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ABSTRACT
This article describes a novel fusion approach using multi-
ple modalities and knowledge sources that improves the ac-
curacy of multimodal location estimation algorithms. The
problem of “multimodal location estimation” or “placing”
involves associating geo-locations with consumer-produced
multimedia data like videos or photos that have not been
tagged using GPS. Our algorithm effectively integrates data
from the visual and textual modalities with external geo-
graphical knowledge bases by building a hierarchical model
that combines data-driven and semantic methods to group
visual and textual features together within geographical re-
gions. We evaluate our algorithm on the MediaEval 2010
Placing Task dataset and show that our system significantly
outperforms other state-of-the-art approaches, successfully
locating about 40% of the videos to within a radius of 100m.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Location Es-
timation

General Terms
geo-tagging, hierarchical segmentation, multimodal location
estimation, centroid-based fusion

1. INTRODUCTION
Geo-coordinates are a form of metadata essential for or-

ganizing multimedia content on the Web, as location and
time together form a physically guaranteed unique key. As
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a result, an increasing number of devices, such as cameras
and smart phones, automatically assign geo-coordinates to
multimedia. Geo-coordinates enable users to find and re-
trieve data and allow for intuitive browsing and visualiza-
tion. However, given that only about 5% of media are being
geo-tagged [9], there exists a need for a method to automat-
ically geo-tag the rest of the media available on the map, to
improve multimedia organization, retrieval, semantic under-
standing, etc. The task of estimating the location of a media
recording that lacks geo-location metadata has been referred
to variously as “geo-tagging”, “location estimation” or “plac-
ing”. Location estimation helps provide geo-location where
it is not usually available. For instance, except for special-
ized solutions, GPS is not available indoors or where there
is no line of sight with satellites. Also, vacation videos and
photos could be grouped even if geo-tags were not attached
at the time of recording. As discussed in [13], this was one
of the main motivations in the MediaEval benchmark1.

The key contribution of this article is a fusion method
for geo-tag prediction designed to exploit the different ad-
vantages of textual and visual modalities. We outperform
previous approaches to multimodal location estimation and
achieve a better performance than any that has previously
been measured, locating 40% of the videos to within a 100m
radius. Our experiments indicate that visual features alone
show low correlation with locations and that a purely visual
approach achieves lower precision values than a purely tag-
based approach. However, in combination with a toponym
lookup method that preselects videos of a possible area, even
weak visual information from images improves geo-tagging
performance.

This paper is structured as follows. In the next section,
we cover related work; we introduce our approach to using
different modalities in section 3; the results are described in
section 4; and in section 5 we summarize our main findings.

2. RELATED WORK
Many approaches to geo-tagging based on textual gazet-

teers and visual analysis have been introduced previously.
Previous work in the area of automatic geo-tagging of mul-

1http://www.multimediaeval.org



timedia based on tags has been mostly carried out on Flickr
images. In [14], the geo-locations associated with specific
Flickr tags are predicted using spatial distributions of tag
use. A tag that is strongly concentrated in a specific loca-
tion has a semantic relationship with that location.

The approach of Hays et al. [10] is purely data-driven, and
their data is limited to a subset of Flickr images having only
geographic tags. They find visual nearest neighbours to a
single image based on low-level visual image descriptors and
propagate the geo-location of the GPS-tagged neighbours.
The approach of Hays et al. serves as a very general means
for exploring similarities between images. By itself, it pro-
vided very limited accuracy.

The MediaEval Placing Task provided a common plat-
form to evaluate different geo-tagging approaches on a cor-
pus of randomly selected consumer-produced videos. In this
paper, we evaluate our algorithm on the MediaEval 2010
Placing Task data set; in section 4, we compare our results
with state-of-the-art approaches. One of many notable ap-
proaches was presented by Van Laere et al. [15] (Ghent)
used combination of language models and similarity search
to geo-tag the videos using their associated tags. Perea-
Ortega et al. [11] (SINAI) and Ferrés et al. [8] (TALP)
used text features in combination with gazetteers for the
location estimation. If there was no gazetteer matching en-
tity for all keywords in the metadata of a given video, Choi
et al. [7] (ICSI) returned the geo-coordinate of the user’s
home location. Just one research team reported results us-
ing only visual content in 2010. Kelm et al. [12] (TUB)
used visual features of the development set for training a
multi-class Support Vector Machine (SVM) classifier with
Radial Basis Function (RBF) kernel. Their best results were
achieved by a hierarchical clustering with a diameter thresh-
old of 100 km, which determined 317 classes for the SVM.

3. FRAMEWORK
The participants in the Placing Task were allowed to use

image/video metadata, external resources like gazetteers,
and audio and visual features. Our proposed framework as-
signs geo-tags for Flickr videos based on their textual meta-
data and visual content in a hierarchical manner and in-
cludes several methods that are combined as depicted in fig-
ure 1. The first step is the pre-classification of these videos
into possible regions on the map using the meridians and
parallels. The key to building these regions is the spatial
segmentation of the geo-tagged database, which generates
visual and textual prototypes for each segment. The genera-
tion of segment prototypes are described in section 3.2.1 and
3.2.2. The national borders detection extracts toponyms and
uses gazetteers to increase the effectiveness of our proposed
approach. Finally, the probabilistic model superimposes all
hierarchy levels and leads to the most similar image, based
on the fact that there is a higher probability of two im-
ages taken at the same place. We choose this hierarchical
approach in order to reduce computational cost, as only a
portion of the data in our database is needed to compute
for each training sample. Our contribution in this paper is
developing a framework that helps exploit the power of col-
lective processing. We describe a centroid-based matching
approach in section 3.3 to solve the problem of data sparsity.

3.1 Hierarchical Spatial Segmentation
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Figure 1: Textual and visual features are used in
a hierarchical framework to predict the most likely
location.

We tackle this geo-referencing problem with a hierarchi-
cal classification approach. Therefore, the world map is it-
eratively divided into segments of different sizes. The spa-
tial segments of each hierarchy level are here considered as
classes for our probabilistic model. The granularity is in-
creased at lower hierarchy levels, so our classifiers are it-
eratively applied to classify video sequences as the spatial
locations become continually finer. These hierarchical seg-
ments are generated in two ways: querying gazetteers for
toponyms and static segmenting with spatial grids of differ-
ent sizes.

3.1.1 National Borders Detection
In general, textual information (such as the provided meta-

data of the uploader) is a valuable source of information
about the multimedia resource it is associated with. The
national borders method extracts geographical national bor-
ders using the toponyms extracted from the metadata, which
are used for looking up the geo-coordinates. For this pur-
pose, the textual label is extracted from the video (e. g.
description, title, and keywords) to collect all information
about the possible location. Then, non-English metadata
is handled by detecting the language and translating into
English sentence by sentence. The translation is carried
out using Google Translate [1], a free statistically-based ma-
chine translation web service. The translated metadata of
the video to be geo-tagged is analysed using natural lan-
guage processing (NLP) to extract nouns and noun phrases.
For this task we use OpenNLP [5], a homogeneous package
based on a machine learning approach that uses maximum
entropy. NLP returns a huge list of candidates, often includ-
ing location information. Each item in the list is coarsely
filtered using GeoNames [2]. The GeoNames database con-
tains over 10 million geographical names corresponding to
over 7.5 million unique features and provides a web-based
search engine which returns a list of entries ordered by rel-
evance. Next, we query Wikipedia [3] with each toponym
candidate and examine the articles returned. The Exami-
nation involves parsing the Wikipedia article to determine
whether it contains geo-coordinates. We take the presence
of such coordinates as evidence that the toponym candidate
is indeed a word associated with a place. If a candidate
fails to return any Wikipedia articles, it is discarded. The
Wikipedia filter constitutes a simple yet effective method
for eliminating common nouns from the toponym candidate
list.

The next step serves to eliminate geographical ambigu-
ity among the toponym candidates. With the help of Geo-
Names, we create a rank sum R(ci) of each of the M possible
countries ci in which the place designated by all N toponym



candidates could be located. The most likely country has
the highest rank sum:

cdetected = argmax

⎛
⎝

∑N−1
j=0 Rj(c0)

...∑N−1
j=0 Rj(cM )

⎞
⎠ . (1)

The determination of a country is less ambiguous than
that of a landmark or a city. The geographical borders for
a detected country are determined by querying the Google
Maps API [4]. The resulting geographical borders support
the probabilistic models (sec. 3.2) by preselecting likely spa-
tial segments. If there is no matching entity for any keyword
in the metadata of the given video, this algorithm cannot
detect any country borders and analyses the whole world.

3.1.2 Spatial Segments of Different Granularity
The method of generating spatial segments divides the

world map into areas of different granularities. The highest
hierarchy level uses the national borders detection followed
by a large grid of 360×180 segments according to the merid-
ians and parallels of the world map. We also introduce a
smaller grid of segments which spatial dimensions is halved
to increase the accuracy and to minimise the computational
cost. Each geo-tagged training image is assigned to its cor-
responding grid cell at the lowest level.

3.2 Probabilistic Model
In this section, the classification approaches are described

that are used to determine the most likely spatial location
at each hierarchy level. The two modalities—textual and
visual—for each video sequence are separately geo-referenced
to the most likely location.

3.2.1 Textual Approach
The decision for spatial locations based on metadata can

be regarded as classification of documents. A spatial loca-
tion is either a specific area or a certain item, according to
section 3.1. To apply a probabilistic classifier, we treat the
spatial locations l as classes. The base data are geo-tagged
images and videos with associated metadata from the train-
ing set assigned to the spatial locations. The vocabulary
V of the spatial locations includes tags and words from the
titles and descriptions. Each spatial segment incorporates
all terms related to its associated images from the training
database. Each term from the vocabulary is stemmed us-
ing Porter stemmer algorithm2, once stop words and digits
were removed. For classifying the test video sequences d into
locations l, their terms t are used in a probabilistic multino-
mial Bag-of-Words approach. So each sequence is iteratively
assigned to the most likely spatial segment, according to the
hierarchical segmentation:

P (d|l) ∼ P (l|d) (2)

lml = argmax
l∈L

P (d|l), (3)

where P (d|l) is the conditional probability that reflects the
video sequence belonging to a certain location. This proba-
bility is defined by the term-location probability:

P (d|l) = P (< t1, . . . , tnd > |l), (4)

2http://tartarus.org/ martin/PorterStemmer/index.html

where nd is the number of terms in the video’s metadata. As-
suming the statistical independence of the term occurrence,
the video-location probability is simplified to a multiplica-
tion of term-location probabilities:

P (d|l) =
nd∏
k=1

P (tk|l). (5)

The use of logarithms replaces the multiplication by sum-
mation and prevents the underflow of floating points.

log(P (d|l)) =
V∑

k=1

Ntk,d · log(P (tk|l), (6)

where Ntk,d is the term frequency of the term tk in the meta-
data of video d. The term-location-distribution is estimated
with the following formula that is smoothed by adding-one—
which simply adds one to each count:

P (t|l) = Nt,l + 1
∑

t
′∈V

(
Nt

′
,l + 1

) , (7)

where Nt,l is the term frequency of term t in a spatial seg-
ment l. The smoothing is necessary to have a probability
value higher than zero for all terms t in all locations. The
above formulas describe our probabilistic model when using
a multinomial distribution with term frequency (tf) weight-
ing. In latter studies, we experiment with different weights,
such as:

• Term frequency (TF).

• Term frequency-inverse document frequency (TF-IDF).
The Ntk,d in eq. 6 and Nt,l in eq. 7 are replaced by the
tf-idf scores.

• Term occurrence (TO). The Ntk,d in equation 6 and
Nt,l in equation 7 are replaced by scores that indicate
presence (1) or absence (0).
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Figure 2: Term-location probabilities P (t|l) of a
video containing the terms: “usa”, “manhattan” and
“911”.

So each model generates the most likely location for each
test video sequence at the given granularity within the hi-
erarchy. Figure 2 shows the term-location probabilities of



terms occurring in a video located at the Ground Zero, Ma-
hattan, New York, USA. As shown, single terms do not
indicate a specific or right location, only the combination
maximizes the likelihood of the right spatial segment. Thus
we can conclude that generic terms like “911” do help with
specifying the location despite the fact that these terms do
not have a geographical relation in the sense of being an
entry in a gazetteer.

3.2.2 Visual Approach
This approach uses different visual features extracted from

the Placing Task 2010 database to predict a video’s location.
The database contains 3.2 million geotagged images, video
sequences and their respective key frames. The visual con-
tent of each video is described by the provided descriptors
that cover a wide spectrum of descriptions of colour and
texture within the keyframes. These image descriptions are
pooled for each spatial segment in the different hierarchy
level using the mean value of each descriptor. A k-d tree
that contains all the appropriate segments is built for each
descriptor in each hierarchy level. This k-d tree has the ad-
vantage that the following search for nearest neighbour is
speeded up because only a portion of data are needed to
be computed. Then the segment with the lowest distance
becomes the most likely location at the given level of granu-
larity. This method determines iteratively the most visually
similar spatial segment by calculating the Euclidean norm.

For the test videos, we reduced the temporal dimension-
ality by using the associated keyframes.

ı̈ż£

3.3 Centroid-based Candidate Fusion
We are interested in addressing cases where the training

dataset is sparse, thus we explored the possibility of using
the test data set to aid the handling of sparsity in the train-
ing database. Choi et al. [6] proposed a graphical model
framework and posed the problem of geo-tagging as one of
inference over the graph, and showed that performance im-
provements can be achieved by smart processing of the test
data set. The node potentials in this graph-based framework
are further modeled as a product of the distributions, given
each tag individually.

In the following section, we describe a centroid-based can-
didate fusion to solve the problem of data sparsity and to
enhance the distributions of single candidates in a multi-
modal manner. The framework also facilitates the fusion
of textual and visual features that can further improve the
localization performance. One of the biggest problems in
the fusion of multimodal features is the different range of
features from each of the domains that are used.

Our centroid-based candidate fusion approach is based on
the sum rule in decision fusion. Since our textual location
model produces logarithmic confidence scores (see eq. 6) for
location candidate, these scores have to be exponentiated.
Subsequently, these scores are used to generate normalized
weights for the candidate fusion, according to equ. 8:

wn =
P (ln|d)∑N
i=1 P (li|d)

, (8)

where wn is the weight of the nth candidate of a test video
d. The equation implies that the sum of weights is 1. Then,
the candidate location GPS(·) are weighted combined using
the sum rule, assumming that the most likely location has
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Figure 3: Illustration of fusion of textual and visual
candidates.

the highest weight. The location centroid xv|t arising from
all visual(v) or textual(t) candidates is calculated as follows:

xv|t =
N∑

n=1

wn ·GPS(ln). (9)

This forms the most likely location for a given video, whereas
the centroid does not need to be an existing item within the
training data. Thus the sparsity is not that problematic.
Then, we determine the location for a specific feature. Since
we want to include several different features from different
modalities in our framework, a confidence score for each cal-
culated centroid is needed for the subsequent multimodal
fusion. Here, we choose the standard deviation as inversely
proportional weights. The more a feature correlates with
a specific spatial location, the closer the likely candidates
are located, which implies a small deviation and therefore a
high-valued weight. The calculation of the spatial deviation
is shown in the following equation:

σv|t =

√√√√ N∑
n=1

(GPS (ln)−GPS (xv|t))2 · wn (10)

Using these formulas, a centroid is determined for each fea-
ture. The final decision for the video location X is specified
as shown in fig. 3 using the multimodal fusion in eq. 11:

X = wt ·Xt + wv ·Xv, (11)

where wv|t are calculated according to equation 8, but with
1
σ
instead of P (li|d).

4. EXPERIMENTS
In this section, we describe the experimental setup for

predicting the geographical coordinates where the respective
video sequences were recorded. We run our experiments on
the MediaEval 2010 placing task dataset.

We compare our results to other state-of-the-art systems
that were tested on the same dataset. All results are also
compared to a random baseline. For this purpose, each test
video sequence is assigned the geographical coordinate of
a randomly chosen training set item. This random baseline
achieves an accuracy of about 12.3% for an error of 1000 km.

This section contains the results of the approach described
in section 3. Since we use a method for national borders de-
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Figure 4: Confidence scores (in log scale) of textual approach (a, b) and the centroid-based candidate fusion
within the most similar block (c).

tection which restricts candidates located in a specific area,
we first evaluate the performance of our hierarchical prob-
abilistic model. Although this dataset is surprisingly well
tagged, a purely gazetteer-based approach cannot identify
all video locations, because 10% of the test video does not
contain location related metadata.

We introduced three different weighting schemes for our
model–term occurrence (TO), term frequency (TF), and term
frequency-inverse document frequency (TF-IDF)–which are
now compared against each other. Table 1 shows the per-
centage of correctly predicted spatial candidates using re-
strictions made by our national borders detection.

Table 1: Accuracies for selected margins of error
for different textual weightings without previous na-
tional borders detection.

margin of error TO TF TF-IDF
1 km 38.5% 50.9% 66.5%
10 km 55.9% 59.9% 74.4%
20 km 62.6% 63.8% 77.4%
50 km 72.5% 73.6% 82.6%
100 km 82.0% 79.4% 86.7%
200 km 94.3% 93.8% 95.3%
500 km 100% 100% 100%

The weighting with TF-IDF outperforms both of the other
weighting schemes, as the TF-IDF weighting correctly de-
creases the score of terms which occur in multiple spatial
segments. This can be observed by comparing to the pure
TF model. In contrast, the model with term occurrence
(TO), where all terms are treated equally, seems to have the
contrary effect, thus performing much worse. Summarizing
this experiment, we conclude that even without the use of
gazetteers, we are able to predict the location of 74.4% of
the test videos within a radius of 10 km.

The next set of experiments shows that the accuracies
increase when we use the pre-selection of spatial segments
made by the national borders detection, as seen in table 2.

Within a radius of 10 km, we achieve 86.8% in correct
location predictions. Figure 4 shows the confidence scores
for candidates for an example video3 depicting a Formula

3http://www.flickr.com/photos/88878784@N00/4706267893

Table 2: Accuracies for selected margins of error for
different textual weightings with previous national
borders detection

margin of error TO TF TF-IDF
1 km 70.0% 74.4% 78.3%
10 km 84.1% 84.6% 86.8%
20 km 87.7% 87.7% 89.7%
50 km 92.5% 92.6% 93.5%
100 km 98.8% 95.3% 96.2%
200 km 100% 98.4% 98.8%
500 km 100% 100% 100%

One scene captured in Montreal, Canada. The confidence
score is colour-coded as follows: very unlikely spatial seg-
ments are depicted in black, and the colour gets lighter as
the likelihood of the segments increases. Figure 4 shows the
confidence scores of the probabilistic approach in a log-scale
for spatial segments in the world (a), for spatial segments in
North America (b) and for candidates in the most likely seg-
ment (c). As seen, the segments around Montreal, Canada
are more likely than other areas in the world.
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Figure 5: Accuracy achieved by single methods
within the hierarchy for selected margins of error.

The candidates of both modalities are combined using
our centroid-based fusion as described in section 3.3. The
videos of the Placing Task dataset are well tagged, the tex-
tual model produced strong candidates and the combination
with the visual candidates effect a location gain in small



scale. In general, the fusion of several candidates of both
modalities is important to eliminate geographical ambigui-
ties. As depicted in figure 5, the centroid-based fusion im-
proves the results, especially on smaller margins of error,
overcoming the sparse nature of the dataset. The strongest
gain is achieved by the gazetteer-based national border de-
tection, which eliminates the geographical ambiguity in con-
junction with the probabilistic models.

Finally, we compare our fusion results against other state-
of-the-art results. Figure 6 shows results plotted against the
geographical margin of error of other systems. The green
solid line shows the results of our proposed approach with
centroid-based multimodal candidate fusion. The results of
the other approaches are taken from MediaEval 2010 Plac-
ing Task participants. The blue dashed line (TUB) shows
the results of a multimodal approach reported in Kelm et
al. [12]. The results represented by the purple line (Ghent)
are reported in van Laere et al. [15], and the red line rep-
resents the results of Perea-Ortega et al. (SINAI) [11]. The
results of Choi et al. (ICSI) [7] and Ferrés et al. (TALP) [8]
are depicted as a blue line and a brown line, respectively.
As can be seen, our approach outperforms the other ap-
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Figure 6: Accuracy plot against geographical margin
of error, comparing MediaEval 2010 Placing Tasks
participants.

proaches. Our fusion approach, which combines gazetteers
and probabilistic models, is significantly better at eliminat-
ing geographical ambiguity than competing approaches. For
a margin of error of 1 km, we achieve an accuracy of 78.5%
which doubles the accuracy of Ghent, who uses a purely tag-
driven approach, and outperforms the other gazetteer-based
approaches.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a novel fusion approach that

improves automatic estimation of geo-tags for social media
videos. Our approach locates 40% of the videos to within
100m of the ground truth location, and 78.5% of the videos
to within 1 km.

We presented a detailed analysis of this fusion approach,
which uses textual and visual features at different spatial
granularities, and described the effect of national borders
detection. We showed that our fusion approach is effective
at eliminating geographical ambiguities. Given that only
about 5% of Internet videos are geo-tagged [9], there is a
pressing need to develop effective estimation models. Ac-

cording to our experiments, our approach significantly in-
creases the number of geo-tagged media at a granularity of
100m.

We plan to work on adding acoustic location estimation.
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