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ABSTRACT
Multimedia Event Detection (MED) aims to identify events—also
called scenes—in videos, such as a flash mob or a wedding cere-
mony. Audio content information complements cues such as visual
content and text. In this paper, we explore the optimization of neu-
ral networks (NNs) for audio-based multimedia event classifica-
tion, and discuss some insights towards more effectively using this
paradigm for MED. We explore different architectures, in terms of
number of layers and number of neurons. We also assess the perfor-
mance impact of pre-training with Restricted Boltzmann Machines
(RBMs) in contrast with random initialization, and explore the ef-
fect of varying the context window for the input to the NNs. Lastly,
we compare the performance of Hidden Markov Models (HMMs)
with a discriminative classifier for the event classification. We used
the publicly available event-annotated YLI-MED dataset. Our re-
sults showed a performance improvement of more than 6% abso-
lute accuracy compared to the latest results reported in the litera-
ture. Interestingly, these results were obtained with a single-layer
neural network with random initialization, suggesting that standard
approaches with deep learning and RBM pre-training are not fully
adequate to address the high-level video event-classification task.
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1. INTRODUCTION
Web videos have significant visual and audio content that is not

fully described in their textual metadata. It is therefore necessary
to develop tools that can automatically analyze that content. Multi-
media event detection (MED) aims to identify the event(s) depicted
in a user-generated video, such as a flash mob or a person feeding
an animal, by using the content characteristics of the video.1

Multimedia event detection based on audio has been approached
in a variety of ways—as can be seen, for example, by looking at
the range of approaches used by participants in the AASP Au-
dio (only) Scene Challenge [8] for classifying 10 different scenes.
The results showed the great potential of low-level feature explo-
ration. Many of the most successful recent approaches using au-
dio for MED [10, 14, 4] rely on intermediate features created by a
combination of low-level features, mainly Mel Frequency Cepstral
Coefficients (MFCCs), followed by a Bag of (Audio) Words or a
Fisher Vector encoding. The final detection in these approaches
is computed using Support Vector Machines (SVMs). Some ap-
proaches focus on audio concepts at the semantic or humanly ex-
plainable level of analysis, including several deep neural network
(DNN) approaches (e.g., [16] and [6]). In another recent example,
Elizalde et al. (2014) use a hierarchical deep neural network (H-
DNN) trained on audio concepts and complemented with a Hidden
Markov Model (HMM) layer to perform audio-based video event
detection or in other words a binary classification, does the video
belong to an event class or not [7]. However, our main goal in
the work reported in this paper was multi-class classification, or in
other words to which of this event classes the video belongs.

Despite the widespread success of NNs, there is little published
research on applying NNs to such a high-level, abstract task as
video event classification. In one exception, Ashraf et al. [1] em-
ploy a DNN trained on events using only sparsely sampled audio
features, to avoid training with an entire audio track. The approach
reduced the training bottleneck and presented promising results.

1The term event is used in multiple ways in the video-analysis liter-
ature. The community around the TRECVID MED evaluation uses
event to refer to a higher-level semantic abstraction, and uses the
term concept for more specific, concrete targets such as clapping or
laughing. Other researchers use the term scenes to refer to (more or
less) what TRECVID calls events, and call events or sounds what
TRECVID calls concepts. Here we use the TRECVID terminology.
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However, further exploration of NNs is required to better exploit
the audio cues.

In this paper, we describe work that explores the optimization of
NNs for audio-based multimedia event classification, and discuss
some insights for more effective application of this paradigm. We
explore different architectures, including different numbers of lay-
ers and numbers of neurons; the performance impact of pre-training
with an RBM [9] as opposed to random initialization; varying the
length of the context windows in the NN input; and adding HMMs
[15] for the event-classification step. The system architecture is de-
scribed in Sec. 2, and the corpus and metrics are described in Sec.
3. In Sec. 4, we present our experiments and highlight the most
relevant results. Sec. 5 summarizes our conclusions.

2. SYSTEM OVERVIEW
In this section, we provide an overview of our audio-based mul-

timedia event classification system, whose main stages are depicted
in Fig. 1. First, the audio track is extracted from the videos, then
low-level features are computed. Next, utilizing an NN, a video-
level event prediction is made for each frame. Lastly, a video-level
event classification is made based on all the predictions from the
whole audio track. The next sections provide a more detailed de-
scription of these stages.

2.1 Audio-Track and Feature Extraction
In the first step, the audio track is extracted from the videos.

Then, as in Elizalde et al. 2014 [7], we employ standard MFCCs
as the input audio features. The MFCCs include 13 dimensions
plus log-energy, using a 25ms Hamming window with a stride size
of 10ms per frame shift. After a mean and variance normalization
step, we apply a context window that considers a fixed number of
consecutive frames. (Significant benefits from using a context win-
dow are reported in Sec. 4.3.)

We chose MFCCs as the starting point because they are used in
the state-of-the-art approaches described in Sec. 1. Though explo-
ration of other low-level features is not in the scope of this work,
they could well benefit system performance.

2.2 Frame-Level Predictions
The audio features represented by the context windows are then

fed to a standard feed-forward neural network. The hidden layers
are composed of sigmoid-based neurons, while the output layer is
based on softmax activation functions. Sec. 4 describes in more
detail the baseline architecture and the optimization process for the
number of hidden neurons and hidden layers and for the context
window size.

The NN training uses the standard back-propagation algorithm.
The pre-training phases are based on the GPU version of the TNet
toolkit [18]. The experiments are based on either a random initial-
ization of the NN parameters or an RBM-based pre-training. (The
role of pre-training is described in Sec. 4.2.)

The NN performs a prediction for each frame of each audio
recording. The output predictions are the probabilities correspond-
ing to any of the event classes. An interesting aspect, which makes
this task particularly challenging, is that in this case the NN has to
perform a frame-level prediction from the low-level features to very
high-level semantic categories (e.g., birthday party, parade, person
landing a fish), using only a limited number of frames. NNs have
more traditionally been applied to audio for classification of phones
[3] and audio concepts [16], which are typically less abstract.

2.3 The Video-Level Event Classifier
Given the frame-level predictions for each audio recording, an

overall event classification is performed for each track. In this
work, we compared two methods. The first is a discriminative clas-
sifier, which uses a cumulative probability to determine if a test file
belongs to a target event, as shown in Eq. 1.

Ê = argmax
E

N∏
i=1

P (E|xi) (1)

In Eq. 1, Ê is the estimated video event, P (E|xi) is the output
of the neural network given the current feature xi, and N is the
number of features.

The second classifier is based on Hidden Markov Models, which
are generative statistical models widely used for temporal pattern-
detection tasks such as gesture recognition, genomics, and hand-
writing, as well as speech recognition [15]. Our Gaussian Mixture
Model (GMM)/HMM classifier is similar to the one described in
Elizalde et al. 2014 [7]. However, while the input features used
by Elizalde et al. are derived from the acoustic concepts, here the
features are the frame-level event predictions discussed in Sec. 2.2.

3. CORPUS AND EVALUATION METRICS

3.1 The Video Corpus
We used the YLI-MED corpus, which was inspired by TREC-

VID MED and is annotated for some of the same events [2]. YLI-
MED is drawn from the Yahoo Flickr Creative Commons 100 Mil-
lion (YFCC100M) dataset; it is the only publicly available web-
video dataset annotated for events. (The popular TRECVID MED
dataset created by the Linguistic Data Consortium (LDC) is avail-
able only to participants in the TRECVID MED evaluation.2) YLI-
MED Version 1 contains 1823 videos classified into 10 events,
listed in Tab. 3, as well as more than 48,000 non-event videos.

For the experiments described here, we used only the videos
categorized as depicting an event. We split the dataset into three
chunks. We used 1000 videos for training (∼100 for each event).
We employed a dev set of 319 videos for tuning the free parame-
ters of the proposed architecture, such as number of hidden layers,
number of hidden units, and length of context window. Finally, we
used a test set of 480 videos for evaluation.

3.2 Evaluation Metrics
We employed two standard metrics to evaluate classifications for

each event category: classification accuracy (ACC) and average
precision (AP). ACC is computed by dividing the total number of
event-video files that are correctly classified, called True Positives
(TP), by the total number of event-video files. The AP, as shown
in Eq. 2, is calculated from the true positives (TP) and the false
positives (FP), where the latter is the total number of event-video
files that are classified as belonging to the reference event category
but actually belong to a different event category. The mean average
precision (MAP) is calculated by averaging the AP scores across
the 10 events.

2Most previous work on audio-based MED has used the TREC-
VID MED data set. The TRECVID MED corpus is not publicly
available, so we are unable to make a direct comparison between
the datasets. However, Bernd et al. 2015 [2] compared results for
audio-based experiments with YLI-MED with published results for
a similar TRECVID MED selection. They found that the MED
overall accuracy for that system was roughly comparable for the
two datasets.
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Figure 1: Pipeline for the audio-based multimedia event classification system.

AP =
TP

TP + FP
(2)

4. PARAMETERS AND RESULTS
In this section, we describe the baseline systems and the evolu-

tion of our system design.

4.1 The Baseline DNN
Tab. 1 reports results from approaches to audio-based multime-

dia event classification that have previously been evaluated on the
YLI-MED dataset. It also reports results from our baseline system
modeled on those approaches.

Baseline Ref ACC(%)
DNN with Caffe: sparse sampling [1] 37.40
DNN with Caffe: all frames [1] 27.40
DNN with TNet: all frames (our baseline) New 28.50

Table 1: Event-classification accuracy of reference systems and
our system, all trained and tested on the YLI-MED video cor-
pus.

Ashraf et al. [1] compared variations on two basic approaches:
using sparse sampling of audio frames and using all frames. The
sparse-sampling system produced higher accuracy results on the
YLI-MED dataset, with a context window of 49 consecutive frames
(24 before and 24 after the current one). The topology (600:600:10)
was a DNN of 2 RBM pre-trained hidden layers and a softmax
output layer. The discriminative event-classification approach used
in that work is explained in Sec. 2.3.

The Caffe-based DNN system that used all the frames as input
(representing the entire audio recording) involved two hidden lay-
ers and one softmax layer (2000:2000:2000:10); a context window
of 49 consecutive frames; RBM pre-training; and the same discrim-
inative event classifier.

As a starting architecture, we largely reproduced the DNN de-
scribed in the previous paragraph. The performance we obtained
differs by about 1%, perhaps because we used TNet while Ashraf
et al. used the Caffe framework. Note that this solution leads to an
initial performance far lower than that of the sparse-sampling sys-
tem, mainly due to suboptimal choices for the main neural-network
free parameters.

In the following subsections, we describe how we progressively
optimized our baseline DNN by exploiting the dev set to design a
neural network more suitable for the target task.

4.2 The Role of RBM Pre-Training
Previous work in deep learning has found that RBM pre-training

leads to better initialization of the DNN parameters, and thus to
substantial performance improvements, especially when the train-

ACC(%) MAP(%)
Initialization DEV TEST DEV TEST
RBM pre-training 24.13 28.50 19.78 22.40
Random initialization 36.36 38.12 30.83 31.74

Table 2: Video classification performance with RBM pre-
training vs. random initialization of the NN parameters.

ing dataset is small. In particular, the RBM technique has en-
abled demonstrable improvements in character recognition [9], ob-
ject recognition [13], information retrieval [17], and speech recog-
nition [11, 5], just to name a few. However, pre-training has not yet
been explored in the literature on our task, so we experimented with
its effects. Tab. 2 compares the baseline DNN system (with RBM
pre-training) with the same system using a conventional random
initialization of the NN parameters.

The RBM pre-training employed in this work initializes weights
in the first two hidden layers via a Gaussian-Bernoulli RBM using
a learning rate of 0.005 for 10 pre-training epochs. The remaining
RBMs are Bernoulli-Bernoulli and use a learning rate of 0.05 for
5 pre-training epochs. The following supervised fine-tuning phase
involves a stochastic gradient descent to optimize the cross-entropy
loss function. Ben I modified it The learning rate is kept fixed at
0.005 as long as the single-epoch increment in dev-set frame accu-
racy is higher than 0.5%. For subsequent epochs, the learning rate
is halved until the increment in dev-set frame accuracy is less than
the stopping threshold of 0.1%. NN weights and biases are updated
per blocks of 1024 frames.

Surprisingly, performance is improved by replacing the standard
RBM with a simple, conventional random initialization of the NN
parameters. To further confirm this finding, we also varied the val-
ues for the main parameters involved in the RBM pre-training (e.g.,
learning rates), but the trend is the same as that shown in Tab. 2. We
believe this result can be attributed to the fact that an event is de-
fined at a high level of abstraction, unlike the targets for more well-
explored tasks such as speech recognition. The RBM pre-training
could be acting as an unsupervised hierarchical feature detector,
where the neural network progressively explores higher-level fea-
tures. In this case, the features discovered via the RBM do not seem
to help in explaining and representing such high-level events, so the
training algorithm converges to a poor local optimum.

4.3 The Role of the Context Window
For an audio-based multimedia event classification task, one might

intuitively expect that a long context window would better capture
the long duration of a high-level semantic event. After all, for a hu-
man being, we could reasonably expect that a classification would
be more accurate if it were performed after listening to several sec-
onds of the audio track. However, there is a complication: for
machine learning, increasing the context window would increase
the input dimensionality of the NN, possibly causing dimension-
ality problems. In this experiment, we tested some techniques to
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Events Ev101 Ev102 Ev103 Ev104 Ev105 Ev106 Ev107 Ev108 Ev109 Ev110 ACC(%) AP(%)
Ev101: Birthday Party 53 3 0 6 0 2 4 2 9 1 66.2 65.4
Ev102: Flash Mob 3 10 0 6 0 1 0 1 5 1 37.0 26.3
Ev103: Getting a Vehicle Unstuck 0 0 6 3 1 0 3 2 5 0 30.0 24.0
Ev104: Parade 5 15 4 54 0 0 1 2 3 0 64.3 61.4
Ev105: Person Attempting a Board Trick 1 1 7 3 4 4 8 8 10 3 8.2 44.4
Ev106: Person Grooming an Animal 2 0 1 1 0 4 5 2 6 5 15.4 14.3
Ev107: Person Hand-Feeding an Animal 7 1 4 6 2 4 20 6 13 0 31.7 37.0
Ev108: Person Landing a Fish 0 1 2 1 2 7 1 10 3 0 37.0 25.6
Ev109: Wedding Ceremony 9 6 1 4 0 1 9 5 41 3 51.9 41.8
Ev110: Working on a Woodworking Project 1 1 0 4 0 5 3 1 3 7 28.0 35.0

Table 3: Confusion matrix for the test set on the optimized system. Boldface indicates correct classifications and bold italics indicates
the event with the most confusion. The two highest and two lowest accuracy scores (ACC) are italicized.

ACC(%) MAP(%)
Context Window DEV TEST DEV TEST
Default window: 0.49s 36.36 38.12 30.82 31.74
Optimized window: 0.71s 41.04 41.06 38.19 33.89

Table 4: Video classification performance with the default vs.
the optimized context window.

circumvent this chicken-and-egg problem. Similarly to [16], we
investigated a solution based on hierarchical deep neural networks,
employing several cascade neural networks able to progressively
explore a wider context, of more than 10 seconds. However, de-
spite the complexity and the great potential of such a system, the
performance was not particularly encouraging. We plan to further
explore and analyze the possibilities for this approach in the near
future, but for this work, we decided to first explore the classifica-
tion potential of a single neural network able to employ a limited
local-time context of N consecutive frames.

Tab. 4 compares the best system described in Sec. 4.2, based
on the default context window of 49 consecutive frames, with the
same system based on a context window optimized on the dev set.
To optimize, we explored contexts ranging from 5 to 101 frames,
which correspond to about 1 sec.

In the AASP Audio (only) Scene Challenge [8], several researchers
suggested 1 second as an optimum segment. The best dev-set per-
formance is obtained with a context window of 71 consecutive
frames (35 before and 35 after the reference frame, adding up to
about 0.7 seconds). Longer context windows perform worse than
the optimal one, due to the progressive impact of the dimensional-
ity problems.

4.4 Architecture Optimization
For the experiments described in the previous subsections, we

used a topology of 2000:2000:2000:10. We next explored opti-
mization of the number of hidden layers (ranging from 1 to 5)
and the number of neurons per hidden layers (ranging from 500
to 8000), performed on the dev set. Tab. 5 compares the best sys-
tem so far with the same system with an architecture optimized on
the dev set.

ACC(%) MAP(%)
Architecture DEV TEST DEV TEST
Default: 2000:2000:2000:10 41.04 41.06 33.19 33.89
Optimized: 6000:10 45.45 43.54 41.48 37.53

Table 5: Video classification performance with the default vs.
the optimized architecture.

The best performance, 43.54% accuracy, is obtained with a single-
layer NN composed of 6000 neurons. This is an improvement over
our baseline of 28.50% and even over the 37.40% achieved by the
NN with sparse sampling [1]—an absolute improvement of 6.14%.
Unlike other tasks where deeper and wider architectures have been
used [13, 17, 11], in this case no benefits are observed by con-
catenating several hidden layers, since a single-layer NN performs
better. This may suggest that discussion about the choice between
deep vs. wide networks [12, 19] may need to be revisited. In any
case, the architecture proposed here may be particularly valuable
for reducing computational complexity in large-scale web-video
analysis.

Tab. 3 breaks down the results achieved by the optimized system,
as a confusion matrix of per-event classifications, along with com-
puted scores. The best accuracies are obtained for Ev101 Birthday
Party and Ev104 Parade. The lowest-scoring events are Ev105 Per-
son Attempting a Board Trick and Ev106 Person Grooming an Ani-
mal. These results are not consistent with either of the systems de-
scribed by Ashraf et al. [1] (sparse-sampling or all-frames), which
achieved the highest accuracies for Ev110 Working on a Wood-
working Project and Ev107 Feeding an Animal and the lowest for
Ev103 Getting a Vehicle Unstuck and Ev108 Landing a Fish.

In other words, different architectures have variable effects on
acoustic discrimination across different events. This suggests that
future work should pursue analyzing and optimizing architectures
for individual events (or subgroups of events) in order to further our
understanding of the relationship between the NN architecture and
the event.

4.5 Comparison with HMMs
This section compares the discriminative classifier used so far

with an HMM-based classifier similar to that described by Elizalde
et al. [7]. We optimized the topology of the HMMs on the dev
set, resulting in a model based on 3 fully-connected states and 16
gaussians with a diagonal covariance matrix for each event. The
decoding graph is composed of all the video-level event models in
parallel. No transitions between different events are allowed within
a given video file, forcing the system to choose one of the 10 event
categories.

ACC(%) MAP(%)
Classifier DEV TEST DEV TEST
Discriminative 45.45 43.54 41.48 37.53
HMM-based 46.08 40.42 39.73 35.46

Table 6: Performance of the disciminative vs. the HMM-based
classifier.
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Results on the test set show that the discriminative approach per-
forms better than a more costly HMM-based solution. This may
suggest that the information carried by the frame-level event pre-
dictions is already sufficiently distinctive.

5. CONCLUSIONS AND FUTURE WORK
This paper describes research exploring the use of neural net-

works for audio-based multimedia event detection. Specifically,
we studied different NN architectures, the impact of context infor-
mation, and the role of RBM pre-training, and we compared dis-
criminative vs. HMM-based classifiers.

Results, reported on the YLI-MED corpus, show a consistent
performance improvement over the latest approaches described in
the literature. A context window of about 0.7 seconds seemed to
capture discriminative information about the event. Most interest-
ingly, our results suggest that deep learning is not necessarily the
best approach for this high-level abstract task. In this case, a simple
single-layer NN with a conventional random initialization yielded
better results than deeper architectures using RBM pre-training.

Future directions we hope to explore include investigating other
architectures, including convolutional and recurrent NNs, as well
as event-based customization of NNs.

6. ACKNOWLEDGMENTS
This work was supported in part by the National Science Foun-

dation under Award #1251276 (SMASH: Scalable Multimedia con-
tent AnalysiS in a High-level language), and by Lawrence Liver-
more National Laboratory, operated by Lawrence Livermore Na-
tional Security, LLC, for the U.S. Department of Energy, National
Nuclear Security Administration, under Contract DE-AC52-07NA27344.
We also gratefully acknowledge the support of NVIDIA Corpora-
tion with the donation of a Tesla K40 GPU used for this research.

7. REFERENCES
[1] K. Ashraf, B. Elizalde, F. Iandola, M. Moskewicz,

G. Friedland, K. Keutzer, and J. Bernd. Audio-based
multimedia event detection with DNNs and sparse sampling.
In Proceedings of the 5th ACM International Conference on
Multimedia Retrieval (ICMR ’15), 2015.

[2] J. Bernd, D. Borth, B. Elizalde, G. Friedland, H. Gallagher,
L. Gottlieb, A. Janin, S. Karabashlieva, J. Takahashi, and
J. Won. The YLI-MED corpus: Characteristics, procedures,
and plans. ICSI Technical Report TR-15-001, 2015.

[3] H. Bourlard and N. Morgan. Continuous speech recognition
by connectionist statistical methods. IEEE Transactions on
Neural Networks, 4(6):893–909, 1993.

[4] H. Cheng, J. Liu, S. Ali, O. Javed, Q. Yu, A. Tamrakar,
A. Divakaran, H. S. Sawhney, R. Manmatha, J. Allan,
A. Hauptmann, M. Shah, S. Bhattacharya, A. Dehghan,
G. Friedland, B. M. Elizalde, T. Darrell, M. Witbrock, and
J. Curtis. SRI-Sarnoff AURORA system at TRECVID 2012:
Multimedia event detection and recounting. In Proceedings
of TRECVID 2012. NIST, USA, 2012.

[5] G. E. Dahl, D. Yu, L. Deng, and A. Acero.
Context-dependent pre-trained deep neural networks for
large vocabulary speech recognition. In in IEEE
Transactions on Audio, Speech, and Language Processing,
volume 20, 2012.

[6] B. Elizalde, M. Ravanelli, and G. Friedland. Audio concept
ranking for video event detection on user-generated content.
In Proceedings of SLAM@INTERSPEECH, 2013.

[7] B. Elizalde, M. Ravanelli, and G. Friedland. Audio-concept
features and hidden Markov models for multimedia event
detection. In Proceedings of SLAM@INTERSPEECH, 2014.

[8] D. Giannoulis, E. Benetos, D. Stowell, M. Rossignol,
M. Lagrange, and M. D. Plumbley. Detection and
classification of acoustic scenes and events: an IEEE AASP
challenge. In 2013 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA), pages 1–4.
IEEE, 2013.

[9] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning
algorithm for deep belief nets. Neural Computation,
18:1527–1554, 2006.

[10] Z. Lan, L. Jiang, S.-I. Yu, C. Gao, S. Rawat, Y. Cai, S. Xu,
H. Shen, X. Li, Y. Wang, W. Sze, Y. Yan, Z. Ma, N. Ballas,
D. Meng, W. Tong, Y. Yang, S. Burger, F. Metze, R. Singh,
B. Raj, R. Stern, T. Mitamura, E. Nyberg, and
A. Hauptmann. Informedia @ TRECVID 2013. In
Proceedings of TRECVID 2013. NIST, USA, 2013.

[11] A. Mohamed, G. E. Dahl, and G. E. Hinton. Deep belief
networks for phone recognition. In NIPS Workshop on Deep
Learning for Speech Recognition and Related Applications,
Vancouver,Canada, 2009.

[12] N. Morgan. Deep and wide: Multiple layers in automatic
speech recognition. IEEE Transactions on Audio, Speech,
and Language Processing, 20(1):7–13, 2012.

[13] V. Nair and G. E. Hinton. 3-D object recognition with deep
belief nets. In Advances in Neural Information Processing
Systems, 2009.

[14] P. Natarajan, P. Natarajan, S. Wu, X. Zhuang, A. Vazquez
Reina, S. N. Vitaladevuni, K. Tsourides, C. Andersen,
R. Prasad, G. Ye, D. Liu, S.-F. Chang, I. Saleemi, M. Shah,
Y. Ng, B. White, L. Davis, A. Gupta, and I. Haritaoglu. BBN
VISER TRECVID 2012 multimedia event detection and
multimedia event recounting systems. In Proceedings of
TRECVID 2012. NIST, USA, 2012.

[15] L. R. Rabiner. A tutorial on hidden Markov models and
selected applications in speech recognition. In Proceedings
of the IEEE, pages 257–286, 1989.

[16] M. Ravanelli, B. Elizalde, K. Ni, and G. Friedland. Audio
concept classification with hierarchical deep neural
networks. In Proceedings of EUSIPCO, 2014.

[17] R. Salakhutdinov and G. E. Hinton. Semantic hashing. In
International Journal of Approximate Reasoning, 2009.

[18] K. Vesely, L. Burget, and F. Grezl. Parallel training of neural
networks for speech recognition. In Proceedings of
INTERSPEECH, 2010.

[19] O. Vinyals and N. Morgan. Deep vs. wide: Depth on a
budget for robust speech recognition. In Proceedings of
INTERSPEECH, 2013.

23




