Asymptotic Analysis of Large Heterogeneous Queueing Systems

Scott Shenker
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304

Abel Weinrib
Bell Communications Research
435 South Street
Morristown, NJ 07960

ABSTRACT

As a simple example of a large heterogeneous queueing
system, we consider a single queue with many servers with
differing service rates. In the limit of infinitely many servers,
we identify a queue control policy that minimizes the average
system delay. When there are only two possible server speeds,
we can analyze the convergence of this policy to optimality.
Based on this result, we propose policies for large but finite
systems with a general distribution of server speeds.

1. Introduction

Many problems that arise in the design and implementation
of large distributed computer and communication systems
involve the control of queues with heterogeneous servers.
For example, load balancing algorithms in heterogeneous
distributed computing environments, even in the limit of free
and instantaneous communication, require nontrivial
decisions about where to process jobs remotely ([Wei87),
[Cho79]). Another example is routing in computer networks
and telephone systems, which often involves selecting one of
a number of possible nonequivalent routes ([Kel87],
[Kri86,87], [Yum81]). Given a specific optimization
criterion, such as minimizing waiting time or maximizing
throughput, one would like to determine the optimal decision
policy.

Instead of focusing on any specific application, we will study
the simple abstract model of a single queue with many
servers and a distribution of server rates. A controller for
the queue chooses when and where to send jobs to be
served. Our goal is to find a decision policy that minimizes
the average delay (time spent in service + time spent in the
queue). The controller can decide to send a job to an open
server (choosing the fastest open server), or to hold the job
in the queue until a faster server becomes available. For
homogeneous systems, where all of the servers are

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1988 ACM 0-89791-254-3/88/0005/0056 $1.50

56

equivalent, there is no incentive to retain jobs in the queue.
In heterogeneous systems, queueing jobs is often preferable
when the only available servers are relatively slow. There is
a tradeoff between the extra time spent in the queue waiting
for a faster server versus the exira time spent in service at
the slower server.

A natural decision policy for heterogeneous systems is to
choose the option that minimizes the time until completion
for cach individual job. [Whi86] has shown that this policy,
which is a greedy policy in that each job minimizes its
individual delay, does not necessarily minimize the overall
average system delay. Determining the optimal queue
control policy in heterogeneous systems is much more
complicated than in homogeneous systems and, at present,
many of these problems remain unsolved.

Even in the smallest nontrivial case of just two servers, this
problem is difficult (but solvable, see [Lin84]). However,
our interest lies in the other extreme. Distributed systems
and computer networks are rapidly becoming larger, and our
focus in this paper is on the nature of the optimal policy for
large heterogeneous systems. As we will illustrate, the
behavior of policies becomes accessible in the limit of large
syslems.

This paper has three parts. In the first, we will introduce a
series of simplifications to our original model, finally arriving
at a model that is equivalent to an M/M/m/K queue with
penalties for rejections. Using asymptotic results for
Erlang’s B function, we can determine the nature of the
optimal policy in the large system limit. We find that, for
infinite systems, the policy of never gqueue, in which jobs are
sent to the fastest open server and are never kept in the
queve, achieves optimal performance. Surprisingly, the
greedy policy exhibits the worst performance among the
class of policies we consider. In fact, its performance is
equivalent to having all servers as slow as the slowest server
needed to provide sufficient throughput. In the second part
of the paper, we focus on large but finite systems, and
identify the optimal policies for our simplified model.
Finally, we return to the original problem of a general
many-server queue and also consider the problem of parallel
queues.

In a previous paper ([Wei87]), we studied the parallel queue
problem in which, instead of a single central queue, each
server has its own queue. For that model, we observed
through simulations that the policy of never queue performed
well, while the greedy policy did not. The purpose of this
paper is to provide a rigorous basis for these observations.

Fquipped with this more rigorous understanding, we propose
policies for systems with general sets of server speeds.

2. Simplified Model

We shall study a model system with a single queue feeding
multiple servers. The arrival process is Poisson with
strength Ay, and the servers are exponential with service
rates p,. Given values for these system parameters, there
are techniques to compute the optimal policy (see [How60]).
For large systems, these methods are not tractable
analytically and rapidly become too cumbersome to
implement numerically (since they yield a set of self-
consistent equations whose cardinality grows exponentially in
the number of servers). We start with a simplified version of
our model, one that still retains the essence of the problem
at hand but that is amenable to analysis. This simplified
model has only two classes of servers, fast and slow, with m
fast servers and an infinite number of slow servers. We will
be investigating the limit of large m .

The restriction of only having two classes of servers
mtroduces the simplest form of heterogeneity. An infinite
number of slow servers is, for the most part, equivalent to a
large but finite number of slow servers. This can be seen as
follows. Assume that we had myg,, fast servers and my,,
slow servers, and define yp,,; as the total servicing power:
Mot =M faatll fass+Mgon a0 - FOT the class of policies we will

be considering, in the heavy traffic limit where
) oia

1- 22L «<0(1), the system has an average delay D
HTomt

approximately equal to that of the analogous M/M/1 system
with a single server with service rate jip,,, so that
D=1/ (jt ot =M 7o) Since all of the policies have the same
behavior in this heavy loading limit, and the diverging delays
make it an impractical operating region, we can effectively
ignore this region. Away from the high traffic limit, when
-'”-T"'—'"{-_—-}:I‘-’—'EI—>>O(1), it is rare for all of the slow servers to

Hstow
be busy so the delay is essentially the same as if m,,,=co
([New73]).

With these two simplifications, this model is now equivalent
to the problem of admission to an M/M/m queue with m
fast servers when one identifies the average time spent in
service at the slow servers as the penalty for rejecting a job,
and assigns a unit penalty per unit time for waiting in the
queue. Much is known about this admission problem (see
|Sti85,86]). [Lip77] shows that the optimal policy is of a
threshold type. A policy with threshold r will send a job to a
slow server whenever there are r or more jobs ahead of it in
the queue. Otherwise, jobs are queued up until a fast server
becomes available. The number of jobs in the queue,
denoted by x, does not count those jobs presently in service.
Our search for the optimal policy now reduces to the search
for the optimal threshold r. Calculating this optimal
threshold for our model is straightforward; the import of our
calculation is that the qualitative properties of these solutions
give insight into the functioning of more general models.

The objective function we are trying to minimize is the
average delay experienced by all jobs entering the system.
The policy that minimizes average delay i1s sometimes
referred to as the socially optimal policy ([Bel83]). One can
also consider the individually optimal, or greedy, policy in
which each newly arriving job minimizes its own expected
delay. Each job chooses the option that produces the

57

Shortest Expected Delay until Completion (SEDC), so jobs at
position x in the queue go to a slow server only when
x>m(R-1) with R=(gu/ttyon). This is merely a threshold
policy with 7=m(R-1). Such a policy does not necessarily
produce socially optimal results because the quantity
minimized by each arriving job only includes the delay
experienced by that individual job and does not include the
additional delay experienced by subsequent jobs that either
have to wait behind it in the queue, or are forced to use the
slow servers. However, in many applications where the
socially optimal policy is not known, the individually optimal
policy of SEDC is used, and is assumed to be close to
socially optimal (see, for example, [Fos78]). We shall see
later that this assumption is not valid for large systems.

Studying a similar system, [Lin84] conjectured that the
optimal r always satisfies 7<m (R—1). This inequality derives
from the fact that one would presumably never want to leave
a job in the queue when the expected time until the job
reaches an open server is greater than the expected time to
completion on a slow server. The analysis in the next
section of the paper verifies this conjecture for our simplified
model.

We earlier introduced another policy, that of Never Queue
(NQ), which is a threshold policy with r=0. SEDC and NQ
are al the extremes of the spectrum of potentially optimal
policies in that SEDC allows maximal queuing and NO
allows none. We will only consider thresholds that lie
between these two extremes, and we now turn to defining a
one parameter family of policies that interpolates between
them. In a more general setting (such as when there are
only a finite number of slow servers, so there are times when
all servers are busy), the NQ policy can be generalized to a
policy where each job minimizes the expected time waiting in
the queue T, . In contrast, the SEDC policy minimizes
the expected time until completion. Since the time until
completion is T,,,,, plus the time spent in the server T,,,,,,

we can define an intermediate policy where individual jobs
pick the alternative that minimizes the cost function

C {(l)= quene

it the o policy, is equivalent to SEDC for a=1 and to NQ for
tl=0.

+Toerver » With 0<a<1. Note that this policy, call

For a job at position x in the queue, waiting for a fast server
X

yields: Ty = ——— -and’ Fpe= . If the job goes
M g Hfast
immediately to a slow server, T,,.=0 and T,,,.,= 1
H stow

Therefore, C(«) is given by:

£ queued for fast server
C() “m.ufnn H fast
n) =
1
—— sent to slow server
Hislow

The u policy chooses, for each job, the option that has the
lower cost. It is equivalent to a policy with threshold
r.=lam(R-1)], where the brackets indicate the floor
operation. The threshold is an integer but for convenience
we will suppress the bracket notation in future expressions.
for 7.

Above we interpreted the « policy as minimizing the
modified cost function C (o) for each job. Alternatively, we
can view the a policy as individually minimizing time to

completion on a modified system, one in which only a
fraction o of the processing power of the fast servers is
available when calculating the wailing time in the queue.
C(a) is then just the expected time until completion for this
modified system. Later, we will use this interpretation when
we propose policies in the case of a general distribution of
server speeds.

We can, without loss of generality, set pg,=1. Since we will
be investigating the limiting behavior of large systems, it is
helpful to scale the arrival rate by the number of fasi
servers, m, defining p via Ay, =mp. The average delay D
incurred by a threshold policy can be expressed in terms of
quantities calculated for an M/M/m /K queue with K=m+r:

D)= 4Rz () @1
mp

where N(r) is the average occupation and Z(r) is the
blocking probability (using notation that does not explicitly
show the dependence on p and m). Thus, this system is
equivalent to an M/M/m/K queue with a penalty of R for
rejection and a unit penalty for waiting in the queue (recall
that R is the ratio of server speeds). Both N(r) and Z(7) can
be casily expressed in terms of the Erlang B function, which
is Z(0):

S J o T4 onftl
mp+Bmp —h-% MR =) r it H(': ‘0;2”’
N (r)=— - 4 (2.2a)
1+Bp—]:e-—
I—p
and
z(=-—2L— (2.2b)
l+B,-J .li:!".',

While these formulae permit numerical determination of the
optimal r for a given m and p, we wish to investigate the
large m limit, where we can use asymptotic expressions for
B that are in the literature (see [Jag74]).

3. Asymptotic Results

We will first evaluate the behavior of various policies in the
limit of infinite m , and then later study the behavior for large
but finite m. The behavior of B(mp,m) in the limit of large
m depends crucially on p. For p<1, B—0 exponentially fast,
so the average delay is just one (the average time spent on a
fast server). The delay is independent of the threshold, so
all policies are identical in this limit. For p>1, the limiting
value of B=(p—1)/p. The asymptotic delay is then
D(r)=14+R-1)&=L T (3.1)
4 mp
Note that the limiting delay depends only on the limit of r/m
as m-—oo.

Substituting the expression 7, =am (R -1) into equation (3.1),
the delay for the general o policy with p>1 is

R-1

D(r,) = 1+(R—1}4";—14 a (3.2)
Figure 1 shows a graph of the delays for the o policy with «
values 0, Y2, and 1. NQ (a=0) is the best policy in our class
in the limit of infinite m and SEDC (a=1) is the worst.
When p>1, Dl(rsppe)=R; the SEDC policy makes every
server appear as bad as the slow servers, in that the
controller keeps adding jobs to the queue until the average

58

delay until completion for a job in the queue is as long as the
expected time to completion on a slow server. In this
regime, SEDC completely wastes the extra speed of the fast
servers, and would perform just as well if given only slow
servers. When m is small, queueing up for the fast servers
can increase their throughput by smoothing out fluctuations.
When m is large, fluctuations are already minimal, so
queueing up for the fast servers just creates added delay
without any compensating increase in throughput.

ot =

44 |
o3

g

3]

o

c

3

= 2 ot = 0
Q T T
0.0 1.0 2.0

p
Figure 1. The m=occ performance of various o

policies for the single queue model with servers of
two speeds, m of the fast ones, and an infinite
number of the slow ones. The scaled arrival rate
A
g MK fast ’
speeds is R=4. The delays are calculated according
to formula (3.2). Results for large but finite m are
very similar to these infinite m results, except that
the discontinuities are replaced by smooth but
steeply sloped curves.

Mfan=1, and ;c,,o,,=%, so the ratio of

4. Convergence Results

We now know the behavior of policies for our two speed
model in the limit of infinite m . In this section, we turn our
attention to the behavior of the policies for large but finite
nt.

To determine the optimal thresholds r,,, (m) for large m, we
can calculate the discrete derivative A(r) = D(r)-D(r—1).
The full expression for this quantity is complicated, and we
merely note that the derivative is proportional to the
expression shown below:

r=1
+ Uy (4.1)
The optimal threshold is the largest integral value of 7 such
that A<0. Alternatively, one can compute the real valued
solution to A(y)=0 and set 7,,=|y]. These solutions are
monotonically decreasing in p and monotonically increasing
in R. The first monotonicity result, along with the fact that

Ar) oc r4m (R=1)(p=1)+Bp [m(1-R)-{--ivr-
—p

a(m(R 1))=0 for =0, proves the assertion that
“opr..m(R-1). The properties of formula (4.1) for large m
depends on the asymptotic nature of B(mp,m) (see [Jag74]),
and there are three cases which we discuss below.

4.1 p<1

Here, B=(pel'=)"/m'/? so that r,,(m)=m(R-1)(1-p) for
large m. Asymptotically, the optimal threshold is exactly the

o threshold with «a=(1-p). Recall that the o policy
individually —minimized the modified cost function
T,
Clo)=—24T_ .. For large m, 1—p is the fraction of time
i}

the fast servers are idle. The asymptotic behavior of 7.,
suggests that the correct quantity to individually minimize is
the modified cost function C(a) with a chosen to be the
fraction of processing power of the fast servers that is idle.
This amounts to merely calculating T,,,,. assuming only the
idle processing power can be used (see [Wei87] for a similar
discussion on a different model).

The relation between the optimal threshold and the idle time
of the fast servers can be seen more clearly by considering a
continuum model with no fluctuations, where the rate of new
jobs flows in at rate mp and is consumed by the servers at
rates g, =1 and j,, respectively. In equilibrium, with p<1,
this model has no queue and all jobs are processed in the
fast servers. Now, assume we slart in some state with a
queue of length x and that we are given a single newly
arrived test job to schedule. The extra delay incurred by the
system when we place the job in the queue to wait for a fast
server can be calculated by allowing all subsequently arriving
jobs to preempt this test job (that is, we let them move
ahead in the queue, so that no other job has increased delay
due to the presence of this test job). This test job then sees
the queue decreasing in length at a rate proportional to the
difference between the incoming job rate myp and the
cumulative processing rate of the fast servers m; this
difference m(1-p) is exactly the idle processing power of the
fast servers in equilibrium. However, once the job reaches
the fast server, it will see the full processing rate since it will
not be preempted (once the test job has reached a server,
there will be other idle servers available to accommodate
newly arriving jobs since p<1). Thus, the total additional
system delay caused by placing this test job in the queue is
its expected time in the queue serviced only by the spare
processing power of the fast servers plus its expected time in
the fast server. The optimal policy compares this quantity
with the expected delay in the slow server and chooses the
better option. This heuristic line of reasoning actually
becomes exact in the large m limit, and provides further
motivation for our interpretation of the optimal o.

The asymptotic deviation from optimality for the delays of
the SEDC and NQ policies when p<1 are shown below

m
SR ==p) g 1mp

D (rsepe)-Dlrop) = TR (4.2a)
®=1) [perr]"
D(rpg)—D (rop) = (4.2b)

mi?

Thus, SEDC has a faster convergence rate to optimality than
NQ for m—occ. Even though both NQ and SEDC are
equivalent to the optimal policy in the limit of infinite m, the
rate of convergence to optimality can become very slow.
For p=1—¢ for small ¢, the deviation of NQ from optimality

59

__"’!L

i
goes as £ i For m<(=?, the convergence rate will be
m
dominated by the square root term.
4.2 p=1
a M 4
Here, B = |—| - i For large m, 7, o m'/* and
i 3mm

D(rop)—1cc m~'/2. The asymptotic delay of the alpha policy
is D(r,) = 1+%(R—1), so the o policies with «>0 are not
asymptotically optimal., The NQ policy is asymptotically
optimal, with

D (rpg)—D (ropi) o m™ 12 4.3)

4.3 p>1

The optimal r is given by
o~ Jog(R)
P log(p)

The deviation from optimality for the NQ policy decreases

as m~! while, as we saw in Section 3, the SEDC policy has
deviations that remain finite in the limit.

Here, B=J—J_1 +——-—1 A,
I]

(4.4)

While the NQ policy achieves optimal performance in the
limit of infinite m, the rate of convergence to this limit
depends on p. For p<l, the convergence is exponentially
fast, while for p>1 it converges as m~'. However, for p=1 the
convergence slows to m~'/2. Thus, even for large systems,
the region where it might be important to use a policy more
sophisticated than NQ is in the crossover region of p=1,
where one first needs to utilize the slow servers.

5. Application to General Set of Servers

Now consider an arbitrary distribution of server rates j{(u).
As long as the distribution of server speeds is sufficiently
smooth, the limit of an infinite number of servers can be
described by a fluctuation-free model. The system will
utilize just those servers necessary to provide enough
throughput, and the various policies will only affect the
number of jobs kept in the queue. The generalization of the
o policy here is to compare the average cost C(a) obtained
by immediately using the fastest open server with that
obtained by waiting in the queue for a faster server. This
policy gives a delay of

sz*aw _l+ﬂ' [}“opﬂi _l"f'aw _l] (51)
where ji,., is the solution to
A= Jf dps(up (5.2)
Hopen
and p,,. is given by
Hae="" A (5.3)
[dps(u)
“oprn

Thus, as in the two speed case, the a=0 NQ policy always
achieves optimal performance in this infinite limit. The a=1
SEDC policy has performance equivalent to a system where
all of the servers have service rate p,,,. Figures 2(a) and
2(b) depict the performance of the SEDC and NQ policies
for two distributions of servers speeds. Figure 2(a) uses a

discrete distribution, while Figure 2(b) uses a continuous
distribution. In both cases the NQ policy exhibits a marked
advantage over the SEDC policy.

We have, as yet, no analytic expression for the optimal
policy for large but finite m in the case of a general
distribution of server rates. Recall that for the two speed
case examined in the previous section the convergence (as
m—soc) of the NQ policy to optimality could be quite slow.
For practical applications that may have a more general
distribution of server speeds, it is important to have a
decision policy that, while perhaps nonoptimal, will converge
to optimality for large m faster than NQ. Based on our
understanding of the simplified model, we will suggest two
such decision policies. The first is rather straightforward,
while the second is adaptive in that it requires measured
statistics to define the policy.

We now define our first policy, the Deterministic (D) policy.
If there are no open servers, then there are no scheduling
decisions to be made. When there is at least one open
server, we find the fastest open server (with speed u,p,,),
define m to be the number of servers faster than this open
server, and define y,, to be the average of the service rates
of these faster servers. We can then use formula (2.2) to
compute the proper threshold, inserting p,,.. for pg,,, and
fave fOT pip,. Figure 3 depicts the performance of this policy
for a queue with three classes of servers. The policy clearly
outperforms NQ for all arrival rates A, having delays roughly
10% lower. In addition, it is as good as SEDC for small X.
While we expect that the D policy will exhibit reasonable
behavior for the typical case, in some cases it would lead to
poor performance. Such cases could include highly irregular
distributions of server speeds where the fluctuations in the
rates po.,, and ji,,, do not become small in the large system
limit.

The D policy requires detailed knowledge of the arrival rate,
and its "derivation" depended crucially on the memoryless
nature of the arrival and service processes. In real
applications, servers are not typically exponential nor are
arrival processes Poisson. A policy that is perhaps more
resilient to these deviations from the ideal is an adaptive (A)
policy. This policy is similar in structure to our D policy,
but requires that statistics be kept of the percentage of the
time each server k is idle; call this statistic i,. In our
previous results for the two-speed model with p<1, we found
that the optimal policy was to individually minimize the time
to completion with T, computed using only with the idle
processing power of the fast servers. We can apply that
reasoning here, letting the fastest open server define the rate
of the slow servers. The total idle processing power of the
faster servers is iy, so the threshold 7 is just

= [Ejkﬂk]X [ﬂs!ﬂw _l_"‘nvc _l]

where the sum is over all servers faster than y,,, , and y,,, 1s
the average rate of those faster servers.

(54

The measured statistics i, will define a policy which, in turn,
will determine the measured i,. By using running averages
for the statistics, one should arrive at a self-consistent
solution. This avoids the problem of having to know a priori
the percentages of idle times. Figure 3 shows the
performance of the A policy, and it is indistinguishable from
the D policy discussed above. Note that the A policy
achieves equivalent performance without any knowledge of

60

20
(a)
cepe

F)

Q
QO 104

=

(1]

L]
s

NG
0 . : r
0 5 10 15
A
1.0
(b)

k)

a

2 05 Seve

[}

[+

E /]

NG
0.0 . : r
0 5 10 15

A

Figure 2. The m=oc performance of the NQ and
SEDC policies. (a) The mean delay of a job for a
system with a distribution of server speeds given by
.d(;i)=5a'(p—1)+2{)f}(_u—%‘)+Sﬂé[u—li6) the &
denotes the delta function. This is a discrete
distribution with only three classes of servers, with
5m fast servers having a service rate of 1, 20m

where

medium servers having a service rate of %, and 80m

slow servers having a service rate of % The

weights and speeds were chosen so that each class
has the same total processing power. (b) a system
with a continuous distribution of server speeds,

fi[,e.-):l for 0<u<15, chosen so that each class of
f

server contributes the same total processing power.
For both distributions, NQ produces significantly
lower delays than SEDC. The delays for the
intermediate o policies can be found by interpolating
between the NQ and SEDC results.

the arrival rate. We first suggested adaptive policies of this
general form in [Wei87], but for the problem of parallel

SEPE Na
0.35 1
A&D
g
8 0251
c
o
']
=
0.15 1
0.05 +———— ' : T :
0 40 80 120 160 200
A

Figure 3. The performance of the SEDC, NQ, A,
and D policies for the single queue model with three
classes of servers: pg, =16 Mg =5, =4 My =20,
Haow=1 my,,=x. The job arrival rate is A. The
curves are derived from a computer simulation of the
system.

queues, to which we now turn.

6. Parallel Queues

We now consider the problem where each server has its own
queue, and the scheduler routes each arriving job to the
queue selected by the policy. The infinite-number-of-servers
limit is the same as for the single queue case, where the
policy of never queueing is asymptotically optimal. The
most obvious difference here is that for all p>1, 7,,=0 for m
sufficiently large. Recall that for the single queue case,
7,5 >0 for p<R and large m, even though NQ asymptotically
achieves the same performance as the optimal policy.

Even in the simplified model with only two server speeds,
for the case of large but finite m the huge state space of the
model presumably renders any optimal policy extremely
complicated. We restrict ourselves to modified threshold
policies, where a job is sent to the fast server with the
shortest queue as long as the sum of the queue lengths of the
fast servers is below some threshold; otherwise the job is
sent to an open slow server. Using the same value for the
threshold that is calculated for the single queue from
formula (2.2), we find that this policy performs within 2% of
the best performance we have been able to achieve (see
[Wei87]) over the entire range of p values. The delay values
of the single queue and the parallel queue models are not the
same; however, the preceding result suggests that that the
optimal thresholds of the two models are closely related.

Returning to the case of general server speeds, one can
exploit the similarity in thresholds between the single queue
and parallel queue models by merely ‘modifying the single
queue/general speed adaptive A policy to the parallel queue
case. By treating all of the servers that are faster than the
fastest open server as belonging to a single queue and

61

computing the optimal queue length for that case, we can
use that number as the modified threshold as described
above. If the decision is to send the job to a busy server’s

X L
L I i 3 is minimal. The

Hicli M
performance of this policy is shown in Figure 4, and is
somewhat superior to NQ.

queue, pick the queue for which

SEDC NG
0.35 1
A
z
& 025
8
)
=
0.151
0.05 T T T T T
0 40 80 120 160 200
A

Figure 4. The performance of the SEDC, NQ, and
A policies for the parallel-queue model with three
classes of servers: pp =16 mp =5, fmeg=4 Mpea=20,
Haow=16 m,, ,=co. The curves are derived from a
computer simulation of the system.

7. Summary

We have studied the optimal control problem for a single
queue with many servers. In the limit of infinitely many
servers, the policy of never gqueueing achieves optimal
performance and the greedy policy does not. When there are
only two server speeds and an infinite number of the slow
ones, we have been able to calculate the optimal threshold
policy exactly. There are three distinct regimes of behavior:
the optimal threshold grows linearly with the number of fast
servers for p<1, as the square root of the number of servers
for p=1, and finally reaching a finite limit independent of the
number of servers for p>1. The deviation from optimality of
the never gueue policy decreases exponentially fast for p<1,
as the square root for p=1, and as the inverse of the number
of servers for y>1. Using insight from the structure of the
optimal thresholds, we then proposed adaptive policies for
quenes with a general set of servers, and also for the
problem of parallel queues.

References

[Bel83] C. Bell and S. Stidham, "Individual versus
Social Optimization in the Allocation of
Customers to Alternative Servers", Management
Science, Volume 29, pp 831-839, 1983.

Y. Chow and W. Kohler, "Models for Dynamic
Load Balancing in a Heterogeneous Multiple

Processor System",. IEEE Transactions on

[Cho79]

[Fos78)

[How60]

[Jag74]

[Kel87]

[Kri86]

[Kri87)

[Lin84]

[Lip77]

[New73]

[Sti85]

[S1i86]

[Wei7]

[Whi86]

[Yum81]

Computers, Volume 28, pp354-361, 1979.

G. Foschini and J. Salz, "A Basic Dynamic
Routing Problem and Diffusion”, IEEE
Transactions on Communications, Volume 26,
pp 320-327, 1978.

R. Howard, "Dynamic Programming and
Markov Processes”, The MIT Press, Cambridge,
Massachusetts 1960.

D. L. Jagerman, "Some Properties of the Erlang
Loss Function”, The Bell System Technical
Journal, Volume 53, pp 525-551, 1974.

F. P. Kelly, "Routing in Circuit Switched
Networks: Optimization, Shadow Prices and
Decentralization”, to appear in Advances in
Applied Probability.

K. R. Krishnan and T. J. Ott, "State Dependent
Routing for Telephone Traffic: Theory and
Results", Proceedings of the IEEE Conference
on Decision and Control, Dec. 1986.

K. R. Krishnan, "Joining the Right Queue and
Routing in Data Networks", Bellcore Technical
Memorandum; also see "Joining the Right
Queue: A Markov Decision Rule", Proceedings
of the IEEE Conference on Decision and
Control, Dec. 1987 (to appear).

W. Lin and P. Kumar, "Optimal Control of a
Queueing System with Two Heterogeneous
Servers”, IEEE Transactions on Automatic
Control, Volume 29, pp 696-703, 1984.

S. Lippman and S. Stidham, "Individual versus
Social Optimization in Exponential Congestion
Systems", Operations Research, Volume 25, pp
233247, 1977.

G. F. Newell, "Approximate Stochastic
Behavior of n-Server Service Systems with
Large n", Springer-Verlag, Berlin, 1973.

S. Stidham, "Optimal Control of Admission to a
Queueing System”, IEEE Transactions on
Automatic Control, Volume 30, pp 705-713,
1985.

S. Stidham, "Scheduling, Routing, and Flow
Control in Stochastic Networks", preprint.

A. Weinrib and S. Shenker, "Greed is Not
Enough: Adaptive Load Sharing in Large
Heterogeneous Systems”, preprint.

W. Whitt, "Deciding Which Queue to join: Some
Counterexamples”, Operations Research,
Volume 34, No. 1, pp 55-62, 1986.

T. Yum and M. Schwartz, "The Join-Biased-
Queue Rule and Its Application to Routing in
Computer Communication Networks”, [EEE
Transactions on Communications, Volume 29,

pp 505-511, 1981.

62

