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ABSTRACT

Scene detection on user-generated content (UGC) aims to clas-
sify an audio recording that belongs to a specific scene such as
busy street, office or supermarket rather than a sound such as car
noise, computer keyboard or cash machine. The difficulty of scene
content analysis on UGC lies in the lack of structure and acous-
tic variability of the audio. The i-vector system is state-of-the-art
in Speaker Verification and Scene Detection, and is outperforming
conventional Gaussian Mixture Model (GMM)-based approaches.
The system compensates for undesired acoustic variability and ex-
tracts information from the acoustic environment, making it a mean-
ingful choice for detection on UGC. This paper reports our results
in the challenge by using a hand-tuned i-vector system and MFCC
features on the IEEE-AASP Scene Classification Challenge dataset.
Compared to the MFCC+GMM baseline system, our approach in-
creased the classification accuracy by 26.4% relative, to 65.8%. We
discuss our approach and highlight parameters in our system that
significantly improved our classification accuracy.

Index Terms— User Generated Content, Scene Detection,
Event Detection, Audio, GMM, i-vector.

1. INTRODUCTION

Scene detection aims to identify recordings with a semantically de-
fined scene. This task has been explored by computer vision using
different features and techniques. However, audio has been under-
explored, and the state-of-the-art audio-based techniques do not
yet provide significant assistance to its video counterpart. Audio,
however, can sometimes be more descriptive than video, especially
when it comes to the descriptiveness of an event. For instance, the
audio cue can quickly allow one to determine whether a street is
busy or quite. Thus, there is great importance in exploring tech-
niques to improve the use of audio for scene detection.

In the past, retrieval problems often suffered from limited train-
ing data. In contrast, UGC (such as YouTube videos) is generally
available in large scale for content analysis. UGC is also known
to be unstructured, in the sense that it contains low-quality record-
ings, background- and environmental acoustics, and overlapping
and variable sound durations. The dataset provided by the IEEE-
AASP Classification Challenge [1] gives us an opportunity to gain
experience with a rather small UGC dataset.

This paper employs an i-vector based system for audio-based
video event detection, as an attempt to address the challenges pre-
sented in UGC data. The system provides competitive results using

audio features, for the small UGC dataset. The approach also rep-
resents a simple, logical and scalable choice for the task, as it is a
bag-of-frames (BOF) approach that does not rely on the use of au-
dio concepts or sounds. A description of the hand-tuned system and
the results is included.

This paper is structured as follows: Section 2 presents the re-
lated work. Section 3 continues with the data. Section 4 describes
the scene detection system. Section 5 details the experimental setup.
Section 6 presents and explains the results, and Section 7 states the
conclusion and future work.

2. RELATED WORK

There have been different approaches to audio-based scene detec-
tion for UGC audio. Some of them were designed towards the NIST
evaluation called TRECVID Multimedia Event (Scene) Detection
(MED) [2]. An early system [3] creates Gaussian Mixture Models
(GMM) for each scene and classifies them using a likelihood ra-
tio. A more recent example is a system [4] that extracts audio units
automatically with a diarization system to create an audio word vo-
cabulary, computes Term Frequency - Inverse Document Frequency
(TF-IDF) histograms for each unit, and classifies them with a Sup-
port Vector Machine (SVM). A similar example is a system in [5]
that creates an automatic audio word vocabulary with a RF algo-
rithm, and computes TF-IDF histograms for each event based on the
audio relevance. The histograms are then classified using a SVM.
These two systems rely mainly on how distinctive the audio vocab-
ulary represents each known event. The paper from [6] employs an
i-vector technique combined with cosine kernels or chi-square ker-
nels in an SVM. Our audio-based scene detection system based on
the use of i-vectors has been previously tested with MED data [7].

In speaker verification, the i-vector system [8, 9] is now the
state-of-the-art. The approach used in the system conveys the audio
class characteristics, among other information, such as transmission
channel, acoustic environment, or acoustic content. These proper-
ties make the i-vector system a meaningful approach for a detection
task on UGC data. The technique has been successfully used also in
tasks such as language recognition [10] and speaker diarization [11]
on data captured in controlled environments. However, the i-vector
system has not been thoroughly explored on audio-based scene de-
tection using UGC audio.
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3. DATA

The IEEE-AASP Classification Challenge provided the audio set
used in the experiments. The set comprises 100 audio files, ten
30 second audio files for each of the ten scenes. The ten scenes
are shown in Table 1. The audio may contain spontaneous speech,
background noise, overlapped sounds, or other unintelligible audio.
The set provides no extra annotations other than the scene name
of each sample. The audio files are binaurally captured, incorpo-
rating the binaural cues of three unknown heads at 44.1 kHz and
16-bit PCM.

4. AUDIO-BASED SCENE DETECTION SYSTEM

The i-vector system was initially developed by Dehak et al. [8], with
an improvement made by Burget et al. [9]. The system involves
training a matrix T to model the total variability of a set of statistics
for each audio track. The statistics primarily involve the first-order
Baum-Welch statistics of the low-level acoustic feature frames (i.e.,
MFCCs) of each audio track. The Baum-Welch statistics are in turn
computed using a UBM. The Total Variability matrix T is low rank,
and is used to obtain a low-dimensional vector characterizing the
acoustic event of each audio track. Specifically, for each audio, the
vector of first-order Baum-Welch statistics M can be decomposed
as follows, given the T matrix:

M = m+ Tω + ε (1)

where m is the event-independent GMM, ω is a low - dimensional
vector, referred to as the i-vector, and ε is the residual not captured
by the terms m and Tω. The i-vector can be thought of as a low-
dimensional representation of the identity of each event class.

For the Challenge, five stratified folds were created, with 80 au-
dio files for training and 20 audio files for testing. One i-vector is
obtained for each audio file. The system performs a Within-Class
Covariance Normalization (WCCN) [12] on the i-vectors, which
whitens the covariance of the i-vectors via a linear projection ma-
trix. We followed an approach in [9], whereby a generative Prob-
abilistic Linear Discriminant Analysis (pLDA) [13] log-likelihood
ratio is used to obtain a similarity score between each test audio
and each training event class, using the i-vectors. Because there are
multiple audio samples per training event class, the i-vectors within
each class are averaged such that each class is represented by one
i-vector. The generative pLDA log-likelihood ratio for similarity
score computation is shown below:
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where ω1 and ω2 are the two i-vectors, N(·) is the normal Gaus-
sian probability density function, Σtot and Σbc are the total and
between-class scatter matrices of the training i-vectors, prior to av-
eraging. Hence, one score is obtained for each training event class
versus test audio using the above approach. The i-vector system in-
volves several pre-trained components, such as the UBM, the T ma-
trix, the WCCN projection matrix, and the total- and between-class
scatter matrices. All such components were trained using the fold’s
corresponding training audio. The Brno University of Technology’s

JFA Matlab demo [14] is used to assist in the i-vector system de-
velopment. The open-source ALIZE toolkit [15] is used to train the
UBM.

The extracted acoustic features are the typical Mel-Frequency
Cepstral Coefficients (MFCCs) C0-C19, with delta and double
deltas, for a total of 60 dimensions, extracted using the HTK tool
[16]. Each feature frame is computing using a 25 ms window, with
10 ms frame shifts. A frequency range of 60-20000 Hz and 52 trian-
gle filter-banks were selected. Short-time Gaussian feature warping
using a three-second window [17] is used, and temporal regions
containing identical frames are removed.

5. EXPERIMENTS

The experiments consisted of computing an average across four 5-
fold stratified cross-validations using the provided 100 file audio
set. Each fold consisted of a randomly selected and unique sub-
set of eight files for training, and two for testing, for each scene
class. The reason for performing several cross-validations was to
provide greater statistical significance in the results for the small
audio set. The baseline results presented here were taken from the
IEEE-AASP Classification Challenge [1], which employed a con-
ventional UBM-GMM and likelihood ratio system to process a 5-
fold stratified cross validation set. The metrics used to compare
performance are classification accuracy, and the corresponding con-
fusion matrices for further analysis.

To take advantage of additional cues embedded in the binau-
ral recordings of this dataset, while maintaining the system’s one-
channel processing architecture, we extract from each audio file
four different monaural versions and concatenated them, resulting
in a one-channel file with a duration of two minutes. The four dif-
ferent monaural versions are:

1. Left channel
2. Right channel
3. Channel difference: left channel - right channel
4. Channel average: (left channel + right channel)/2

The extracted MFCCs from these concatenated versions are ex-
pected to provide more useful cues for the i-vector system, com-
pared to extracting MFCCs from just one channel.

6. RESULTS AND DISCUSSION

The final system achieved an accuracy of 65.8% ± 4.8% with 95%
confidence interval (C.I.) averaged across four different 5-fold strat-
ified cross-validations. The results suggest an increased accuracy of
26.4% relative compared to the baseline system with 52% ± 13%
with 95% C.I.

The confusion matrices from the baseline system [18] and from
our i-vector system are shown in Table 1. For an understated com-
parison with the baseline system, we deliberately show the confu-
sion matrix from the least accurate of our four 5-fold stratified cross
validation sets.

A classification accuracy of 80% or better was achieved for
the scenes busystreet, openairmarket, and park. The least accu-
rate numbers are related to the scenes tube (40%), and tubestation
(30%). Compared to the baseline results, our system has a similar
or higher accuracy in 6 of the 10 classes. Our system performed
especially well for classes such as park, busystreet and restaurant.
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bus 9 - - - - - - - 1 -
busystreet - 5 - 2 - - 1 - - 2

office - - 8 - 1 - - 1 - -
openairmarket - - - 8 - - 1 1 - -

park - - 2 1 3 3 - 1 - -
quietstreet - - - 2 2 4 - 2 - -
restaurant - - - 2 - - 3 3 - 2

supermarket 1 - 1 2 1 - 1 2 - 2
tube - - - - - - 2 - 6 2

tubestation - - - 2 - - - 2 2 4
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bus 6 - 1 2 - - 1 - - -
busystreet - 9 - - - - - - - 1

office - - 6 - 2 1 - - 1 -
openairmarket 1 - - 8 - - 1 - - -

park - - 2 - 8 - - - - -
quietstreet - 2 1 2 - 5 - - - -
restaurant - - - 1 - - 7 2 - -

supermarket 1 1 1 1 - - - 5 - 1
tube - 1 - 1 1 - - - 4 3

tubestation - 2 - 1 - 1 - 1 2 3

Table 1: Confusion matrices for baseline system (top) and our i-
vector system (bottom). Rows are ground-truth labels. In bold: the
system with the higher classification score.

Table 2: There are four outdoor and six indoor scenes.

Outdoor Indoor
busystreet bus
openairmarket office
park restaurant
quietstreet supermarket

tube
tubestation

While the supermarket scene is the scene that is most often mis-
classified in the baseline system (83.3% false positives), our system
performs reasonably well (only 37.5% false positives).

When separating the ten scenes into indoor and outdoor cate-
gories as shown in Table 2 and comparing the achieved accuracy
of the two categories, it becomes clear that our system outperforms
the baseline system for outdoor scene classification. However, our
system has difficulties with the six indoor scenes, as shown in Fig-
ure 1. Moreover, as observable in the confusion matrix in Table 1,
the indoor recordings often gets mislabeled as the outdoor scenes
busystreet or openairmarket. This indoor-outdoor confusion must
be prevented to increase our system’s accuracy, for instance by em-
ploying a room identification system [19], or by using additional
binaural features, such as those based on the inter-aural cross cor-
relation (IACC). The approach could also be used in tandem with
other audio-based techniques that addresses the i-vector weaknesses
to achieve better results.

One reason the i-vector system is perhaps able to improve re-
sults is that it can capture the acoustic event characteristics con-
tained in the audio using a low-dimensional i-vector, described in

Section 4. Furthermore, the WCCN and pLDA components of the
the system normalize for the within- and between-class i-vector
scatter of the events, which accounts for cases when the same scene
contains distinctly different audio in different recordings, and when
different scenes contain similar audio.
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Figure 1: The mean accuracy for indoor and outdoor scenes show
that our i-vector system outperforms the baseline system for outdoor
scene classification.

7. CONCLUSION AND FUTURE WORK

Scene detection on user-generated content (UGC) aims to classify
an audio recording that belongs to a specific scene such as busys-
treet, office or supermarket, rather than a sound such as car noise,
computer keyboard or cash machine. The difficulty of scene content
analysis on UGC lies in the lack of structure and acoustic variabil-
ity of the audio. The i-vector system is state-of-the-art in Speaker
Verification and Scene Detection, and is outperforming conven-
tional Gaussian Mixture Model (GMM)-based approaches. The
system compensates for undesired acoustic variability and extracts
information from the acoustic environment, making it a meaningful
choice for detection on UGC.

The results on this paper show the feasibility of using an
MFCC+i-vector system for a scene detection task and the signifi-
cant improvements in comparison to the conventional GMM-based
system. The classification accuracy of 80% or better was achieved
for the scenes busystreet, openairmarket, and park, while the scene
tubestation received the least classification accuracy (30%).

To potentially improve the accuracy of those classes, additional
features such as those based on the modulation spectrogram could
be beneficial and could be added to the system. Furthermore, im-
plicit binaural features, such as the inter-aural cross correlation co-
efficient (IACC) could help to improve the differentiation of in-
door/outdoor characteristics.

The i-vector system provides a valid approach not only for tack-
ling the scene detection task itself, but also for handling the difficul-
ties of UGC data.
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and N. Brümmer, “Discriminantly trained probabilistic linear

discriminant analysis for speaker verification,” in Proceedings
of ICASSP, Prague, Czech Republic, 2011.

[10] D. Martinez, O. Plchot, L. Burget, O. Glembek, and P. Mate-
jka, “Language Recognition in iVectors Space,” in in Proceed-
ings of Interspeech, 2011.

[11] D. T. T. Javier Franco-Pedroso, Ignacio Lopez-Moreno and
J. Gonzalez-Rodriguez, “ATVS-UAM System Description for
the Audio Segmentation and Speaker Diarization Albayzin
2010 Evaluation,” in in FALA ”VI Jornadas en Tecnologia del
Habla” and II Iberian SLTech Workshop, 2010, pp. 415—418.

[12] A. O. Hatch, “Generalized linear kernels for one-versus-all
classification: Application to speaker recognition,” in Pro-
ceedings of IEEE ICASSP, Toulouse, France, 2006.

[13] S. Ioffe, “Probabilistic linear discriminant analysis,” in Pro-
ceedings of ECCV, 2006, pp. 531–542.

[14] O. Glembek, “Joint factor analysis matlab demo,”
http://speech.fit.vutbr.cz/software/joint-factor-analysis-
matlab-demo/.

[15] J. Bonastre, F. Wils, and S. Meignier, “Alize, a free toolkit for
speaker recognition,” in Proceedings of ICASSP, vol. 1, 2005,
pp. 737–740.

[16] S. Young and S. Young, “The htk hidden markov model
toolkit: Design and philosophy,” Entropic Cambridge Re-
search Laboratory, Ltd, vol. 2, pp. 2–44, 1994.

[17] J. Pelecanos and S. Sridharan, “Feature warping for robust
speaker verification,” in Proceedings of Speaker Odyssey,
Crete, Greece, 2001.

[18] D. Giannoulis, E. Benetos, D. Stowell, M. Rossignol, M. La-
grange, and M. Plumbley, “IEEE AASP challenge: Detection
and classification of acoustic scenes and events,” 2013.

[19] N. Peters, H. Lei, and G. Friedand, “Name That Room: Room
Identification Using Acoustic Features in a Recording,” in
Proc. of ACM Multimedia, Nara, Japan, 2012.


