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Abstract—Audio-based video event detection (VED) on user-
generated content (UGC) aims to find videos that show an
observable event such as a wedding ceremony or birthday
party rather than a sound, such as music, clapping or singing.
The difficulty of video content analysis on UGC lies in the
acoustic variability and lack of structure of the data. The
UGC task has been explored mainly by computer vision, but
can be benefited by the used of audio. The i-vector system is
state-of-the-art in Speaker Verification, and is outperforming a
conventional Gaussian Mixture Model (GMM)-based approach.
The system compensates for undesired acoustic variability and
extracts information from the acoustic environment, making it
a meaningful choice for detection on UGC. This paper employs
the i-vector-based system for audio-based VED on UGC and
expands the understanding of the system on the task. It
also includes a performance comparison with the conventional
GMM-based and state-of-the-art Random Forest (RF)-based
systems. The i-vector system aids audio-based event detection
by addressing UGC audio characteristics. It outperforms the
GMM-based system, and is competitive with the RF-based
system in terms of the Missed Detection (MD) rate at 4% and
2.8% False Alarm (FA) rates, and complements the RF-based
system by demonstrating slightly improvement in combination
over the standalone systems.
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I. INTRODUCTION

Social networks have transformed the internet into a
sharing platform where users upload multimedia documents.
Along with this change, recording gadgets have become
widespread, and people have the ability to capture video in
a greater capacity. This results in the amount of consumer-
produced multimedia documents being increased rapidly on
a minute-to-minute basis. However, all of these documents
are of little value if they cannot be retrieved easily by
consumers. For instance, a person who searches for video
examples on how to give a marriage proposal may be at
a loss if videos of marriage proposals can not be easily
retrieved. Therefore, there is a need to have a VED system
that can automatically analyze and fetch video content.

The VED task aims to identify videos with a semantically
defined event, such as a marriage proposal. It is implicitly
multimodal because events are characterized by audio-visual

cues. Multimedia detection has been explored by computer
vision using different features and techniques. However, au-
dio has been under-explored, and the state-of-the-art audio-
based techniques do not yet provide significant assistance
to its video counterpart. Audio, however, can sometimes be
more descriptive than video, especially when it comes to the
descriptiveness of an event. For instance, the audio cue can
quickly allow one to determine whether or not a marriage
proposal was successful. Thus, there is great importance in
exploring techniques to improve the use of audio for VED.

In the past, retrieval problems often suffered from limited
training data. However, UGC videos can provide massive
amounts of training data, because the videos are widely
available, and contain metadata (i.e. such as the event
described by the video, or the place in which the video
was captured) which can provide ground truth labels. The
audio of the UGC videos have the following characteristics
– the presence of background noise, overlapped sounds, and
diverse acoustic environments, among others.

This paper employs an i-vector based system for audio-
based VED, as an attempt to address the challenges pre-
sented in UGC data. To understand better the system charac-
teristics we include a performance comparison with conven-
tional GMM-based and state-of-the-art RF-based systems,
and indicate the benefits of the i-vector approach. The sys-
tem provides new competitive results using audio features,
and complements the RF-based system in combination. It
also represents a simple, logical and scalable choice for the
task, as it is a bag-of-frames (BOF) approach that does not
rely on the use of acoustic concepts. The content of the paper
is structured as follows. Section II presents the related work.
Section III continues with the data. Section IV describes the
i-vector-based system. Section V details the experimental
setup. Section VI explains the results, and Section VII states
the conclusion and future work.

II. RELATED WORK

There has been several past approaches to audio-based
VED for UGC data. A technique closer to our work is
an audio-based event detection paper based on a speaker
verification system [1], which creates Gaussian Mixture



Models (GMM) for each event and classifies them using a
likelihood ratio. Another example is a system [2] which ex-
tracts audio units automatically with a diarization system to
create an audio word vocabulary, computes Term Frequency
- Inverse Document Frequency (TF-IDF) histograms for each
unit, and classifies them with a Support Vector Machine
(SVM). A similar example is a system in [3] that creates
an automatic audio word vocabulary with a RF algorithm,
and computes TF-IDF histograms for each event based on
the audio relevance. The histograms are then classified using
a SVM. These two systems rely mainly on how distinctive
the audio vocabulary represents each known event. These
and other approaches to the task are inspired on successful
speech-processing techniques.

The i-vector system has been successfully used also in
tasks such as language recognition [4] and speaker di-
arization [5]on data captured in controlled environments.
Although it has also been used in VED in [6] we considered
relevant for the understanding of the i-vector performance
and characteristics, to compare it with a conventional UBM-
GMM system and a state-of-the-art technique.

III. DATA

The data used in the experiments is the NIST TRECVID
Multimedia Event Detection (MED) 2012 corpus, which
contains consumer-produced video data. The entire corpus
is comprised of a collection of 150,000 videos of about
three minutes each. Some of the videos are used for acoustic
event-class training, while the DEVT portion of the corpus
is used for testing. For our experiments, only a subset of
the corpus is used. The training set consists of 15 events
from the Event Kits structure for a total of 2,024 video
files, each containing audio. The test set consists of a total
of 4,165 video files containing audio. From the test set 519
files belong to a specific event and the rest 3646 files do not
belong to any of them. The video data may contain music,
spontaneous speech, background noise, overlapped sounds,
or other audio labeled as unintelligible in the annotations.
Table I contains a summary of the event classes and the
numbers of videos in each class.

IV. THE I-VECTOR BASED EVENT DETECTION SYSTEM

The i-vector system was initially developed by Dehak et
al. [7], with an improvement made by Burget et al. [8]. It
involves training a matrix T to model the total variability of a
set of statistics for each audio track. The statistics primarily
involve the first-order Baum-Welch (BW) statistics of the
low-level acoustic feature frames (i.e. MFCCs) of each audio
track. The BW statistics are in turn computed using a UBM.
The Total Variability matrix T is low rank, and is used to
obtain a low-dimensional vector characterizing the acoustic
event of each audio track. Specifically, for each audio, the
vector of first-order BW statistics M can be decomposed as
follows, given the T matrix:

Table I
SET OF EVENTS AND THE AMOUNT OF TRAINING AND TEST VIDEOS.

Code Event Train Test
E001 Attempting a board trick 159 121
E002 Feeding an animal 160 119
E003 Landing a fish 119 83
E004 Wedding ceremony 125 86
E005 Working on a woodworking project 140 99
E006 Birthday party 173 2
E007 Changing a vehicle tire 109 1
E008 Flashmob gathering 173 0
E009 Getting a vehicle unstuck 129 0
E010 Grooming an animal 135 0
E011 Making a sandwich 123 0
E012 Parade 133 0
E013 Parkour 107 0
E014 Repairing an appliance 123 8
E015 Working on a sewing project 116 0

where m is the event-independent GMM, ω is a low -
dimensional vector, referred to as the i-vector, and ε is the
residual not captured by the terms m and Tω. The i-vector
can be thought of as a low-dimensional representation of the
identity of each event class.

M = m+ Tω + ε (1)

For the TRECVID MED 2012 Event Kits training audio,
one i-vector is obtained for each audio of each event
class. For the test audio, one i-vector is obtained for each
audio. The system then performs a Within-Class Covariance
Normalization (WCCN) [9] on the i-vectors, which whitens
the covariance of the i-vectors via a linear projection matrix.
We followed an approach in [8], whereby a generative
Probabilistic Linear Discriminant Analysis (pLDA) [10] log-
likelihood ratio is used to obtain a similarity score between
each test audio and each training event class, using the i-
vectors. Because there are multiple audio samples per train-
ing event class, the i-vectors within each class are averaged
such that each class is represented by one i-vector. The
generative pLDA log-likelihood ratio for similarity score
computation is shown below:
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where ω1 and ω2 are the two i-vectors, N(·) is the normal
Gaussian probability density function, Σtot and Σbc are the
total and between-class scatter matrices of the training i-
vectors, prior to averaging. Hence, one score is obtained
for each training event class versus test audio. The i-vector
system involves several pre-trained components, such as the
UBM, the T matrix, the WCCN projection matrix, and
scatter matrices. All components were trained using the
TRECVID MED 2012 Event Kits training audio. The Brno



University of Technology’s JFA demo [11] and the ALIZE
toolkit [12] are used to assist in system implementation.

The audio used is PCM-formatted, with a sample rate of
16kHz. The extracted acoustic features are the typical Mel-
Frequency Cepstral Coefficients (MFCCs) C0-C19, with
delta and double deltas, for a total of 60 dimensions. Each
feature frame is computing using a 25 ms window, with
10 ms frame shifts. Short-time Gaussian feature warping
using a three-second window is used, and temporal regions
containing identical frames are removed.

V. EXPERIMENTS

A conventional audio-based event detection system [1],
based on the GMM-UBM approach, is used to provide a
baseline comparison with our results. The system has two
steps – the creation of the event models (training), and the
scoring (testing). In the first step, the system receives the
audio representing a known event as input, and extracts
the MFCC acoustic features. It then performs maximum a
posteriori (MAP) adaptation to adapt a pre-trained event-
independent 256-mixture GMM, known as the Universal
Background Model (UBM), to create a 256-mixture GMM
for each event. In the second step, a log-likelihood ratio
is used to obtain a similarity score between each event-
dependent GMM, and the acoustic features of each test
audio. The UBM is used in the likelihood-ratio computation
for score normalization. Note that the UBM is trained using
the audio of the TRECVID MED 2012 Event Kits.

A state-of-the-art audio-based system [3], based on the
use of RF decision trees, is also included in the results
comparison. First, the system extracts MFCC features and
learns a dictionary based on the RF outputs, using the
training data. The output of each leaf node in the RF is
used as an audio word. Second, the audio words are weighted
according to the logarithm of the TF-IDF of the audio words.
Lastly, histograms of the weighted audio words are used to
represent each audio, and classified using an SVM.

Lastly, the score-level combination performance of the i-
vector and RF-based systems are included in the comparison.
The scores of the standalone systems are first scaled to fall
within the range of 0 to 1. Combination is performed by
simply adding the standalone scores.

The 15 EventKits training data and the DEVT test data, as
described in Section III, were used. There are 256-mixture
UBMs used for the i-vector and GMM-UBM systems, and
400-dimensional i-vectors are used for the i-vector system.
The evaluation metrics utilized to compare the systems
are the Missed Detection (MD) rates at 4% and 2.8%
False Alarm (FA) rates. These FA rates are based on the
Pre-Specified Events metrics from the TRECVID (MED)
evaluations [13], of years 2012 and 2013. The MD is the
percentage of matched-event scores that are mis-classified as
non-matched event scores, when the percent of non-matched

Figure 1. The MD at 4% FA performances of the GMM-UBM, RF, i-
vector and combined RF and i-vector systems, for five individual event
categories and the pooled category (E001-E005).

Figure 2. The MD at 2.8% FA performances of the GMM-UBM, RF,
i-vector and combined RF and i-vector systems, for five individual event
categories and the pooled category (E001-E005).

event scores being mis-classified as matched-event scores is
set at 4% or 2.8%, using a scoring threshold.

VI. RESULTS

The MD results for the detection performances of the
individual events in the training data, along with a pooled
set of events, are shown in Figures 1 and 2. Figure 1 shows
the MD performance at a 4% FA, and Figure 2 shows the
MD performance at 2.8% FA. Only the first five events are
evaluated and included in the figures, because events 6 to
15 lacked sufficient test data.

In Figure 1, the i-vector system outperforms the GMM-
UBM system in each individual event category and the
pooled category (E001-E005), achieving a 14.7% relative
MD improvement at 4% FA (69.5% vs. 81.5%) for the
pooled category. The i-vector system also slightly outper-
forms the RF-based system for the pooled category, achiev-
ing a 3.7% relative MD improvement (69.2% vs. 72%). The
combination of the i-vector and RF-based systems performs
roughly similarly compared to the i-vector system standalone
(67.3% vs. 69.5%), and gives a 6.5% relative improvement
over the RF-based system (67.3% vs. 72%).



According to Figure 2, the i-vector system also out-
performs the GMM-UBM system in each individual event
category and the pooled category, achieving a 9.8% relative
MD improvement at 2.8% FA (77.2% vs. 85.6%) for the
pooled category. The i-vector system performs about the
same as the RF-based system for the pooled category for
MD at 2.8% FA (77.2% vs. 78.5%). For this metric, the
combination of the i-vector and RF-based systems does not
significantly improve over the standalone systems (76.3% for
the combined system, vs. 78.5% for the RF-based system).

One reason the i-vector system is perhaps able to improve
results is that it can capture the acoustic event characteristics
contained in the audio using a low-dimensional vector (see
Section IV). Furthermore, the WCCN and pLDA system
components normalize for the within- and between-class i-
vector scatter of the events, which accounts for cases when
the same event contains distinctive audio across videos, and
when different events contain similar audio.

The i-vector system is also fairly efficient in terms of
computation time, which is crucial for large-scale data tasks.
On an Intel-Xeon-E5-2660, 64-bit 2.2 GHz processor, the
system took a total of 6.1 hours for i-vector extraction and
similarity score generation. Given the 62,475 total similarity
scores that are generated, each score took 0.35 seconds
to compute. Aside from i-vector extraction and scoring,
the system also used 1.6 hours to generate the UBM, and
0.14 hours to generate the T-matrix. Both the UBM and T-
matrix are event-independent, and can be used repeatedly
for successive runs of the system.

VII. CONCLUSION

This works shows that the i-vector system is a com-
petitive approach for audio-based VED on user-generated
video content. The results reveal significant improvements
in comparison to the conventional GMM-based system, and
competitive performance in comparison to the RF-based sys-
tem. Furthermore, the i-vector system is able to complement
the RF-based system in combination. The strength of the al-
gorithm is that it takes into account the within- and between-
event acoustic scatter using WCCN and pLDA, allowing the
algorithm to account for scenarios where multiple videos of
the same event have different acoustic characteristics, and
where videos from different events have similar acoustic
characteristics. Therefore, the technique provides a valid
approach not only for tackling the event detection task itself,
but also for handling the difficulties of UGC data.
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