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Abstract

Multimedia event detection (MED) on user-generated con-
tent is the task of finding an event, e.g., a Flash mob or At-
tempting a bike trick, using its content characteristics. Recent
research has focused on approaches that use semantically de-
fined “concepts” trained with annotated audio clips. Using au-
dio concepts allows us to show semantic evidence of their rela-
tionship to events, by looking at the probability distribution of
the audio concepts per event. However, while the concept-based
approach has been useful in image detection, audio concepts
have generally not surpassed the performance of low-level au-
dio features like Mel Frequency Cepstral Coefficients (MFCCs)
in addressing the unstructured acoustic composition of video
events. Such audio-concept based systems could benefit from
temporal information, due to one of the intrinsic characteristics
of audio: it occurs across a time interval. This paper presents
a multimedia event detection system that uses audio concepts;
it exploits the temporal correlation of audio characteristics for
each particular event at two levels. The first level involves an-
alyzing the short- and long-term surrounding context informa-
tion for the audio concepts, through an implementation of a Hi-
erarchical Deep Neural Network (H-DNN), to determine engi-
neered audio-concept features. At the second level, we use Hid-
den Markov Models (HMMs) to describe the continuous and
non-stationary characteristics of the audio signal throughout the
video. Experiments using the TRECVID MED 2013 corpus
show that an HMM system based on audio-concept features can
perform competitively when compared with an MFCC-based
system.
Index Terms: Audio Concepts, Video Event Detection,
TRECVID MED, Deep Neural Networks, Hidden Markov
Models.

1. Introduction
Web videos, also called user-generated content (UGC), are the
fastest-growing type of content on the Internet. To make this
data accessible, we must be able to automatically organize and
analyze the content of recordings. In this paper, we investigate
experimental methods for multimedia event detection (MED),
the process of finding videos that relate to a semantically de-
fined event, such as Flash mob, Dog show, or Town hall meet-
ing. This task is implicitly multimodal, in that events in video
are characterized by audio-visual cues. Depending on the user
query, the audio stream can sometimes be more descriptive than
the visual stream. For instance, audio cues can allow one to

quickly determine certain characteristics of the environment,
the tone of the video, or the presence of music.

There have been several approaches to MED; nevertheless,
the research has increasingly revolved around semantic or hu-
manly explainable approaches. As a result, the focus has shifted
toward concept detection [1, 2, 3, 4], where the visual domain
has shown relative success. However, analysis in the audio do-
main still relies mainly on low-level features [5, 6], because
they significantly outperform audio concepts for event detec-
tion. Reasons for this gap in performance are varied. For
example, the audio concepts defined must actually discrimi-
nate between events to provide reliable detection. Addition-
ally, UGC often presents mismatched conditions, which limits
the performance of the trained concept detectors with unseen
audio. Nonetheless, based on the idea that video events could
be described by sets of different audio concepts such as water
running or metallic clanking, audio concept detection continues
to be explored, for example in [7, 8, 9]. However, approaches
sometimes ignore the intrinsic temporal characteristics of au-
dio, even though it has been suggested that it helps, for exam-
ple in [10], where local discriminant bases (low-level features)
are used to feed an HMM and exploit temporal correlation of
environments. Moreover, in [11], [12], researchers created an
HMM-GMM model for every audio concept, to get a segmenta-
tion based on the transitions between the models, rather than a
fixed segmentation. All in all, MED field requires systems that
use audio concepts to show event evidence and at the same time
provide competitive performance with low-level features.

This paper presents a multimedia event detection system
that uses audio concepts. It is a follow-up to our research pre-
sented in [13]. The use of audio concepts allows us to show
semantic evidence of their relationship with events, by looking
at the probability distribution of the audio concepts per event.
However, this system exploits the temporal correlation of au-
dio characteristics for a particular event at two levels. The first
level involves analyzing the short and long-term surrounding
context information for audio concepts, through an implemen-
tation of a Hierarchical Deep Neural Network (H-DNN), to de-
termine engineered audio-concept features. At the second level,
we use Hidden Markov Models (HMMs) to describe the con-
tinuous and non-stationary characteristics of the audio signal
throughout the video. The presented method is evaluated on the
TRECVID MED 2013 corpus, showing that an HMM-system
based on audio-concept features can be competitive in compar-
ison to an MFCC-based system.

The paper is structured as follows. Section 2 describes the



video dataset and the audio concepts we used in the experi-
ments. Section 3 details the MED system using audio concepts.
Section 4 analyzes the experimental results. Lastly, Section 5
summarizes our conclusions and suggests future work.

2. The TRECVID MED Corpus
The video dataset used in the experiments is from the NIST
TRECVID Multimedia Event Detection 2013 corpus, com-
posed of 150,000 UGC videos with an average length of three
minutes [14]. We used the EK100 set, consisting of 100 videos
each for 20 event categories (listed in Table 2) and the MED
Test set. The audio in those videos is unstructured and contains
environmental acoustics, overlapping sounds, and unintelligible
audio, among other characteristics.

The audio concepts we used are listed in Table 1; these 40
concepts were selected in previous research by some of the au-
thors as having the highest event-relevance and detection per-
formance [13]. The selection was made from a pool of audio
concepts corresponding to three different sets of annotations, by
Carnegie Mellon University (CMU) [15], SRI & Stanford Uni-
versity (STAND) [8], and SRI-Sarnoff (SRI) [4]. The length
of the audio concepts varies from a fraction of a second to a
few seconds. The labels defined start time and end time. Some
of the audio-concept labels are similar (anim[al] bird (CMU),
birds (STAND)), or at least closely semantically related (speech
(CMU), conversational speech (SRI)). However, it is important
to note that the annotation projects had different procedures and
used different sets of event-videos, so similarity of labels does
not necessarily mean the labeled concepts have identical acous-
tic characteristics; we therefore did not merge them. (In Sec-
tion 4.1, we show that this choice is justified by the experimen-
tal data.)

3. The Multimedia Event Detection System
Using Audio Concepts

This section describes the audio concept–based MED system
shown in Fig. 1, and how we implemented it to test perfor-
mance.

3.1. The Audio Concept Detection System

The audio concept detection system, which computes the audio-
concept features to feed the HMM-based event detector, is
based on the H-DNN system proposed in [16], which performs
well at detecting audio concepts in UGC.The audio from the
event videos is extracted and MFCCs of 13 coefficients are com-
puted using a 25 ms Hamming window with a stride size of
10ms per frame shift. After a mean-and-variance normaliza-
tion step, a context window is applied to gather 49 consecutive
frames. We chose MFCCs as the main feature type because of
their established performance in audio tasks. Prior to the input
layer of the first neural network (NN), a dimensionality reduc-
tion step using a Discrete Cosine Transform (DCT) is applied
to de-correlate the information provided by the context window.
The DCT step selects relevant information, and has shown ben-
efits in contrast with a non-DCT step [16]. Lastly, the features
are fed to the H-DNN.

The H-DNN architecture is a cascade of two neural net-
works. As discussed in [16], [17], this configuration is particu-
larly effective because it analyses both the short and long-term
modulations of each audio concept (performed by the first and
the second NN, respectively), which significantly improves de-

# Concept Source # Concept Source
1 engine light CMU 21 crowd yells STAND
2 wind STAND 22 speech not eng. CMU
3 speech CMU 23 crowd laughter STAND
4 metallic clank-

ing noises
SRI 24 word ’tire’ spo-

ken
SRI

5 crowd cheers STAND 25 rolling SRI
6 washboard CMU 26 anim bird CMU
7 water running STAND 27 singing SRI
8 children’s

voices
SRI 28 crowd CMU

9 airtraffic STAND 29 mumble CMU
10 birds STAND 30 music CMU
11 small party STAND 31 environmental STAND
12 water splash-

ing
STAND 32 laughing SRI

13 audio of wed-
ding vows

SRI 33 water CMU

14 rustle CMU 34 processed CMU
15 crowd ap-

plause
STAND 35 individual yells STAND

16 conversational
speech

SRI 36 singing CMU

17 radio CMU 37 crowd noise SRI
18 scratch CMU 38 squeak CMU
19 micro blow CMU 39 noise of pass-

ing cars
SRI

20 engine quiet CMU 40 board hitting
surface

SRI

Table 1: The set of 40 audio concepts annotated by CMU,
STAND, and SRI with the highest event-relevance and detec-
tion performance.

tection accuracy. Most audio concepts, including music, clap-
ping, knocking, laughing, and many others, are characterized
by several iterations of a similar pattern over the time span, thus
making short and long-term analysis of the audio concepts ef-
fective. In this case, the first-level NN in Fig. 1(a), which con-
verts the low-level features into a higher-level representation,
is composed of 3 hidden layers with 2000 neurons per layer.
Because it has more than 2 hidden layers, pre-training based on
the Restricted Boltzann Machine (RBM) [18] is adopted for ini-
tialization and convergence. The output layer, a softmax-based
classifier, outputs a 40-dimensional vector, corresponding to the
number of audio concepts.

To achieve a long-term analysis of the audio-concept mod-
ulations, we sample the features generated by the NN depicted
in Fig. 1(a) at the 5 positions: -10, -5, 0, +5, +10. The long-
term NN depicted in Fig. 1(b) is composed of 2 hidden layers
with 1000 neurons each. Compared to that in Fig. 1(a), the NN
in Fig. 1(b) thus employs a shallower architecture; we chose
this configuration because the task of the long-term NN is less
convoluted. That is, the MLP in Fig. 1(a) realizes a conversion
from low-level to high-level features, while Fig. 1(b) operates
on already-processed input streams from the previously trained
NN.

The NN training and pre-training phases used TNet [19].
Pre-training initializes weights in the first two hidden layers
via RBM (Gaussian-Bernoulli) using a learning rate of 0.005
with 10 pre-training epochs. The remaining RBMs (Bernoulli-
Bernoulli) use a learning rate of 0.05 with 5 pre-training epochs.



Figure 1: The MED system using audio concepts extracts the audio track from the event videos. It then computes MFCCs from the
audio as the input to the Hierarchical Deep Neural Network. The H-DNN ouputs the audio-concept features, which are fed to the
event-trained HMM-based event detection system. Lastly, an event-detection decision is made for the given test video.

From the training set, we derived a small cross-validation set
(10% of the training data) for the following back-propagation
training. The fine-tuning phase is performed by a stochastic
gradient descent that optimizes the cross-entropy loss function.
The learning rate, updated by the “new-bob” algorithm, is kept
fixed at 0.002 as long as the single-epoch increment in the cross-
validation frame accuracy is higher than 0.5%. For subsequent
epochs, the learning rate is halved until the cross-validation in-
crement in accuracy is less than the stopping threshold of 0.1%.
NN weights and biases are updated per blocks of 1024 frames.

3.2. The Event Detection System

We propose an event detection approach based on Hidden
Markov Models (HMM). An HMM is a generative statisti-
cal model; the technique is widely used in temporal pattern-
detection problems such as gesture recognition, genomics, and
handwriting, as well as speech recognition [20]. In an HMM,
an observable variable x, which represents the input features, is
assumed to be generated by a sequence of internal hidden states
S, which cannot be observed directly. An HMM is completely
described by the number of hidden states, the transition proba-
bilities between hidden states, the initial state probabilities, and
the probability distribution of each possible state P (x/S). The
later probability density function is usually modeled by exploit-
ing a Gaussian Mixture Model (GMM) composed of a certain
number of gaussians. The HMMs’ parameters are derived in the
training phase by means of the Baum-Welch algorithm, while
the pattern detection is usually carried out using the Viterbi al-
gorithm, as seen in [20].

One of the most interesting features of an HMM is its inher-
ent capacity to detect complex temporal patterns, which in this
paper is exploited to detect events based on their audio tracks.
The adopted HMM topology is depicted in Fig. 1. In speech
recognition, usually only forward connections between states
are used to model the well-defined temporal evolution of each
phone; in contrast, we propose using fully-connected models,
because videos of events rarely follow any well-defined time
evolution (for instance, in a Dog show video we can have music,
laughing, clapping, and barking in different sequences). The
training and test phases were carried out using the HTK [21].

4. Results and Analysis
In this section, we describe the performance of the proposed
multimedia event detection system using audio concepts, and
discuss how the distribution of the audio concepts can support
a description of the events.

4.1. Audio Concepts Distribution

We analyze the distribution of audio concepts using the output
of the H-DNN system—in other words, the audio-concept fea-
tures. For each event, we took the semantic features of the cor-
responding 100 training videos and add all the posterior prob-
abilities for each of the 40 audio concepts, to obtain an audio-
concept probability histogram for each of the 20 video events.
The most common audio concepts detected across all events
were the ones related to speech, music, and crowds. The least-
often detected audio concepts have the characteristics of being
quite or short, such as engine light (soft), micro blow (a puff of
breath, such as one might use to blow out a single candle), and
squeak.

Example histograms showing the audio concepts corre-
sponding to three examples are shown in Fig. 2. For Birth-
day party, the audio concepts with the highest probabilities are
small party STAND (a small group of people celebrating), con-
versational speech SRI, singing SRI, and processed CMU. (The
concept processed CMU refers to music added to the video in
post-processing.) Spot-checking the videos, we found that these
audio concepts match people speaking and singing the “birth-
day song”, and sometimes music in the background (though
not necessarily added in post-processing). In another exam-
ple, Winning a race without a vehicle corresponds to the au-
dio concepts small party STAND, crowd cheers STAND, crowd
Noise SRI, crowd CMU, and wind STAND. Spot-checking the
videos, we find that the most common sounds are indeed crowd-
related. Lastly, Grooming an animal corresponds to speech
CMU, small party STAND, water splashing STAND, conversa-
tional speech SRI, water running STAND, and processed CMU.
Spot-checking the videos, we find people describing how to
groom the animal, a variety of water sounds (splashing, run-
ning, coming out of a hose, etc.), and, less often, user-added
music.



Figure 2: Probability histogram of the 40 audio concepts accumulated across three sample events, based on the 100 training video files.
E006 = Birthday party; E010 = Grooming an animal; E029 = Winning a race without a vehicle. Each event shows higher detection
probabilities for different concepts.

Label Event Description Cnd.1:
MFCC

Cnd.2:
H-DNN

Cnd.3:
MFCC+
H-DNN

E006 Birthday party 36 44 43
E007 Changing a vehicle

tire
12 5 11

E008 Flashmob gathering 45 21 32
E009 Getting a vehicle

unstuck
22 27 17

E010 Grooming an animal 13 11 7
E011 Making a sandwich 20 11 17
E012 Parade 23 35 28
E013 Parkour 39 42 51
E014 Repairing an appli-

ance
32 58 44

E015 Working on a
sewing project

15 10 17

E021 Attempting a bike
trick

27 40 33

E022 Cleaning an appli-
ance

28 12 28

E023 Dog show 27 27 27
E024 Giving directions to

a location
9 19 13

E025 Marriage proposal 12 15 15
E026 Renovating a home 22 9 19
E027 Rock climbing 28 17 6
E028 Town hall meeting 63 53 47
E029 Winning a race

without a vehicle
18 23 23

E030 Working on a metal
crafts project

14 5 9

ALL Mean Avg. Preci-
sion

26.03 26.37 26.71

Table 2: Percentage precision performance for each experimen-
tal condition, per event and overall. Each feature type generally
excels at detecting different events, as can be seen for each of
the three conditions.

As we noted above, the vocabulary of audio concepts we
are using includes some with very similar labels. However,
the concepts are not detected in an equal degree for the videos
they would seem at first glance to correspond to. For instance,
singing SRI is detected much more frequently than singing
CMU, which has a low cumulative probability across the events;
similarly for birds STAND vs. anim bird CMU—though both
had several times stronger correspondences with Grooming an
animal than with the other types of events. This discrepancy
confirms that, even when the labels used are very similar, we
cannot assume that the concepts should be merged.

The vocabulary of 40 sounds used in these experiments
is relatively small for distinguishing 20 different video events,
thus some events are more distinguishable from audio-concept
evidence than others. A larger vocabulary, containing more
event-relevant audio concepts, would most likely improve dis-
crimination. Our system outputs a posterior probability for at
least one of the 40 audio concepts for each frame regardless of
whether the frame actually matches any of the concepts.

4.2. Video Event Detection Performance

For comparison purposes, the HMM-based MED system is fed
with three different types of features:

Condition 1 (Baseline): MFCCs of 13 + ∆ + ∆∆ coefficients
(dimensionality 39);

Condition 2: H-DNNs of 40 audio-concepts described in Sec-
tion 3.1;

Condition 3: A tandem combination of the MFCCs 13 coeffi-
cients and the the H-DNN features (dimensionality 53).

For each different feature type, a different HMM architecture
(i.e. the number of gaussian mixtures, hidden states and transi-
tion probabilities) is derived by optimizing the video-detection
performance over a small development set (10% of the total
training data). In sum, we employed 11 states with 128 diagonal
gaussians each for MFCCs (Condition 1), 9 states with 64 Gaus-
sians each for H-DNN features (Condition 2), and 9 states with
128 gaussians for the tandem MFCC+H-DNN features (Condi-
tion 3).

For training each HMM model we used the EK100 set,
consisting of 100 videos each for 20 event categories (listed



in Table 2), a total of 2,000 video files. For testing, we used
all the positive video files, about 1500, from the MED test set,
i.e., those positively categorized as belonging to one of the 20
events. As large numbers of non-class or negative videos have
been shown to significantly affect performance on event detec-
tion, we analyzed only videos that belong to an event, to obtain
more reliable conclusions. Thus, we left out the approximately
5,000 negative training files and approximately 23,000 negative
testing files.

Detection performance per event for the three types of fea-
tures is shown in Table 2. The mean average precision (MAP)
per event does not differ significantly across the three condi-
tions. The MAP was for MFCCs 26.03%, for H-DNNs 26.37%,
and for MFCC+H-DNNs 26.71%. However, one of the most
important results from these experiments is that they show that,
even with a limited set of 40 audio concepts, the discriminative
power of the proposed system was competitive with the system
using MFCCs.

The range of the precision scores across events shows more
detailed differences between the different types of features. The
MFCC condition (1) has the widest range: between E024 Giv-
ing directions to a location at 9.4% and E028 Town Hall Meet-
ing at 63.2%, a spread of 53.8%. The H-DNNs (Condition 2)
have a narrower range: between E030 Working on a metal crafts
project at 4.5% and E014 Repairing an appliance at 52.6%,
a spread of 48.1%. Finally, the MFCC+H-DNN combination
(Condition 3) has the most consistent precision across events:
between E027 Rock climbing at 5.6% and E013 Parkour at
50.5%, still a spread of 44.9%.

Confusion between events seems to differ depending on
which types of features are used for analysis, further confirming
that each feature type best addresses different types of acous-
tic information. For example, E006 Birthday Party is most of-
ten confused with E008 and E028 using MFCCs; with E029
and E013 using H-DNNs; and with E013 and E011 using for
MFCCs+H-DNNs. The MFCC-only results have the most in-
dividual events detected with the highest precision, with 8 of
the highest per-event scores, but it has the lowest MAP of the
three conditions. Conversely, the MFCC+H-DNN results have
the fewest events detected with the highest precision, only 2,
but the overall MAP score is the highest. The H-DNN-only re-
sults are in the middle, with 6 of the highest-precision events. In
other words, if the goal is to achieve high performance on spe-
cific events, then it is better to use either MFCCs or H-DNNs,
whichever is better for that event. However, if the goal is to
achieve balanced performance across events, MFCCs+H-DNNs
is the best choice. Due to space contraints, we show only the
confusion matrix for the MFCC+H-DNN combination Fig. 3

There are four event types, E008 (45%,21%,32%),
E014 (32%,58%,44%), E027 (28%,17%,6%), and E028
(63%,53%,47%), where one feature type outperforms the oth-
ers by at least an absolute 10%. This suggests that the dif-
ferent types of features address different acoustic characteris-
tics. Specifically, MFCCs seem to be stronger at character-
izing speech-related events, while the H-DNNs are better for
characterizing events with mixed frequency and wider-spectrum
sounds.

It is worth noting that, for E023 Dog Show, the three con-
ditions yield equal precision; when we spot-checked example
videos, we found a prominent white noise-like sound common
in recordings of crowded events, as well as background speech,
and barking; less frequently, there is also music. Except from
barking, none of them seem to be different from other public
events, which is why the event yields lower-than-average preci-

Figure 3: Confusion matrix for Condition 3, the MFCC+H-
DNNs-based video-detection system (MAP 26.71%).

sion. Moreover, it is interesting that combining MFCCs and H-
DNNs does not provide a significant gain for most events. It is
possible that the combination could benefit from a dimension-
ality reduction technique. More insights on how to maximize
performance of the fusion should emerge from future work.

5. Conclusions and Future Work
This paper describes a multimedia event detection system that
exploits the temporal correlation of audio concepts in an event.
First, the audio-concept features are extracted using a Hierarchi-
cal Deep Neural Network, which analyzes the short- and long-
term surrounding acoustic information for the concept. Sec-
ond, Hidden Markov Models are used to model the continu-
ous, non-stationary characteristics of the audio signal through-
out the event; the HMMs are then used for event detection in
videos. The resulting system performs competitively in com-
parison with an MFCC-based system, but because it involves
audio concepts, it can show humanly understandable evidence
to explain the relationship of those audio concepts with events
in video. Although the ratio of audio concepts to event types
minimizes the possibilities for discrimination, the system can
take advantage of even this limited selection of audio concepts
to distinguish some events with fair reliability. Certainly, the
next step for the research presented here is to include the nega-
tive files from the test set and analyze their impact. In addition,
it is important to expand the set of audio concepts.
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