keep the interface as small as possible, and
queries as simple as possible, to facilitate agreements on semantics.

In a query-based approach, the interoperability map is implicit. The correspondence problem is
solved by setting up the queries and restating the standard planning operations (Tasks 1, 2, and 3)
purely in terms of a composition of responses to a finite collection of queries. The surrogate shape
properties are automatically preserved (by design) because the property function is computed by
the same party that contains the geometric data (i.e., the CAD system).?S As such, the approach
provides a priori verification for free, only with respect to surrogate shape properties, but requires a
posterior verification with respect to behavioral aspects.

35An alternative formulation of indicator functions for lower-dimensional surfaces embedded in higher-dimensional
measure spaces is given by composition of Dirac delta functions (approximately implemented by nascent delta func-
tions, e.g., Gaussian) with distance functions [7].

36Mathematically, unlike the other use-cases in which a posterior verification amounts to checking if ug = (maonas)
(i.e., whether the triangular diagram in Fig. 17 commutes), in this case the CAE system’s geometric property functions
are defined as the composition pg := (ua ©mag) in the first place.

68

Summary of CAD-CAM Integration Scenarios. At some level of abstraction, AM/SM pro-
cess planning is formulated breaks down into interactions of shapes and motions, such as applying
motions to shapes, applying motions to motions, computing collision-free motions for shapes, and
so forth. The CAD systems operate in the shape space, while CAM systems deal with both shapes
and motions. As such, the CAD-CAM integration relies on interoperability of shapes and motions
(describing manufacturing processes), whose models are unified by embedding the 3D Euclidean
space into the 6D configuration space.?” However, model-based interchangeability is even more
challenging in this case than that of shapes alone. Property-based interchangeability, on the other
hand, is achievable by focusing on properties that matter to obtain manufacturing plans.

The majority of the existing process planners rely on feature recognition [25, 61, 68, 24, 26] which
face difficulties in the presence of complex interacting features [70]. For such models, an interoper-
ability map that assigns manufacturing actions to individual features of the CAD model is not always
well-defined. There are few feature-free alternative methods [49] that rely on principles of motion
planning [37] and C—space modeling [41]. Although C—space modeling defines actions irrespective of
a subjective feature taxonomy, it creates new interoperability problems between shapes and motions.
Although C—space modeling elegantly unifies models of shapes and motions,their representations do
not easily interoperate. Explicit representations of C—space obstacles—which are fundamental to
computing the allowable motions of manufacturing instruments to avoid undesirable collisions with
the surrounding components (e.g., fixtures)—turns out to computationally prohibitive. Hence, mo-
tions are typically represented by sampling, leading to discrete approximations of the swept volumes
that model the manufacturing actions. Ensuring that the cumulative effect of the actions is inter-
changeable with the CAD model (Tasks 2 and 3 (a)) with respect to tolerance specs is a whole new
challenge. Such challenges are best addressed in a query-based setup.

37Every shape (i-e., set of points in 3D) is in one-to-one correspondence to a motion (i.e., set of pure 3D translations),
which can be embedded in the obvious way in the 6D group of general rigid motions (i.e., combinations of 3D
translations and 3D rotations) [43].

69

4.5 Shape-Material Integration Scenarios

Other types of CAD-CAx integrations follow the patterns and contain ingredients similar to those we
identified in CAD-CAE and CAD-CAM interoperability scenarios. In all cases, the key tasks include:
identifying and prescribing application X-specific invariant properties, defining property functions
and constructing interoperability maps, and finally validating the commutativity of the diagram in
Fig. 18—or as we dubbed earlier, correspondence, characterization, and verification. Specific use case
scenarios depend on the particular representational and algorithmic choices, but generally correspond
to one of the six generic CAD-CAD exchange cases described in Section 3, due to the central role
played by shape information in all such integrations. Fundamentally, each new CAx integration
is characterized by a set of new invariant properties (often derived from or associated with shape
properties) that are required to support application X.

We conclude this section with a brief discussion of a particularly important example of CAD-
CAx integration, where X refers broadly to material modeling. Shape-material integration is taking
the center stage in numerous emerging areas ranging from additive manufacturing (composites, 3D
printing), to biomedical, geological, and material science applications. This section is not meant to
provide a definitive treatment of shape-material integration issues; in contrast to very mature CAD-
CAE and CAD-CAM integrations, this area is still in its infancy and is subject of active research.
Our main goal is to illustrate how application of the property-based approach to interoperability
to shape-material modeling yields useful insights into challenges and applicable interoperability
scenarios.

4.5.1 Heterogeneous Shape-Material Modeling

The classical solid modeling assumes that the solid’s interior is homogeneous and does not need to
be modeled explicitly. Because of this assumption, classical solid modeling systems cannot support
modeling and design of artifacts with heterogeneous material properties that are now commonly
produced using additive manufacturing (3D printing, as well as composites) or other processes that
enable manufacturing of functionally graded and cellular materials. Modeling and representation of
such material structures necessitated development of a new area commonly dubbed “heterogeneous
object modeling”[51, 36]. Conceptually, material properties are now viewed as fields (scalar, vector,
or tensor) that are defined and vary over the usual solid model[28]. Such fields may be discrete,
continuous, smooth, or defined in a piecewise manner. Typical computational tasks required to
support heterogeneous shape-material modeling are construction and evaluation of the material
fields over a given solid domain, as well as construction of solid domains based on desired material
properties.

A closer examination of the tasks in heterogeneous shape-material modeling reveals that it is a
special case of CAD-CAE integration where the objective of the boundary value problem is solve for
a material field. Typically, material property values and derivatives are prescribed over portions of
a solid (material features), and the rest of the field is constructed by a combination of constructive,
interpolation, or constraint satisfaction methods subject to the prescribed boundary conditions[10].
This observation implies that heterogeneous shape-material modeling is governed by the properties,
interoperability, and interchangeability issues similar to those we discussed in Section 4.1. All
interoperability scenarios described in Section 4.2 are also directly applicable and most have already
been published in one form or another.

4.5.2 Multi-Scale Shape-Material Modeling

Modeling of material structures at multiple size scales can be viewed as an interoperability problem
between a collection of heterogeneous shape-material systems, with each system modeling the same
physical object at a given scale[40]. As we discussed above, each (single-scale, heterogeneous) shape-
material system is an instance of CAD-CAE integration. The additional challenges in multi-scale

70

LENGTH SCALE / TIME SCALE
nm, NS pm, s mm, ms

L discrete . macroscopic
| tt;ton;lstli dislocation subgrain g;l?:gﬁiltlmz material
attice structure ; ;

dynamics structures behavior

N A\

NS N\ NS N\

Figure 27: Multi-scale material modeling can be viewed as an interoperability problem between the
scales. Figure courtesy of Dennis M. Kochmann (modified from www.kochmann.caltech.edu).

modeling arise because models, representations, and integration approaches could vary widely at
each scale, but must be interchangeable because they correspond to the same physical object. For
example, the same object may be viewed as a homogenized solid with spatially-varying structural
and thermal properties, or as a network of parameterized unit cells, or as a collection of slices
created to manufacture it using an additive manufacturing process, or polycrystaline grain structure
produced by this process, and so on.

Thus maintaining interchangeable representations using different algorithms—dealing with differ-
ent levels of detail—at two or more scales requires a precise specification of the shape and material
invariants. Each scale comes with its own property functions, computing (surrogate or de facto)
properties from its own representations and algorithms. At coarser size scales, effective material
properties emerge as bulk behavior, modeled and represented via empirically or computationally
homogenized constitutive relations over finite size neighborhoods, where structural randomness at
lower scales is averaged out. At finer size scales, the structural details are modeled and represented
explicitly. The physical behavior emerges from localized simulation at a finer level of granularity.
The property functions are rich in local structural information, and governing physical laws may
be different. Each scale is mapped to its higher/lower scale in the hierarchy via interoperability
maps—e.g., ‘homogenization’ of microstructure and its nonunique inverse—that must preserve the
specified properties (Fig. 27). In general, a number of difficult interoperability problems must be
solved, usually in application-specific domains. These include:

71

http://www.kochmann.caltech.edu/

e how to choose the proper sizes, locations, and shapes of neighborhoods at each size scale;

e how to formulate interchangeability of shape-material models over a collection of neighbor-
hoods (that may include boundaries, steep property gradients, and multi-material interfaces)
between any two scales;

e how to quantify the impact of the neighborhood size on the coarse-grain model for nonhomo-
geneous and anisotropic, and spatially varying material properties; and

e what are the proper mechanisms to systematically map the conservation, constitutive, and
compatibility laws and B/I conditions from one scale to another.

All of the above challenges can be posed as either characterization problems, aiming to identify
the invariants across the scales, or as correspondence problems, seeking to identify the associations
between the shape-material models on neighborhoods at different scales. Tackling each problem
requires extensive domain knowledge. We also note that interoperability maps across multiple scales
are fundamentally different from those used in CAD-CAD interoperability scenarios in that inter-
changeability of models at different scales depends on non-geometric, physical, and material prop-
erties. In particular, use cases 1.1 (single system) and 1.2 (standard representation) are simply not
applicable, while use cases 1.3 (System to System Translation) and 1.4 (Neutral Formats) are not
particularly useful, due to rich variety of models and representations used at different scales. The re-
maining two scenarios: 1.5 (Generic Model Exchange) and 1.6 (Query-based exchange) are essential
mechanisms for interoperability in multi-scale modeling. In particular, procedural representations
are probably the most common methods for constructing the interoperability maps and solving the
correspondence problem, while query-based methods are essential mechanisms for specifying and
enforcing the equivalent properties (chracterization) accross multiple scales.

5 Conclusions

The chimera of ‘model-based’ interoperability results from the assumption that different representa-
tions and algorithms, authored in different systems, can be converted to each other by virtue of the
identical mathematical models and functions they both intend to implement. This assumption was
critical to establishing common theoretical foundations of solid modeling and creating limited (but
critical) data exchange and interoperability standards in early days of computer-aided technologies.
However the last several decades witnessed explosive growth in modeling techniques, representations,
applications, and sophisticated systems with widely varying theoretical assumptions and computa-
tional limitations. Such systems almost never implement the exact same semantics, thus are not
model-based interchangeable or interoperable. We proposed an alternative paradigm of ‘property-
based’ interoperability, in which interchangeability is established in terms of the specific properties
that are invariant in spite of implementation differences.

[Standardize on mathematically well-defined references for properties, not file formats!]

Two systems are interchangeable—only up to a certain granularity implied by the choice of
properties—if they both implement equivalence classes of representations and algorithms. Each
system provides property functions that map its internal elements into a common type (i.e., space
of properties). The interoperability amounts to specifying a concrete mapping between the system
that preserves the properties, i.e., commutes with the system-specific property functions. Obtaining
this map from a specified set of properties, characterizing the invariant properties for a given map,
and verifying the commutativity were respectively identified as correspondence, characterization, and

72

verification problems. Many unsolved computational engineering tasks and their integration into
end-to-end systems can be formulated in terms of these problems.

The second important observation of this article is the following: although the properties that
one deals with in design and manufacturing typically range from shape (geometry and topology) to
material, physical, and behavioral properties, the shape properties typically serve as a ‘surrogate’
to qualify interchangeability—which is sometimes the best that one can hope for. This is justified
by the fundamental role of geometry as a backbone to support other activities such as physical
analysis and manufacturing planning—ranging from the topological structure of the physical laws
and geometric shape of the boundary conditions in CAE to the kinematics of additive and subtractive
manufacturing processes in CAM, probabilistic structural properties of materials, etc. However, in
many instances, geometric interchangeability does not necessarily imply interchangeability with
respect to other properties, in which case verifying the latter’s invariance requires separate careful
treatment.

While the focus of this report has been on interoperability of systems and applications with
non-trivial geometric content, the property-based approach is broadly applicable to interoperability
of all systems, regardless of the specific nature of such properties. For instance, recent advances in
model-based systems engineering demand interoperability between variety system models described
in SySML, Modelica, bond graphs, and variety of other system modeling languages. While such
system models contain no geometric information, their interoperability may be formulated with
respect to topological, differential, algebraic and dynamic properties[73]. Interchangeability and
interoperability of such models with CAD systems or other types of CAE systems (e.g. FEA mod-
els) will require establishing invariance of other types of properties related to geometry, materials,
boundary /initial conditions, integral properties, response, and so on.

6 Acknowledgements

This project is supported by the Defense Advanced Research Projects Agency (DARPA) under
cooperative agreement HR0011-16-2-0042, and National Science Foundation grant CMMI-1547189.
The content does not necessarily reflect the position or the policy of the Government, and no official
endorsement should be inferred.

The authors are thankful to Saigopal Nelaturi from PARC, Andrew Taber from Intact Solutions,
Xingchen Liu from ICSI, and Randi Wang from UW-Madison, and Vaidyanathan Thiagarajan from
MathWorks for the discussions that contributed to the insights in this report.

The naming of commercial products is for exemplification only and does not imply recommenda-
tion over other products. The responsibility of any omissions or errors solely lies with the authors.

A A Recipe of Action Items for Interoperability

There are a few steps in setting up every interoperability scenario, along with a number of basic
rules summarized below:

1. Identify the boundaries of your computational systems (Section 2.1):

e What are the included subset of computational elements over which the systems are
expected to have (partial) interchangeability? Specify:

— computer representations (and their mathematical models); and/or
— computational algorithms (and their mathematical functions);

that should have interchangeable counterparts in both interoperating systems.

2. Determine the problem type based on knowns/unknowns (Section 2.3):

73

e Refer to Fig. 18: depending on whether the interoperability and/or the property functions
are known, pick one of the following problem types:

e For verification problems:

— identify the semantics of the property functions and the interoperability map (i.e.,
input/output types, conditions, etc.)—see the correspondence and characterization
processes below for details;

— develop theoretical foundations for proving, or experimental protocols for certifying,
if the three functions compose in such a way that the interoperability map preserves
all specified properties for all included computational elements, or at least, for a con-
clusive sample of the computational space—i.e., the output of the property functions
in both systems are identical, if their inputs are mapped to each other (in either
direction) via the interoperability map; and

— [optional:] define measures of interoperability success/failure for the cases when the
above condition does not hold—e.g., in terms of the frequency of its happening,
discrepancies in non-invariant properties (according to some metric), etc.

e For correspondence problems:
— define the properties with respect to which interchangeability of the computational
elements will be qualified;

— have each system provide a property function that computes a valid property—in
compliance with the common semantics—for each included computational element;

— implement an interoperability mapping (e.g., via data-centric, query-based, or a com-
bination of the two) that preserves the invariants; and

— having obtained both the property functions and the interoperability map, proceed
to the verification process above.
e For characterization problems:

— identify the interoperability map—i.e., a computational procedure by which the com-
putational elements of the sending system is (or at least, can be, in principle) mapped
to those of the receiving system, explicitly or implicitly;

— identify a maximal set of properties, or as large a set as theoretically and practically
feasible, which is left invariant by the mapping;

— have each system provide a property function that computes a valid property—in
compliance with the common semantics—for each included computational element;

— having obtained both the interoperability map and the property functions, proceed
to the verification process above.
e For innovation problems:

— try to convert the problem (or part of it) to correspondence or characterization:

— as soon as the property functions are fully or partially specified, one can proceed to
the correspondence process above;

— as soon as the interoperability map is fully or partially specified, one can proceed to
the characterization process above;

— complete the picture iteratively; and as soon as both the interoperability map and
the property functions are known, proceed to the verification process above.

3. For each problem, one should keep in mind the following rules:

e When specifying and documenting the properties and their meanings:

74

clearly specify (formally or informally) the common semantics for the properties in a
language that is accessible for both systems, or their developers, to interpret correctly
(automatically, semi-automatically, or manually);

try to leave as little assumptions, constraints, and semantics as possible open to each
system’s interpretation, or document the cases for which it is not possible.

appeal to externally addressable references with respect to which measurements (e.g.,
distance, size, angle, field value, etc.) can be made to define tolerance specifications
for error-prone numerical properties, to ensure transitive interchangeability;

distinguish between surrogate properties—which commonly pertain to the geometric
information backbone—and de facto properties, and document the assumptions that
lead to invariance of the former indicating that of the latter; and
be clear and explicit about the trade-offs of some properties at the expense of others,
according to which the granularity of interchangeability can be optimized against the
limitations (e.g., intrinsic incompatibilities between the systems).

e When setting up the property functions and interoperability maps:

for the input data of the property functions (including parameters), use only the
authoring system’s computational elements and/or elements that are externally ad-
dressable by both systems;

for the output data of the property functions (i.e., the properties), use only the
computational elements that are externally addressable by both systems (i.e., global
data types and structures);

for the inputs and outputs of the interoperability map, chose only from the compu-
tational elements of the sending and receiving systems, respectively, in addition to
global types (if needed, e.g., as input parameters); and

the verification simply amounts to showing that the diagram of the three functions
(Fig. 17) always commutes (i.e., for all included representations and algorithms).

75

References

(1]

2]

[5]

[6]

[7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

[15]

IEEE 610-1990. IEEE standard computer dictionary.
A compilation of IEEE standard computer glos-
saries, Institute of Electrical and Electronics Engi-
neers (IEEE), 1990.

ISO 10303. industrial automation systems and inte-
gration — part 42: Product data representation and
exchange. Technical report, International Organiza-
tion for Standardization (ISO), 1998.

ASME Y14.5-2009. dimensioning and tolerancing:
Engineering drawing and related documentation
practices. An international standard, American So-
ciety of Mechaninical Engineers (ASME), 2009.

ISO 286-1:2010. geometrical product specifications
(GPS) — ISO code system for tolerances on linear
sizes — part 1: Basis of tolerances, deviations and
fits. An international standard, International Orga-
nization for Standardization (ISO), 2010.

C. Armstrong, A. Bowyer, S. Cameron, J. Corney,
G. Jared, R. Martin, A. Middleditch, M. Sabin, and
J. Salmon. Djinn: A Geometric Interface for Solid
Modelling. Information Geometers, Ltd., Winch-
ester, UK, 2000.

B. Babic, N. Nesic, and Z. Miljkovic. A review of au-
tomated feature recognition with rule-based pattern
recognition. Computers in Industry, 59(4):321-337,
2008.

M. Behandish. Analytic Methods for Geometric
Modeling. PhD thesis, University of Connecticut,
2017. Ph.D. Dissertation.

M. Behandish and H. T. Ilies. Analytic methods
for geometric modeling via spherical decomposition.
Computer-Aided Design, 70:100-115, 2016. 2015
SIAM/ACM Joint Conference on Geometric Design
and Symposium on Solid and Physical Modeling
(GD/SPM’2015).

Rafael Bidarra. Validity Maintenance in Semantic
Feature Modeling. Ph.D. dissertation, 1999.

Arpan Biswas, Vadim Shapiro, and Igor Tsukanov.
Heterogeneous material modeling with distance
fields. Computer Aided Geometric Design,
21(3):215-242, 2004.

S. B. Brunnermeier and S. A. Martin. Interoperabil-
ity costs in the US automotive supply chain. Sup-
ply Chain Management: An International Journal,
7(2):71-82, 2002.

V. Capoyleas, X. Chen, and C. M. Hoffmann.
Generic naming in generative, constraint-based de-
sign. Computer-Aided Design, 28(1):17-26, 1996.

X. Chen and C. M. Hoffmann. On editability
of feature-based design. Computer-Aided Design,
27(12):905-914, 1995.

X. Chen and C. M. Hoffmann. Towards feature at-
tachment. Computer-Aided Design, 27(9):695-702,
1995.

W. R. Cook. On understanding data abstraction,
revisited. ACM SIGPLAN Notices, 44(10):557-572,
2009.

76

[16]

(17)

(18]

[19]

[20]

(21]

(22]

23]

24]

[25]

[26]

27]

(28]

29]

(30]

B. Curto, V. Moreno, and F. J. Blanco. A general
method for C-space evaluation and its application to
articulated robots. IEEE Transactions on Robotics
and Automation, 18(1):24-31, 2002.

P. J. Denning. Ubiquity symposium: ‘what is com-
putation?’. Ubiquity, 2010, 2010.

A. Edalat, A. A. Khanban, and A. Lieutier. Com-
putability in computational geometry. In Confer-
ence on Computability in FEurope, pages 117-127.
Springer, 2005.

T. Erl. Service-Oriented Architecture (SOA): Con-
cepts, Technology, and Design. Prentice Hall, 2005.

M. Freytag, M. Shapiro, and I. Tsukanov. Finite
element analysis in situ. Finite Elements in Analysis
and Design, 47(9):957-972, 2011.

M. K. Freytag, V. Shapiro, and I. Tsukanov. Scan
and Solve: Acquiring the physics of artifacts. In
ASME 2007 International Design Engineering Tech-
nical Conferences and Computers and Informa-
tion in Engineering Conference (DETC/CIE’2007),
pages 345—-356. American Society of Mechanical En-
gineers (ASME), 2007.

Wim Gielingh. An assessment of the current state of
product data technologies. Computer-Aided Design,
40(7):750-759, 2008.

I. Gorton, G. T. Heineman, I. Crnkovi¢, H. W.
Schmidt, J. A. Stafford, C. Szyperski, and K. Wall-
nau, editors. Component-Based Software Engineer-
ing. Proceedings of the 9th International Sym-
posium on Component-Based Software Engineering
(CBSE’2006). Springer, 2001.

S. K. Gupta, W. C. Regli, D. Das, and D. S. Nau. Au-
tomated manufacturability analysis: A survey. Re-
search in Engineering Design, 9(3):168-190, 1997.

T. Gupta and B. K. Ghosh. A survey of expert sys-
tems in mnufacturing and process planning. Com-
puters in Industry, 11(2):195-204, 1989.

J. H. Han, M. Pratt, and W. C. Regli. Manufactur-
ing feature recognition from solid models: A status
report. IEEE Transactions on Robotics and Automa-
tion, 16(6):782-796, 2000.

C. M. Hoffmann and R. Juan. Erep: An editable,
high-level representation for geometric design and
analysis. In Selected and Ezpanded Papers from the
IFIP TC5/WG5.2 Working Conference on Geomet-
ric Modeling for Product Realization, pages 129-164,
Amsterdam, Netherlands, 1992. North-Holland Pub-
lishing Co.

C. M. Hoffmann and V. Shapiro. Handbook of Dis-
crete and Computational Geometry, chapter Solid
Modeling, page 57. Number 57 in Applications of
Discrete and Computational Geometry. CRC Press
LLC, 2016.

C. M. Hoffmann, V. Shapiro, and V. Srinivasan. Ge-
ometric interoperability for resilient manufacturing.
Technical Report 11-015, 2011.

C. M. Hoffmann, V. Shapiro, and V. Srinivasan. Geo-
metric interoperability via queries. Computer-Aided
Design, 46:148-159, 2014.

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

42]

[43]

(44]

(45]

[46]

D. Hounshell. From the American System to Mass
Production, 1800-1932: The Development of Man-
ufacturing Technology in the United States. JHU
Press, 4th edition edition, 1985.

S.y Joshi and T. C. Chang. Graph-based heuristics
for recognition of machined features from a 3D solid
model. Computer-Aided Design, 20(2):58-66, 1988.

L. E. Kavraki. Computation of configuration-
space obstacles using the fast Fourier transform.
IEEE Transactions on Robotics and Automation,
11(3):408-413, 1995.

S. J. Kemmerer. STEP: The Grand Ezxperience. US
Department of Commerce, Technology Administra-
tion, National Institute of Standards and Technology
(NIST), 1999.

Y. S. Kim. Recognition of form features using convex
decomposition. Computer-Aided Design, 24(9):461—
476, 1992.

XY Kou and ST Tan. Heterogeneous object model-
ing: A review. Computer-Aided Design, 39(4):284—
301, 2007.

J. C. Latombe. Robot Motion Planning, volume 124.
Springer Science & Business Media, 2012.

W. K. Liu, S. Jun, S. Li, J. Adee, and T. Be-
lytschko. Reproducing kernel particle methods for
structural dynamics. International Journal for Nu-
merical Methods in Engineering, 38(10):1655-1679,
1995.

X. Liu and V. Shapiro. Homogenization of mate-
rial properties in additively manufactured structures.
Computer-Aided Design, 78:71-82, 2016. Special Is-
sue on the Symposium on Solid and Physical Mod-
eling (SPM’2016).

Xingchen Liu and Vadim Shapiro. Multiscale shape—
material modeling by composition. Computer-Aided
Design, 102:194-203, 2018.

T. Lozano-Perez. Spatial planning: A configuration
space approach. IEEE Transactions on Computers,
(C-32(2):108-120, 1983.

M. Lysenko, S. Nelaturi, and V. Shapiro. Group mor-
phology with convolution algebras. In Proceedings
of the 2010 ACM Symposium on Solid and Physical
Modeling (SPM’2010), pages 11-22, New York, NY,
USA, 2010.

M. Lysenko, V. Shapiro, and Nelaturi. Non-
commutative morphology: Shapes, filters, and con-
volutions. Computer Aided Geometric Design,
28(8):497-522, 2011.

R. Martin. Modelling inexact shapes with fuzzy sets.
In Proceedings of the Computer Science and Graph-
ics Conference (CSG’1994), pages 1-26, 1994.

B. Meyer. Object-Oriented Software Construction,
volume 2 of Prentice Hall International Series in
Computer Science. Prentice Hall New York, 1988.

R. Mittal and G. Iaccarino. Immersed bound-
ary methods. Annual Reviews of Fluid Mechanics,
37:239-261, 2005.

7

(47]

(48]

[49]

(50]

[51]

(52]

(53]

[54]

[55]

[56]

[57)

58]

[59]

[60]

(61]

(62]

B. Nayroles, G. Touzot, and P. Villon. Generaliz-
ing the finite element method: Diffuse approxima-
tion and diffuse elements. Computational Mechanics,
10(5):307-318, 1992.

S. Nelaturi, G. Burton, C. Fritz, and T. Kurtoglu.
Automatic spatial planning for machining opera-
tions. In 2015 IEEE International Conference on
Automation Science and Engineering (CASE’2015),
pages 677-682, 2015.

S. Nelaturi and V. Shapiro. Representation and anal-
ysis of additively manufactured parts. Computer-
Aided Design, 67-68:13-23, 2015.

J. Parvizian, A. Diister, and E. Rank. Finite cell
method: h- and p-extension for embedded domain
methods in solid mechanics. Computational Mechan-
ics, 41(1):121-133, 2007.

Alexander Pasko, Valery Adzhiev, and Peter Comni-
nos. Heterogeneous objects modelling and applica-
tions: collection of papers on foundations and prac-
tice, volume 4889. Springer, 2008.

D. B. Perng, Z. Chen, and R. K. Li. Automatic
3D machining feature extraction from 3D CSG solid
input. Computer-Aided Design, 22(5):285-295, 1990.

C. S. Peskin. The immersed boundary method. Acta
Numerica, 11:479-517, 2002.

S. Raghothama and V. Shapiro. Boundary rep-
resentation deformation in parametric solid model-
ing. ACM Transactions on Graphics, 17(4):259-286,
1998.

S. Raghothama and V. Shapiro. Topological frame-
work for part families. Journal of Computing and
Information Science in Engineering, 2(4):246-255,
2002.

A. A. G. Requicha. Mathematical models of rigid
solid objects. Production Automation Project,
Technical Memo. No. 28 (TM-28), University of
Rochester, 1977.

A. A. G. Requicha. Representations for rigid solids:
Theory, methods, and systems. ACM Computing
Surveys, 12(4):437-464, 1980.

A. A. G. Requicha. Representations of rigid solid
objects. Production Automation Project, Techni-
cal Memo. No. 29 (TM-29), University of Rochester,
1980.

A. A. G. Requicha and H. B. Voelcker. Solid model-
ing: A historical summary and contemporary assess-
ment. [EEE Computer Graphics and Applications,
2(2):9-24, 1982.

D. S. Scott and C. Strachey. Toward a mathematical
semantics for computer languages. Technical Mono-
graph PRG-2, Oxford University Computing Labo-
ratory, Programming Research Group, 1971.

J. Shah, P. Sreevalsan, and A. Mathew. Survey of
CAD/feature-based process planning and NC pro-
gramming techniques. Computer-Aided Engineering
Journal, 8(1):25-33, 1991.

J. J. Shah and M. Mantyla. Parametric and Feature-
Based CAD/CAM: Concepts, Techniques, and Ap-
plications. John Wiley & Sons, 1995.

[63]

[64]

(65]

[66]

[67]

(68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

V. Shapiro. Representations of Semi-Algebraic Sets
in Finite Algebras Generated by Space Decomposi-
tions. Ph.D. dissertation, 1991.

V. Shapiro. Handbook of Computer Aided Geomet-
ric Design, chapter Solid Modeling, pages 473-518.
North Holland, 1st edition edition, 2001.

V. Shapiro and D. L. Vossler. What is a paramet-
ric family of solids? In Proceedings of the Third
ACM Symposium on Solid Modeling and Applica-
tions (SMA’1995), pages 43-54, New York, NY,
USA, 1995. ACM.

B. Smith, K. Brauner, P. Kennicott, M. Liewald, and
J. Wellington. Initial graphics exchange specification
(IGES) version 2.0. Technical report, NTIS, Spring-
field, VA, USA, 1983.

S. Spitz and A. Rappoport. Integrated feature-based
and geometric CAD data exchange. In Proceedings of
the 9th ACM Symposium on Solid Modeling and Ap-
plications (SMA’2004), pages 183-190. Eurographics
Association, 2004.

S. Subrahmanyam and M. Wozny. An overview of au-
tomatic feature recognition techniques for computer-
aided process planning. Computers in Industry,
26(1):1-21, 1995.

R. B. Tilove. Set membership classification: A uni-
fied approach to geometric intersection problems.
IEEE Transactions on Computers, 100(10):874-883,
1980.

Y. J. Tseng and S. B. Joshi. Recognizing multi-
ple interpretations of interacting machining features.
Computer-Aided Design, 26(9):667—688, 1994.

J. H. Vandenbrande and A. A. G. Requicha. Spatial
reasoning for the automatic recognition of machin-
able features in solid models. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
15(12):1269-1285, 1993.

H. B. Voelcker and A. A. G. Requicha. Geometric
modeling of mechanical parts and processes. Com-
puter, 10(12):48-57, 1977.

Randi Wang and Vadim Shapiro. Topological seman-
tics for lumped parameter systems modeling. arXiv
preprint arXiw:1811.02666, 2018.

M. C. Wu and C. R. Lit. Analysis on ma-
chined feature recognition techniques based on B-
rep. Computer-Aided Design, 28(8):603—-616, 1996.

Y. Yamaguchi, H. Nakamura, and F. Kimura. Prob-
abilistic solid modeling: A new approach for han-
dling uncertain shapes. In Selected and Ezpanded
Papers from the IFIP TC5/WG5.2 Working Con-
ference on Geometric Modeling for Product Realiza-
tion, pages 95—108. Association for Computing Ma-
chinery (ACM), 1992.

A. A. Zaldivar and J. C. Torres. Fuzzy solid mod-
els: Foundations, representations and framework. In
International Conference on Fuzzy Systems, pages
1-8, 2010.

78

	An Interoperability `Dilemma'
	What is Interoperability?
	Scope and Outline
	State-of-the-Art
	Data-Centric Approaches
	Query-Based Approaches

	A Common Framework

	Definitions and Formulation
	Basic Definitions
	Interchangeability
	Interoperability
	Integration

	More on Invariants
	Geometry as a `Surrogate'
	Transitivity

	Classification of Interoperability Problems

	Use-Case Scenarios: CAD-CAD Interoperability
	CAD-CAD Data Exchange Properties
	Transitivity via External References
	Use-Case Schema #1: CAD-CAD Data Exchange
	Use-Case #1.1: Single System Solution (Same Representations & Algorithms)
	Use-Case #1.2: Standardizing on Representations (with Different Algorithms)
	Use-Case #1.3: Data-Centric Exchange (via System-to-System Translators)
	Use-Case #1.4: Data-Centric Exchange (Standardizing on Neutral Formats)
	Use-Case #1.5: Generic Model Exchange (Procedural or Declarative Recipes)
	Use-Case #1.6: Query-Based Exchange (Standardizing on Functional Queries)

	Use-Case Scenarios: CAD-CAx Interoperability
	CAD-CAE Integration Properties
	Use-Case Schema #2: CAD-CAE Integration
	Use-Case #2.2: Standardizing on Representations (with Different Algorithms)
	Use-Case #2.4: Data-Centric Integration (Direct or Indirect Data Translation)
	Use-Case #2.6: Query-Based Integration (Standardizing on Functional Queries)

	CAD-CAM Integration Properties
	Use-Case Schema #3: CAD-CAM Integration
	Use-Case #3.2: Standardizing on Representations (with Different Algorithms)
	Use-Case #3.5: Generic Model Integration (Procedural or Declarative Recipes)
	Use-Case #3.6: Query-Based Integration (Standardizing on Functional Queries)

	Shape-Material Integration Scenarios
	Heterogeneous Shape-Material Modeling
	Multi-Scale Shape-Material Modeling

	Conclusions
	Acknowledgements
	A Recipe of Action Items for Interoperability

