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ABSTRACT
This paper presents advances in analyzing audio content in-
formation to detect events in videos, such as a parade or a
birthday party. We developed a set of tools for audio pro-
cessing within the predominantly vision-focused deep neu-
ral network (DNN) framework Caffe. Using these tools, we
show, for the first time, the potential of using only a DNN
for audio-based multimedia event detection. Training DNNs
for event detection using the entire audio track from each
video causes a computational bottleneck. Here, we address
this problem by developing a sparse audio frame-sampling
method that improves event-detection speed and accuracy.
We achieved a 10 percentage-point improvement in event-
classification accuracy, with a 200x reduction in the number
of training input examples as compared to using the entire
track. This reduction in input feature volume led to a 16x
reduction in the size of the DNN architecture and a 300x re-
duction in training time. We applied our method using the
recently released YLI-MED dataset and compared our re-
sults with a state-of-the-art system and with results reported
in the literature for TRECVID MED. Our results show much
higher MAP scores compared to a baseline i-vector system—
at a significantly reduced computational cost. The speed im-
provement is relevant for processing videos on a large scale,
and could enable more effective deployment in mobile sys-
tems.
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1. INTRODUCTION
Web videos have significant visual and audio content that

is not fully described in their textual metadata. It is there-
fore necessary to develop tools that can automatically ana-
lyze that content. Multimedia event detection (MED) aims
to identify the event(s) depicted in a user-generated video,
such as a flash mob or someone making a sandwich, by using
the content characteristics of the video. Much recent work in
this area is related to NIST’s annual TRECVID Multimedia
Event Detection evaluation, and results in that benchmark
define the state of the art.

Multimedia event detection based on audio has been ap-
proached in a variety of ways. Many of the most success-
ful recent approaches [6, 8, 2] rely mainly on a combina-
tion of low-level features, especially Mel Frequency Cepstral
Coefficients (MFCCs), followed by a Bag of Words. The
final detection in these approaches is computed using Sup-
port Vector Machines (SVMs). Additionally, recent MED
research has increasingly revolved around semantic or hu-
manly explainable approaches. As a result, the focus in
audio has shifted toward detecting identifiable audio con-
cepts such as laughter or clapping. For example, a TNET-
based [10] deep neural network (DNN) has been employed
for an audio concept–classification step and complemented
with Hidden Markov Models (HMMs) for audio-based event
detection [4]. However, a review of recent work shows that
DNNs have been explored largely for the computer vision
aspect of MED and for fusion steps. Despite their high ac-
curacy in other domains, DNNs alone have not yet been used
for audio-based video-event detection.

Last year, the computer-vision DNN framework Caffe won
the ACM Multimedia 2014 Open Source Software competi-
tion. It is a clean and modifiable framework for state-of-the-
art deep learning [5], so we decided to leverage this efficient,
well-known tool for our task. In this work, we developed
tools based on Caffe that can be used for audio process-
ing. Then we showed, for the first time, the potential of us-
ing only DNNs (without HMMs) for the audio-based video-
event detection task. Training DNNs for event detection
using the entire audio track from each video is computation-
ally expensive. We addressed this problem by developing a
sparse audio frame–sampling method that optimizes the rep-
resentation of the audio file for event-detection performance.
We achieved a notable event-classification accuracy improve-
ment (10 percentage points), with a 200x reduction in the
number of training input examples required as compared to
dense sampling. This reduction in input feature volume en-
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Figure 1: Pipeline for audio-based multimedia event
detection or classification using a DNN.

abled a 16x reduction in the size of the DNN architecture
and a 300x reduction in training time. We applied our meth-
ods to the recently released open-source YLI-MED dataset,
and compared our results with a state-of-the-art system and
with results reported in the literature for TRECVID MED
2013. We achieve higher MAP scores than a baseline i-vector
system for audio-based video-event detection.

Our methodology and tools are described in Sec. 2, along
with the comparison system. The datasets are described in
Sec. 3. In Sec. 4, we present our experiments and highlight
the most relevant results. Sec. 5 summarizes our conclusions.

2. DESCRIPTION OF SYSTEMS
In Sec. 2.1, we describe the feature extraction step that

begins the pipeline for both systems we tested in this work.
In Sec. 2.2, we describe how we used the deep neural network
framework Caffe for audio-based video event detection and
classification. In Sec. 2.3, we describe the i-vector detection
system, which we used as a baseline for comparison.

2.1 Audio Preprocessing
In both tasks, the first step was to extract MFCC features

from the audio track. We decided to use this standard pre-
processing feature in these initial experiments for the sake
of comparability. For the DNN, we used a total of 14 feature
dimensions, including energy, while for the i-vector, we used
20, with delta and double delta for a total of 60 dimensions.
Each feature frame was computed using a 25 ms Hamming
window with a stride size of 10ms per frame shift. After
a mean and variance normalization step, we applied a con-
text window of 49 consecutive frames (centered at the 25th

frame). We next performed a feature size reduction step in
which the Discrete Cosine Transform (DCT) was applied to
decorrelate the information in time. The total NN input
feature consists of 462 frames.

2.2 Audio Processing Using Caffe
Our full pipeline for event detection and classification us-

ing a DNN is depicted in Figure 1. In sum, the MFCC fea-
tures are sparsely sampled and fed into the neural net (more
details on sampling are given in Sec. 4.1). Each sample train-
ing frame is labeled with an event name. The DNN performs
classification or detection on the test MFCC frames, to iden-
tify the video as belonging to a particular event. For classi-
fication, the DNN is trained on all the events and performs
multi-class classification to identify videos as depicting one
of the events. In detection, the DNN performs binary classi-
fication between a given event and the negative event. There
is thus one binary detector for each event category.

Caffe [5] is essentially oriented toward vision applications.
Our first step in using Caffe as the basis for a video-analysis
framework was to develop or incorporate tools specifically
for analyzing audio signals; these tools are open-source and
publicly available.1 We incorporated a context window for

1https://github.com/ashrafk/audioCaffeInitial

capturing correlation in the temporal dimension, a Discrete
Cosine Transform to decorrelate the data, and a Restricted
Boltzmann Machine (RBM) for pre-training the DNN.

2.3 The i-Vector System
I-vector-based systems have been previously used for

audio-based event detection in the TRECVID MED evalua-
tions [11, 3], and thus provide a helpful baseline for compar-
ison. The i-vector can be thought of as a low-dimensional
representation of the identity of each event class. A log-
likelihood ratio for similarity between test data and event
classes is computed using a generative Probabilistic Linear
Discriminant Analysis (pLDA). The Within-Class Covari-
ance Normalization (WCCN) and pLDA system components
normalize for the within- and between-class i-vector scatter
of the events. This accounts for cases where examples of the
same event have distinctive audio profiles, and where differ-
ent events have similar audio elements. Details on the sys-
tem used for these experiments are in Elizalde et al. 2013 [3].

3. CORPORA USED
The TRECVID MED dataset [9] used in much previous

MED work is comprised of web videos labeled for the events
depicted; however, use is restricted to evaluation-related re-
search. Therefore, for these experiments we used YLI-MED,
which is inspired by TRECVID MED and is annotated for
some of the same events [1]. YLI-MED is drawn from the
Yahoo Flickr Creative Commons 100 Million (YFCC100M)
dataset.YLI-MED Version 1 contains 10 events as well as
non-event videos. For training, there are 1000 event videos
(100 per) and 5,000 non-event videos. For testing, there are
823 event videos and 43,638 non-event videos.

4. EXPERIMENTS & RESULTS
In this section, we present multimedia event detection

and classification results obtained using our adapted Caffe
framework vs. a baseline system. First, using the YLI-
MED dataset, we studied event classification, tuning our
audio–frame sampling method (Sec. 4.1) and neural net ar-
chitecture (Sec. 4.2) for classification speed and accuracy.
In Sec. 4.3, we describe how we included YLI-MED non-
event background samples in the training and testing sets
to study event detection. We compared our event-detection
results with other results in the literature; we also used
an i-vector system trained on TRECVID MED and tested
on YLI-MED to show the comparability between the two
datasets (Sec. 4.3).

4.1 Sparse Audio Sampling for Speed and Ac-
curacy

The main bottleneck in performing DNN-based video
event detection is at the input stage. The extracted au-
dio features are represented as frames.Web videos are usu-
ally between 2 and 3 minutes long, and thus processing
thousands of videos—each including thousands of frames—
is slow. Moreover, global optimization of a DNN with a
stochastic gradient descent method is difficult with such a
high number of example frames.

Answering the question “What is this video about?” re-
quires listening to multiple segments of the video. We were
interested in seeing if we could achieve a comparable result
by using arbitrary segments of the video rather than the

612



Method Per-Frame
Accuracy(%)

Video-Level
Accuracy(%)

DNN(2000:2000:2000:10),
All Frames Input

18.3 27.4

DNN(2000:2000:2000:10),
100 Frames Input

28.6 36.8

DNN(600:600:10), 100
Frames Input

29.3 37.4

Table 1: Accuracy of selected DNN-based event-
classification configurations tested in this work.

whole. It turns out that it is possible to achieve not only
improved efficiency but also improved accuracy. The DNN
can find correlations among these arbitrarily sampled points,
and from that, represent the entire event.

For each training and test video in the YLI-MED dataset,
we sampled a fixed number of frames in each trial, vary-
ing the frame separation based on the video length. In our
experiments, we varied the number of sampled frames per
video from 20 to 150. We found that 100 frames per video
gave the highest neural net per-frame accuracy, at 28.6%,
with a video-level event classification accuracy of 36.8%. In
contrast, when densely feeding the entire audio track into
the DNN, the per-frame accuracy was only 18.3%, which
translated to a video-level classification accuracy of 27.4%.

4.2 Optimizing the Neural Net Architecture
Having selected an efficient and accurate frame sampling

method, we moved on to exploring neural network architec-
tures. Starting with a 400:400:10 network (where 400:400:10
means 400d inner product→ sigmoid→ 400d inner product
→ sigmoid → 10d softmax), we initially increased the num-
ber of hidden units by increments of 100 in the layers up to
800. We found that a 600:600:10 neural net gave the high-
est per-frame accuracy, at 29.3%, which resulted in 37.4%
accuracy on video-level event classification. These results
are summarized in Table 1. We also varied the depth of the
neural net. However, adding another layer did not improve
the accuracy significantly.

4.3 Comparing Methods for Event Detection
We used the sparse 100-frame audio sampling and the

DNN architecture described in Secs. 4.1 and 4.2 to perform
event detection. For binary detection, we replaced the 10d
softmax layer with a 2d softmax layer (600:600:2). In this
section, we describe the detection methods and results, and
compare them with those described in previous literature.

4.3.1 MAP scores
For detection, the DNN was trained on the individual YLI-

MED event videos (100 per) and a similar number of neg-
atives. Once the DNN was trained to achieve the highest
cross-validation accuracy, posterior probabilities were calcu-
lated for the test positive examples for each event and for
the full set of ˜43,600 test negative examples. Cumulative
probability was used to determine whether each test file be-
longed to each target event. Average precision (AP) for
each event was calculated from the true positives (TP) and
false positives (FP) among the full 44K test set. The mean
average precision (MAP) is calculated by averaging the AP
scores for individual events over all the 10 YLI-MED events.
The resulting MAP scores are shown in Table 2.

Event Category i-vector i-vector Caffe
TV/YL YL/YL YL/YL

Birthday Party 0.31 0.37 1.10
Flash Mob 0.22 0.12 0.89
Getting a Vehicle Unstuck 0.07 0.12 0.61
Parade 0.21 0.32 1.62
Person Attempting a
Board Trick

0.20 0.23 1.34

Pers. Grooming an Animal 0.09 0.11 1.12
Person Hand-Feeding an
Animal

0.22 0.28 1.71

Person Landing a Fish 0.05 0.10 0.67
Wedding Ceremony 0.25 0.32 0.92
Working on a Woodwork-
ing Project

0.11 0.19 1.81

Overall MAP 0.17 0.22 1.18

Table 2: Event-detection MAP percentage scores
for: the i-vector system trained on TRECVID
MED (col1), and trained on YLI-MED (col2),
both tested on YLI-MED; Caffe-based DNN system
(col3) trained and tested on YLI-MED.

Most previous work on audio-based multimedia event de-
tection has used the TRECVID MED dataset. The highest
reported audio-based MAP score for the TRECVID MED
2013 dataset is 14.6% [7]. TRECVID MED data is not pub-
licly available, so we were unable to make a direct com-
parison with the state of the art. However, we had previ-
ously trained an i-vector system on the TRECVID MED
2013 data (see Sec. 2.3), achieving a MAP of 7% testing
it on that data [3]. For the current project, we used this
TRECVID MED-trained system and tested it on YLI-MED,
to assess the comparability of the two datasets, before using
YLI-MED to compare the i-vector and DNN detection ap-
proaches. Under these conditions, i-vector achieved a MAP
score of 0.17%.2 Then we both trained and tested the i-
vector system on the YLI-MED dataset. The MAP score in
this case improved to 0.22%.

In comparison, the DNN event-detection system with
sampled-MFCC input achieved a MAP of 1.1% on the YLI-
MED, at a much lower computation cost (see Sec. 4.3.2).
It is exciting to observe such improvement in MAP scores
compared to the i-vector system on the same dataset, at a
significantly lower computational cost. Also, it should be
noted that the DNN-based detection was performed on a
raw input signal, without segmentation. In contrast, the
state-of-the-art result [7] was obtained after performing un-
supervised clustering on the input audio, and also with many
fewer negative examples (25k in TRECVID 2013 compared
to 43K in YLI-MED). Our sparsely sampled DNN method
has proven its potential by showing improved accuracy re-
sults compared to full audio samples, and we anticipate that
fine-tuning the accuracy by segmenting the input audio will
be a very promising area for future research.

4.3.2 Speed and memory
Irrespective of dataset, the Caffe framework consistently

gave a ˜1.5x speedup on a Tesla K40 GPU, compared to
a TNET-based DNN [10]. The next level of speedup came

2It is not known how much overlap there may be between
the training and test sets across the two datasets.
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Method Train
Time (hr)

Test
Time (hr)

Training
Speedup

Model Size
(MB)

i-Vector 2.71 7.8 1x 5100
DNN:
Full

10.33 NA 0.26x 48

DNN:
Sparse
Sampled

0.034 0.748 78.4x 3

Table 3: Speed and memory required for the event-
detection methods compared in this work.

from representing the input video events with sparsely sam-
pled frames of the MFCC features. Sparse frame sampling
reduces the training- and test- data volume significantly. A
typical video in the YLI-MED dataset is around 3 minutes
long, so there are about 18,000 MFCC frames per video.
Sampling only 100 audio frames per video resulted in about
a 200x reduction in input frame numbers, while still achiev-
ing high classification accuracy results.

Reducing the number of input frames in turn reduces the
size of the DNN required to obtain high accuracy. For ex-
ample, as shown in Table 3, with the full-length audio track,
the best DNN architecture is 2000:2000:2000:10 (to achieve
18.3% per-frame classification accuracy), while sparse sam-
pling of the input frames gave an optimum per-frame ac-
curacy with a 600:600:10 DNN. The DNN with dense audio
sampling takes up about 48MB of storage, whereas the DNN
with sparse frame input takes only about 3MB. In contrast,
the baseline i-vector system takes 5.1GB—that is, 1700x
more than the sampled DNN system. The smaller DNN fa-
cilitated a 300x and 78.4x training-time speedup compared
to the full-input DNN and the i-vector system, respectively.
We could not perform a complete test of the full-input DNN
due to the prohibitively long run time, but an overall 10x
testing speedup was observed for the sampled DNN com-
pared to the i-vector system.

5. CONCLUSIONS
In summary, we have built several tools for audio analysis

within the DNN framework Caffe, which we have made pub-
licly available. We explored, for the first time, the potential
of using DNNs without HMMs for audio-based video-event
detection. We achieved a 10 percentage-point improvement
in event-classification accuracy by optimizing sampling and
DNN topology, with a 200x reduction in the number of in-
put frames as compared with using all of the frames. This
reduction in input frame numbers resulted in a 16x reduc-
tion in the size of the DNN required for maximum accuracy.
The combination of input-data volume and DNN size re-
duction gave an overall 300x and 78.4x speedup in training
time compared to the full-audio DNN and i-vector systems
respectively. When evaluated on the newly released YLI-
MED dataset, our DNN system with sparse frame sampling
showed higher accuracy than the baseline i-vector results, at
a significantly lower computation cost. These improvements
in speed and accuracy are relevant for processing videos at
a larger scale, as well as for potential deployment of video
analysis on mobile platforms.
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