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Context 
-When performing video event detection on 
user-generated content (UGC) different 
events are better described by different 
concepts such as music, laughter or 
clapping.  
 

Problem 
-Low level features do not provide humanly 
understandable evidence of why videos 
belong to a specific event.  
-Ad-hoc annotations ignore the complex 
characteristics of UGC audio such as 
concept ambiguities, overlap and duration. 
 

Our Approach 
-Classify audio concepts and used them for 
video event detection.  
   
 
 
Example of Events 
 
E001    Attempting a board trick 
E011    Making a sandwich 
… 
E025    Marriage proposal 
E029    Winning a race without a vehicle 
E030    Working on a metal crafts project 
 

Example of Audio Concepts 
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Audio concepts annotation sets 
have unique characteristics 
 
-SRI: 28 concepts, 11.8 hours 
-CMU: 41 concepts, 13.6 hours 
-Stanford: 20 concepts, 11.8 hours  
-Gatech: 39 concepts, 4.3 hours 

•  Audio concept classification provides humanly 
understandable evidence of why videos 
belong to a specific event.  

•  Ad-hoc audio concept annotations alone does 
not provide reliable high-accuracy evidence 
nor efficient video event detection. 

•  So far, low level-features work better than 
audio-concept-features.  

•  Improve Audio Concept Classification with 
Deep Learning. 
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Classification 

-Two hidden layers with 1,000 
neurons each 
-Random initialization 
-Context window of 9 frames 
 

-MFCC, 12 coefficients + energy 
-25 ms window every 10 ms 
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Results for 5 events E001−E005 of TRECVID MED11

 

 
Random Performance
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38% of audio concepts overlaps 
with one or more concepts  
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