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ABSTRACT

Over the recent years, the problem of video location esti-
mation (i.e., estimating the longitude/latitude coordinates
of a video without GPS information) has been approached
with diverse methods and ideas in the research community
and significant improvements have been made. So far, how-
ever, systems have only been compared against each other
and no systematic study on human performance has been
conducted. Based on a human-subject study with 11,900
experiments, this article presents a human baseline for lo-
cation estimation for different combinations of modalities
(audio, audio/video, audio/video/text). Furthermore, this
article compares state-of-the-art location estimation systems
with the human baseline. Although the overall performance
of humans’ multimodal video location estimation is better
than current machine learning approaches, the difference is
quite small: For 41 % of the test set, the machine’s accuracy
was superior to the humans. We present case studies and
discuss why machines did better for some videos and not for
others. Our analysis suggests new directions and priorities
for future work on the improvement of location inference
algorithms.
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1. INTRODUCTION

With the widespread use of GPS-equipped handheld de-
vices, location metadata (aka geo-tagging) has rapidly be-
come an integral part of photos and videos shared over the
Web. This trend has enabled location based multimedia or-
ganization, search and retrieval on many Internet services
such as Google, Facebook, and Flickr. The main driving
force behind these services is the creation of highly person-
alized user experiences, allowing for better recommendations
and targeted advertisements.

Even with this trend, it has been estimated that only
about 5% of the existing multimedia content on the In-
ternet is actually geo-tagged [8]. A significant amount of
consumer-produced media content is still obtained using de-
vices that do not have GPS functionality. Privacy concerns
have motivated users to disable automatic geo-tagging of
media. Furthermore, even GPS-enabled devices cannot pro-
vide accurate location information when the photo or video
is captured in an indoor environment.

Nevertheless, the volume of high quality geo-tagged videos
and photos on the Web represent a quantity of training data
for machine learning on an unprecedented scale, giving rise
to the idea of creating an automated task that would try
to locate non-geo-tagged media from the web using models
obtained through the geo-tagged subset. Put simply: Given
a video and its associated textual metadata, can we infer
the location where it was taken? This idea of “multimodal
video location estimation”; was proposed three years ago as a
Brave New Idea in [8]. Since then, the “Placing Task” of the
MediaEval evaluation [22] has evaluated the task on a global
scale [19]. Therefore, the problem has been approached with
diverse methods and ideas in the research community and
significant improvements have been made. So far, however,
approaches have only been compared against each other and
there is little intuition on how humans would perform at this
task. Some researchers even assume that the automated al-
gorithms would probably always perform better on this task
compared to humans. In this paper, we establish a human
baseline for video location estimation and present a com-
parative analysis with automatic location inference systems.
The baseline was created by asking qualified humans to per-
form a total of 9,000 video localizations. With the human
baseline in our hand, we are able to analyze different cases
of when machines perform better than humans, humans per-
form better than machines or when both fail.



Our paper is organized as follows. Section 2 provides a
brief overview of the existing work in the field and posi-
tions our work in comparison to the available literature.
Section 3 describes the task and the characteristics of the
dataset that render the task difficult. Section 4 describes
the experimental setup for establishing the human baseline
using a crowdsourcing platform. Section 5 describes our
technical approaches to utilizing audio, audio/visual, and
audio/visual/textual metadata for automatic location infer-
ence. Section 6 provides a comparison of the performance
of location estimation between machines and humans. In
section 7, we present case studies and discuss why machines
perform better for some videos and not for others. Section 8
concludes with a summary of the paper and future research
directions based on our analysis.

2. RELATED WORK

Initial approaches to location estimation started several
years ago. In earlier articles [28, 33|, the location estima-
tion task is reduced to a retrieval problem on self-produced,
location-tagged image databases. The idea is that if the im-
age is the same then the location must be the same too.
Hays and Efros [12] estimate a rough location of an image
with several visual descriptors and represent the estimated
image location as a probability distribution over earth’s sur-
face. A comprehensive overview of this early research work
is presented in [21].

Previous work in the area of automatic geotagging of mul-
timedia based on tags has mostly been carried out on Flickr
images. In [26], the geo-locations associated with specific
Flickr tags are predicted using spatial distributions of tag
use. A tag which is strongly concentrated in a specific lo-
cation has a semantic relationship with that location. User-
contributed tags are exploited for geotagging by [29], who
used tag distributions associated with locations as repre-
sented by grid cells on a map of the earth which is then
used to infer the geographic locations of Flickr images.

Evaluations on multimodal location estimation on ran-
domly selected consumer-produced videos were carried out
in the 2010, 2011, and 2012 MediaEval Placing tasks [22].
One of the notable participants [18] used a combination of
language models and similarity search to geo-tag the videos
using their associated tags. Many participants in the Placing
task try to utilize both visual and textual features for their
location estimations. Friedland et al. [7] propose a hierar-
chical system that first uses spatial variance of tags to find
initial estimates which are used as anchor points to set the
search boundary for visual nearest neighbor search in the
later stage. Kelm et al. [16] propose another hierarchical,
multi-modal approach which first classifies a query video’s
location into possible regions and then applies a visual near-
est neighbor method to find corresponding training images
in those regions. Crandall et al. [6] propose a model that
produces enhanced geographical annotation for web images
using visual and tag features and an annotation lexicon. The
approaches in [1] and [9] report on combining visual content
with user tags as well.

Multimodal location estimation on videos that utilize au-
dio was first attempted in [8] in which the authors matched
videos containing audio from ambulance sirens in different
cities, without the use of textual tags. Other works such
as [5] reports the results of a location estimation system that
incorporates all three modalities that are usable in video lo-
cation estimation, i.e. textual, visual, and audio features.

Figure 1: Distribution of the videos and images of
the MediaEval 2010 Placing Task training dataset.
Jet colormap was applied to show the density.

All of the approaches described above have the common
feature of processing each query video independently and
estimating its geo-location based on textual, visual, and au-
dio features using a geo-tagged training database. Clearly,
the performance of these systems largely depends on the size
and quality of the training database. However, data spar-
sity is one of the major issues that can adversely affect the
performance of these systems. The work presented in [4]
differs from the existing work in the literature in the re-
spect that they jointly estimate the geo-locations of all of
the input query images. Each query image added to the
database enhances the quality of the database by acting as
“virtual” training data and thereby boosts the performance
of the algorithm. The system presented in this paper is an
improvement over that work as the system presented here
uses all three modalities (visual, audio, and textual features)
whereas [4] only uses textual features collected from user-
annotated metadata.

Crowdsourcing is currently used for a range of applications
such as exploiting unsolicited user contributions, for spon-
taneous annotation of images for retrieval [27], etc. System-
atic crowdsourcing platforms, such as Amazon Mechanical
Turk have been used to mass-outsource artificial intelligence
jobs [14]. Further, crowdsourcing has also been used for sur-
veying and evaluating user interfaces [17], designs, and other
technical approaches.

However, as the name coincidentally implies, platforms
such as Mechanical Turk are often best used for mechanical
tasks, i.e. tasks that only require simple intuition. There-
fore, for a task like the one presented here, where there is a
suspicion that humans might perform worse than machines
and there is no clear intuition as to how to solve the task,
one has to be very careful about how to approach it properly.
Apart from [10], there is no previous work on using Mechan-
ical Turk for geo-tagging videos, moreover there seems to be
no previous work on how to use Mechanical Turk for a task
that is not straightforward to solve.

So far, no human baseline exists for location estimation,
and systems have only been compared against each other.
At the same time, these systems differ quite dramatically.
This paper establishes a human baseline and compares it
against two state of the art systems from the literature to
draw conclusions for future directions of this research. To
ensure the quality of the human baseline, we rely on the
qualification methodology described in [10] in combination
with redundancy [15].



Figure 2: Several frames from the randomly selected
videos that were used in the experiment. Most of
them are very difficult to specifically geolocate.

3. TASK AND DATASET

All experiments described in this article were performed
using the dataset distributed for the Placing Task of the
2010 MediaEval benchmark'. The Placing Task is part of
the MediaEval benchmarking initiative that requires par-
ticipants to assign geographical coordinates (latitude and
longitude) to each test video. Participants can make use
of textual metadata, audio and visual features as well as
external resources, depending on the test run.

The dataset consists of 3,185,258 photos and 10216 videos.
All are Creative Commons-licensed and from Flickr®. The
metadata for each video includes a user-annotated title, tags,
and a description among others. The videos are not filtered
or selected in any way to make the dataset more relevant
to the task, and are therefore likely to be representative of
videos selected at random [19]. Figure 1 shows the non-
uniform distribution of Flickr videos and images due to ge-
ographical, economical, and political reasons.

Flickr requires that an uploaded video must be created
by the uploader, and thus almost all videos on Flickr are
home-video style. The relatively short lengths of each video
should be noted, as the maximum length of a Flickr video
was limited to 90 seconds when the dataset was collected.
Moreover, about 70 % of videos in this data set have less than
50 seconds of playtime. Manual inspection of the randomly
sampled 150 videos from the dataset shows that if given
with only the audio and visual contents, 8% of the videos
contained enough information for accurate guesses, and 10%
with rough hints that would lead to city or country level es-
timations. The rest of the videos had very little cue for
location estimation. Videos of indoor settings consist 36%
of the videos and about half of them are private space such
as one’s house or in the backyard. 24% of the videos con-
tained human speech in various languages including English,
Spanish, Swedish, Japanese, etc. The metadata provided by
the user often provided direct and sensible clues for location
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Figure 3: Comparison of performance results for
Ideall0 set [10]. Error distance (y-axis) is in a log
scale.

estimation. 98.8% of videos in the training dataset were
annotated by their uploaders with at least one title, tag, or
description, which often included location information.

4. ESTABLISHING A HUMAN BASELINE

Collection of human baseline was performed in two steps.
In the first step we qualified people, by filtering out incompe-
tent or unmotivated workers and ensuring that the quality
of submissions were high enough for the second stage. In
the second stage, we collected the human baseline for 1000
videos. We used Amazon Mechanical Turk as the crowd-
sourcing platform.

4.1 Qualification

The task of location estimation is different from a stan-
dard Mechanical Turk task in that it is difficult for both
humans and machines, whereas a standard Mechanical Turk
task is usually easy for humans and difficult or impossible
for machines. There are several notable challenges to finding
skilled workers for this task: First, we must find what we
term “honest operators” i.e., people who will seriously at-
tempt to do the task and not just click quickly through it to
collect the bounty. Second, we need to develop a meaningful
qualification test set that is challenging enough to allow us
to qualify people for the real task, but is also solvable by
individuals regardless of their culture or location, although
English language understanding was required for instruc-
tions. For example, in the process of selecting videos, there
were videos of tourists in Machu Picchu, which our annota-
tor immediately recognized, however there were no clues to
reveal this location that would be usable to someone who
had not heard or seen this location previously. These videos
were ruled out for the qualification. In the end, ten videos,
which we called ‘Ideall0 set’, were carefully chosen and pre-
sented to the workers. We created an in-depth tutorial which
presented the workers with the basic tools and skills for ap-
proaching this challenging task. The workers are allowed
to use any applicable resource from the Internet, including
Google Maps and Streetview.

Our previous study show that, after the qualification pro-
cess, workers on the crowdsourcing platform achieved al-
most equal level of accuracy as an internal expert volunteer
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Figure 4: Screenshot of web interface used in the Amazon Mechanical Turk experiments described.

testers which was composed of highly-educated, well-trained
and motivated researchers. In Figure 3, we have a compar-
ison of the performance results for our internal testers, the
initial test results of MTurkers, and their results with the
tutorial. The internal tester and initial test results were de-
rived by using the classification results from the first round
for the videos in the Ideall0 set, as those videos are a subset
of our larger annotation. We can see that while the inter-
nal testers still perform better than the Mechanical Turk
workers, the addition of a tutorial greatly narrowed the per-
formance margin. This led us to conclude that a worker
who is adequately trained with a tutorial can be considered
reasonably qualified.

However, to select only the highest quality workers, we ap-
plied a screening process to filter out not only bad but even
workers who performed averagely well. Out of 290 workers
on Mechanical Turk, who had participated in the qualifi-
cation task, we qualified only 84 workers (29% acceptance
rate), those who were able to achieve very high accuracy i.e.,
were able to put at least 8 of 10 qualification videos within
a bkm radius of the ground truth location. We considered
5km margin of error as a city-level accuracy. When applied
with the same evaluation criteria, internal volunteers showed
similar acceptance rate of 34%. Additionally, time spent for
each human video localization was recorded and often di-
rectly correlated with accuracy, giving us a further accuracy
indicator for the actual localization test. After successful
qualification, we paid USD 1.50 for each HIT (Human Intel-
ligence Task), which consisted of 10 video localizations.

4.2 The Web Interface

Here, we describe our user interface which the Amazon
Mechanical Turk workers used for the task. We went through
several rounds of internal testing and feedback to enhance
the usability of the tool.

Figure 4 shows the final version of this interface. The
instructions on the top of the screen can be expanded and
shrunk with a ‘Show/Hide’ button. It was shrunk by default
to make the whole interface fit in a normal-sized window to
minimize unnecessary scrolling of the screen. A progress bar
was shown below the instructions box to let workers know
where they are along the progress of a HIT. A video was
played automatically once the page was loaded. All videos
were re-uploaded to a private file server without the meta-
data so that simply following the link on the player would
not reveal any additional information about the video. A
Google Maps instance was placed to the right of the video.
A marker would be dropped where the map was clicked, and
it could be dragged around the map. The marker’s position
was automatically translated to the latitude and longitude
and printed to the ‘Latitude’ and ‘Longitude’ boxes. A loca-
tion search form was placed under the map to aid the search
of the location. The form had an auto-completion feature
which would help in cases where the worker did not know the
exact spelling of the place, etc. At the end of the HIT, we
asked participants to leave comments about the HIT. This
enabled us to filter out submissions with incidents and other
exceptions.



4.3 Collection of Human Intelligence

When we collected the human performance for a different
set of modalities, we presented the media with least infor-
mation to all i.e., first we gave audio then audio/visual, and
lastly audio/visual and textual information (tags). For each
HIT, a worker was given five videos with three different me-
dia combinations, thus the total of 15 media streams. For
the same set of media streams, three identical HITs were
generated redundantly for the comparison and to filter out
the possible bad results. HITs were assigned with first-come
first-served basis to the pool of 84 qualified workers. To
distribute the HITs to as many as workers and as evenly
as possible, we applied some throttle control to limit the
number of HITs that an individual worker can accept. We
started the reward for each HIT with USD 0.25 but, based
on feedback, quickly increased it to USD 1.50, which re-
sulted in a much faster collection result. Within 18 days,
we were able to collect a total of 11,900 localizations (2900
from qualification, 9000 from localizing 1000 videos). Many
workers have left comments that the task was challenging,
especially for the cases when only the audio was given. At
the same time, many of them reported the HIT to be fun
and we believe that this motivated people to try to submit
better results.

5. MACHINE-BASED LOCATION ESTIMA-
TION

In this section, we describe the technical approach and
our experimental setup for automatic location inference. We
first describe the audio-based approach, then describe how
visual feature was added to the modality, and finally, the
method that uses all three modalities (audio, visual, and
textual metadata).

5.1 Audio-based Location Estimation

We used the city identification system reported in [20] as
our machine baseline for location estimation. We describe
the main idea of the system as follows. The system involves
training a total variability matrix T to model the variabil-
ity (both city- and channel-related) of the acoustic features
of all audio tracks, and using the matrix to obtain a low-
dimensional vector characterizing the city of where each au-
dio track was from. Specifically, for each audio file, a vector
of first-order statistics M - of the acoustic feature vectors
of the audio centered around the means of a GMM world
model - is first obtained, and can be decomposed as follows:

M=m+Tw (1)

where m is the GMM world model mean vector, and w
are low-dimensional vectors, known as the identity vectors
or i-vectors.

The system then performs Probabilistic Linear Discrim-
inant Analysis (pLDA) [13] and Within-Class Covariance
Normalization (WCCN) [11] on the i-vectors. pLDA linearly
projects the i-vectors w onto a set of dimensions to maxi-
mize the ratio of between-user scatter to within-user scat-
ter of the i-vectors, producing a new set of vectors. WCCN
then whitens the pLDA-projected vectors via a second linear
projection, such that the resulting vectors have an identity
covariance matrix. For our city identification system, 1,024
mixtures are used for the GMM world model, and a rank
of 400 is used for the total variability matrix 7", such that
the i-vectors w have 400 dimensions. pLDA projects the i-
vectors onto a set of 200 dimensions. The cosine distance is

used to obtain the city-similarity score of a pair of i-vectors
w between two audio tracks of user-uploaded videos [30]:

score(wr,ws) =
(ATw1 )TW7 1 (ATUJQ)
VAT WL (AT w1 ) /(AT ) TW L (AT w3)

(2)

where A and W are the LDA and WCCN projection ma-
trices respectively, and w; and wsy are i-vectors from the
two audio tracks being compared against. The acoustic fea-
tures consist of MFCC C0-C19+A+AA coefficients of 60 di-
mensions, computed using 25 ms windows and 10 ms shifts,
across 60 to 16,000 Hz.

Since we could not train the model to cover all regions of
the earth due to the data sparsity, we clustered the distri-
bution of videos into the 40 cities in the training dataset,
and reduced the location estimation to a city-identification
problem. We trained the system with models for each city
using the collection of audio tracks extracted from each city.
A video is defined to belong to a city when it is in a 50 km ra-
dius of the geographical city center. We then tested the au-
dio tracks extracted from the test videos against the trained
models and picked the city with the highest likelihood. For
comparability, we converted the city labels to the (latitude,
longitude) format with the geo-coordinates of the center of
the city. Note, that this creates a slight disadvantage for the
machine.

5.2 Visual Location Estimation

In order to utilize the visual content of the video for lo-
cation estimation, we reduce location estimation to an im-
age retrieval problem, assuming that similar images mean
similar locations as in [12]. We used several visual descrip-
tors extracted from sample frames of both query and train-
ing videos along with the images given as the Placing Task
dataset and ran a k-nearest neighbor search on the training
dataset to find the video frame or an image that is most
similar. We used FCTH (Fuzzy Color and Texture His-
togram) [3], CEDD (Color Edge Directivity Descriptor) [2],
and Tamura [31] visual descriptors that were given as a part
of the Placing Task dataset. In addition to these descrip-
tors, we extracted Gist features [24] as it was shown to be
very effective at scene recognition in [12]. Weighted linear
combination of distances was used as the final distance be-
tween frames. The scaling of the weights was learned by
using a small sample of the training dataset and normal-
izing the individual distance distributions so that each the
standard deviation of each of them would be similar. We
used L? norm to compare the combination of descriptors and
used 1-nearest neighbor matching between the closest pre-
extracted frame to the temporal mid-point of a query video
and all photos and frames from the videos in the training
dataset. In order to handle the large amounts of develop-
ment data efficiently, we split the reference data set into
chunks of 100,000 images, ran 1-NN in parallel on each sub-
set to get intermediate results, and ran 1-NN once again on
the intermediate results to get the final nearest neighbor.
We used an approximate nearest neighbor library [23] for
the experiment.

While videos with soundtrack were shown to the crowd,
due to data sparsity, our comparison system did not use the
acoustic modality and relied solely on the visual modality.
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5.3 Multimodal Location Estimation

To integrate textual and visual data, we combined the
visual search method with the system reported in [4]. Due
to data sparsity, again, while the soundtrack was available to
humans, the acoustic modality was not used. The approach
based on graphical models is summarized as follows.

Graphical models provide an efficient representation of
dependencies amongst different random variables and have
been extensively studied in the statistical learning theory
community [32]. The random variables in our setup are
the geo-locations of the query videos that need to be esti-
mated. We treat the textual tags as observed random vari-
ables that are probabilistically related to the geo-location
of that video. Figure 5 illustrates the idea. The goal is
to obtain the best estimate of the unobserved random vari-
ables (locations of the query videos) given all the observed
variables. We use graphical models to characterize the de-
pendencies amongst the different random variables and use
efficient message-passing algorithms to obtain the desired
estimates. In order to obtain a graphical model representa-
tion for our problem setup, we model the joint distribution
of the query video locations given the observed data. We
use a simplistic conditional dependency model for the ran-
dom variables as described below. Each node in our graph-
ical model corresponds to a query video and the associated
random variable is the geo-location of that query video. In-
tuitively, if two images are nearby, then they should be con-
nected by an edge since their locations are highly correlated.
The problem is that we do not know the geo-locations a pri-
ori. However, given that textual tags are strongly correlated
to the geo-locations, a common textual tag between two im-
ages is a good indication of the proximity of geo-locations.
Hence, we will build the graphical model by having an edge
between two nodes if and only if the two query videos have
at least one common textual tag. Note that this textual tag
need not appear in the training dataset.

Let x; be the geo-location of the ith video and {t¥ Wi, be
the set of n; tags associated with this video. Based on our
model the joint probability distribution factorizes as follows:

P, N [{t} o {tK ) o [ ¢(@il{tF})

i€V

[T vy A6,

(i.5)€E

We now need to model the node and edge potential func-
tions. Given the training data, we fit a Gaussian Mixture
Model (GMM) for the distribution of the location given a
particular tag ¢, i.e., p(z|t). The intuition is that tags usually
correspond to one or more specific locations and the distri-
bution is multi-modal (e.g., the tag “washington” can refer to
the State of Washington or Washington D.C., among other
locations). To estimate the parameters of the GMM, we
use an algorithm based on Expectation Maximization that
adaptively chooses the number of components for different
tags using a likelihood criterion. Although distribution of
the locations given multiple tags is not independent, for this
experiment, we start with a naive assumption that different
tags are conditionally independent. We take the node po-
tential as follows, ¥ (z;) oc [[}2, p(x:|t¥). For the potential
functions, ¥(xi, z;|{tF}, {t¥}), we use a very simple model.
Intuitively, if the common tag between two query videos
and j occurs too frequently either in the test set or the train-
ing set, that tag is most likely a common word like “video” or
“photo” which does not really encode any information about
the geographic closeness of the two videos. In this case,
we assume that the edge potential is zero (drop edge (z, 7))
whenever the number of occurrences of the tag is above a
threshold. When the occurrence of the common tag is less
frequent, then it is most likely that the geographic locations
are very close to each other and we model the potential func-
tion as an indicator function,

) ) k k _ 1 if Ty = Tj,
venlth i) = {§ e ©
This model is a hard-threshold model and we can clearly
use a soft-version wherein the weights on the edges for the
potential functions are appropriately chosen.

Further, we propose the following simplification, which
leads to analytically tractable expressions for the potential
functions and message updates. Given that for many of the
tags, the GMM will have one strong mixture component,
the distribution ¥ (x;), can be approximated by a Gaussian
distribution with the mean (fi;) and variance (57) given by,

g

1 %
Z prle 1
~ ~ k= g
(:U/i7 012) = : y (4)

k2 § : k2
w1 7i =1

where p¥ and of? are the mean and variance of the mix-
ture component with the largest weight of the distribution
p(z:|tF). Under this assumption, the iterations of the sum-
product algorithm take on the following simplistic form.
Node 7 at iteration m, updates its location estimate (ji;(m))

and variance (67(m)) as follows,

N JEN() 7
pz(m) = ) 1 ) (5)
szt Z 52(m — 1)
JEN(i) 7
A2 1
gi(m) = . 6
m) = s 1 (6)
5 L 52(m—1)
JEN(@) 7

The location estimate for the ith query video Z; is taken to
be fi;(m) at the end of m iterations, or when the algorithm
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has converged. The variance &2 (m) provides a confidence

metric on the location estimate.

So far, only the textual features are used to estimate the
location. We performed the same visual search described
in section 5.2 around the location estimate fi;(m) with the
search boundary set dynamically according to the variance
67(m). The intuition is that more we are certain about the
location estimate from the graphical framework, we search
a narrower range for similar images. Thus, if the variance is
low, the search boundary would be set low as well, and vice
versa. Since the visual search was limited to much smaller
number of images and video frames dynamically adjusted
from the confidence of the textual-based location estimate,
the results were improved over searching naively across the
whole training dataset or searching within the fixed range
from the text-based location estimate.

All of the algorithms described above, except for the acous-
tic system that seems to be unique, achieve among the high-
est scores in the MediaEval 2012 evaluation and we therefore
consider them a state-of-the-art machine baseline.

6. RESULTS

To evaluate the performance of both the online workers
and the machine, the geodesic distance between the ground
truth coordinates and those of the outputs from participants
or the machine, respectively, are compared. To take into
account the geographic nature of the evaluation, the Haver-
sine [25] distance is used.

Figure 6 shows the performance of humans vs the machine
given three different combinations of modalities: audio, au-
dio+visual, and audio+visual+text. Human performance
was measured by having 3 different qualified workers redun-
dantly locate the same video. A total number of 1000 geo-
tagged videos were presented in the 3 different forms (as
discussed in section 4), resulting in a total number of 9000
experiments. The results of the qualification experiments
are not included in this chart. To obtain a conservative
baseline for this chart, the best answer out of the 3 was
picked. For representing machine performance, we used the
system as described in section 5 based on the combination
of media tested.

Overall, humans are better at this task than machines.
However, in the very accurate (below 50 m region) current al-
gorithms outperform humans by about a 12 % margin (num-

ber of correctly located videos). The difference between the
algorithm and human intelligence is quite low though, since
overall only 59 % of the videos are located more accurately
by the human than by the algorithm when all modalities are
utilized. An unqualified worker base would most certainly
have resulted in machine dominance of this task. As a con-
trol, choosing the second-best of the 3 results, resulted in
the humans being less accurate than the algorithm in 60 %
of the videos. Both the machine and humans do better once
more modalities are available. Using only audio, the ma-
chine was better for only 16.4 % of the videos. In the visual
case, the machine was only better in 25.5 % of the videos.
We will qualify the results in the following section.

7. DISCUSSION

In this section, we analyze the cases where humans were
successful in inferring location while the machine failed and
vice versa. We also investigate the videos where humans and
computers have both failed to infer location. The threshold
for determining the ‘success’ and ‘failure’ was set differently
for each of the modalities given. We were more generous
when only the audio was given, as it is much more difficult
than the two other cases.

7.1 Machine vs. Human using only Audio

For audio only experiments, the threshold to be consid-
ered a successful estimate was set at 150km, and the failure
threshold was set at 1000 km.

7.1.1 When humans are better

Out of 1000 audio-only test videos, there were 62 cases
in which the audio provided enough information for humans
to infer location while the machines failed. Close analysis
of all of these audio tracks revealed that the cases where
humans were better than machines can be categorized into
the following three classes:

1. Humans were able to identify location based on the
kind of language spoken or the distinctive accent or
variation of the speakers in the video. With only this
information at hand and no other clues, human anno-
tators picked the capital city of the country or region
where that language is mainly spoken or was origi-
nally from (Paris for French, Glasgow for Scottish ac-
cented English, London for British accented English,



Lisbon for Portuguese). We have no way to investi-
gate whether the workers were able to use any addi-
tional information from understanding the contents of
the speech.

2. Humans were able to pick up keywords from the speech
that they were able to understand either entirely or at
least in part providing a clue sufficient to estimate the
location. For example, a Finnish singer saying, “Hello,
Helsinki!” at the opening of a concert was the only
understandable portion for people who don’t speak
Finnish, but this is a sufficient clue for estimating the
location.

3. Humans were also able to infer location information
from the context of the text spoken. In one video, the
speech contained the keywords ‘California’, ‘grapes’,
‘harvest’, and ‘wine’ which could be inferred to be in
the Napa Valley using a Google search or geographical
knowledge.

On the machine side, the first category of videos could
be localized with an audio-based language or dialect iden-
tification system. The second category of videos could be
localized as if the textual metadata were given using the
keywords extracted from the transcript of the speech ob-
tained from passing the audio track to the automatic speech
recognition system. The major challenge would be to deal
with the noisy transcript from the ‘wild’ audio. The third
kind of inference is the most difficult.

7.1.2 When machines are better

While humans were in general better at the task using
only the soundtrack, there were 10 cases when machines did
reasonably well (estimating location under 100km, which is
the city-level boundary used for the audio-based approach)
while all of the human annotators failed. One notable find-
ing from the analysis was that three of these videos were
from Prague, CZ. All three videos were from different users
and contained different scenes and events, however, a close
inspection of the audio revealed that three of the videos con-
tained a musical noise in the background. Also, two of the
training videos used to train the model for the city of Prague
had music playing in the background. We believe that our
city model from i-vector system picked up the common mu-
sical chords that are often played in the touristy locations
in Prague.

The system also gave the highest score to Tokyo to a video
that shows the Shinkansen train leaving from Tokyo sta-
tion. Similarly with the above example, we believe that the
i-vector system has learned the very specific sound of the
Shinkansen train track.

These results are good news for automatic approaches:
They show that machine learning approaches can exploit
very specific sounds that are hard to spot for humans and
use them for location matching.

7.1.3  When both fail

When a video is edited and the audio track is altered such
as when its dubbed with background music, or if there’s no
audible speech, both humans and machines usually failed.
However, human workers did tend to converge on certain
locations for the audio tracks that can be inferred to be a
stereotype of a broader category of locations such as “beach”,
“fireworks”, or “farm”. For example, for beaches, all three
human annotators picked a beach in Los Angeles, CA when
the audio track contains the sound of sea gull and the sound

of breaking waves, whereas the ground truth was a beach in
Liverpool, UK. Two of the annotators picked New York for
the audio track that contained the sound of fireworks.

This scheme is actually applicable to machine learning as
well. For example, the machine could be trained to classify
the scene into a broader category to aid in the estimation
of location. Classifying the scene of a beach at night could
benefit from using audio as the visual features would not
work well due to poor lighting conditions.

7.2 Machine vs. Human using Audio and Video

With the added visual feature, both machines and hu-
mans were able to get much better results than using audio
alone. For these experiments, the threshold to be considered
a successful estimation was set at 50 km, and the failure was
set at 1000km. We excluded cases where audio-only had
already given a sufficient clue for humans to get below the
50km error range as we could not independently evaluate
the effectiveness of the visual feature. We also investigated
cases where the audio and visual features complement each
other whereas only one modality would have failed.

7.2.1 When humans are better

In 179 cases humans were better than machines. We could
separate out about 4 classes.

1. The majority of cases where human workers perform
extremely well (getting under 5km or even 100m er-
ror) belong to the class that contain textual informa-
tion in the video. These can be in the form of captions
added by the user, signs, or even messages written on
buildings or machinery in the video. This category
of videos could possibly be located with a video OCR,
system that extracts textual information.

2. When the visual and audio modalities complement each
other but when used separately are less effective, hu-
mans are usually better. In other words, multimodal
integration in machines is not yet successful. For ex-
ample, one video showed a TV broadcast of an Amer-
ican Football game with the name of the team and
the score shown on the screen. The uploader makes
a cheering sound as the game ends and the all three
human workers inferred that the the uploader is a res-
ident of the winning team’s region, which is true.

3. When the scene contains a famous landmark humans
perform very well. However, our location estimation
system was not specifically trained to recognize land-
marks.

4. The atmosphere and context of the scene can be un-
derstood by the human workers. For instance, a video
taken from a moving car shows the clothing style of the
people on the street, the status of the road, and the
shape of buildings. In one particular case, all three hu-
man workers inferred from this collected information
that this could be a specific rural town in India, which
was in fact was the right answer.

We did not find reasonable evidence that temporal infor-
mation of the visual features impacted the location inference
of human workers.

7.2.2  When machines are better

We found 81 cases where the machine was better than the
humans using only visual features. Most of these cases con-
sisted of specific tourist spots where the machine had many



training videos of but the locations are not well known to a
lot of people. For example, all three human workers failed to
recognize the foggy Machu Picchu (mislabeled as pyramids
in Mexico) or a mountain scene of Patagonia (mislabeled as
Himalaya or Canadian Rockies).

7.2.3  When both fail

Most of the cases where both humans and machines failed
was when videos were taken indoors such as the inside of a
night club (poor lighting, poor audio), videos of babies in a
house, and so on. Other cases were some generic scenes such
as an unpopular mountain, outskirts of large cities with no
landmarks or signs, etc.

7.3 Machine vs. Human using all Modalities

The threshold for success in this case is 5 km as the textual
information is very effective at allowing inference of location
for both humans and the machine. The threshold for failure
is set at 1000km. In 39 cases, the machine achieved less
than 5km error while all three qualified human annotators
failed to estimate the location with an error of more than
1000 km. For the opposite case where the human does better
than the machine, we found 162 cases.

7.3.1 When humans are better

In 162 cases, humans were successful at picking a correct
location while the machines failed. Many of the errors were
from the system failing to pick up a single keyword that
represents the location within the list of tags.

1. We believe the critical advantage in some of these 162
cases was from the misspelling of a tag or that the
tag was written in a foreign language (which was not
included in the training). Human locators did not have
a problems with the misspelled words.

2. The bias in the distribution of the training dataset re-
sults from the failure of the system to correctly process
keywords if they were not seen in the training dataset.
Although our system tries to address the problem of
sparsity using the graphical framework, it is still bound
by the quantity and quality of the data in both the
training and test sets. The use of semantic computing-
based approaches as done in [16] can be an effective
solution in these cases.

7.3.2 When machines are better

1. Some of the videos contained multiple tags that were
not helpful in inferring location but were repeatedly
seen in other videos in the training dataset. For ex-
ample, “iPhone, 3gs, or iphone3gs” does not have a
specific meaning related to the location in one of the
test videos. However, our system was able to pick up
the repeated common appearance of these tags in the
training data and was able to estimate the location
under 0.5km error. This is due to similar users using
the same “language model” when tagging their videos.
Keep in mind that test and training set had different
sets of users.

2. Humans failed to pick up clues from combination of
words when too many tags were given, whereas the
machine was able to implicitly incorporate n-gram us-
ing the graphical framework.

3. Language barrier: In some cases the tags were writ-
ten in a foreign language (not in the training dataset).

Worker populations on Amazon Mechanical Turk are
mostly English-based, thus the presence of non-English
tags presents a language barrier. Some human workers
managed to get over this by using translation services
such as Google Translate.

7.3.3  When both fail

There were 26 cases where both the machine as well as all
humans failed to get a location even with all possible sources
of information present. This is expected because sometimes
there are just no useful cues to estimate location. For ex-
ample, a scene which is a closeup with no distinguishable
sounds, and no textual description to indicate location. In
the end, we were surprised though that only 2.5% of all
videos fell into this category (where the location was not es-
timated with under 1000 km accuracy by either the human
or the machine). This indicates a high growth potential for
future location estimation research.

8. CONCLUSION AND FUTURE WORK

In this article, we establish a human baseline for mul-
timodal location estimation of random consumer-produced
videos with textual descriptions. Even though algorithms
work on low-level statistics, we show that humans outper-
form the algorithm sometimes and in other cases the algo-
rithm outperforms humans. The difference between human
performance and algorithmic performance is so close that we
speculate that in a relatively short time, algorithms will be-
come better than the human baseline. Surprisingly enough
only about 2.5% of the videos could not be located at all.
This suggests a huge potential for future research in the field
even though for some of the videos, the algorithm would al-
ready pass the “Turing test” as it was already better than
humans for 41 % of the videos. The analysis of human vs
machine errors suggests complementarity which implies fu-
ture work might be very successful when concentrating on
interactive systems. For example, for humans the acoustic
modality works quite well when language and speech content
can be picked up. Machines are better at picking up specific
sounds that might be the fingerprint of a location. Similarly,
in the visual domain, humans are very good at localization
based on written text, signs, architecture, and vehicle styles
while machines are very good at finding specific locations
that appear often enough in the training data. Humans can
remember or search for specific locations based on context,
while machines can pick up patterns of tags or textual de-
scriptions that indicate the location of a specific social group
unknown to most humans. In summary, all three modalities
(audio, video, and text) are very powerful at determining
location both for humans and the machine even though re-
cent researches mostly have concentrated on text-based sys-
tems with the aid of visual information. Future research
on location estimation might gain improved results from in-
cluding optical character recognition and sign interpretation
as well as language identification and language-independent
keyword spotting. The use of semantic information from
Gazetteers and other knowledge bases will be very helpful
for locations with limited training data.
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