
Brief Announcement:
On the Resilience of Routing Tables

Joan Feigenbaum
Yale University

joan.feigenbaum@yale.edu

Brighten Godfrey
UIUC

pbg@illinois.edu

Aurojit Panda
UC Berkeley

apanda@cs.berkeley.edu
Michael Schapira

Hebrew University
schapiram@huji.ac.il

Scott Shenker
UC Berkeley

shenker@eecs.berkeley.edu

Ankit Singla
UIUC

singla2@illinois.edu

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Routing Protocols

Keywords
Internet routing, fault tolerance

ABSTRACT
Many modern network designs incorporate “failover” paths
into routers’ forwarding tables. We initiate the theoretical
study of such resilient routing tables.

1. INTRODUCTION
The core mission of computer networks is delivering pack-

ets from one point to another. To accomplish this, the typi-
cal network architecture uses a set of forwarding tables (that
dictate the outgoing link at each router for each packet) and
a routing algorithm that establishes those forwarding tables,
recomputing them as needed in response to link failures or
other topology changes. While this approach provides the
ability to recover from an arbitrary set of failures, it does not
provide sufficient resiliency to failures because these routing
algorithms take substantial time to reconverge after each
link failure. As a result, for periods of time ranging from
10s of milliseconds to seconds (depending on the network),
the network may not be able to deliver packets to certain
destinations. In comparison, packet forwarding is several or-
ders of magnitude faster: a 10 Gbps link, for example, sends
a 1500 byte packet in 1.2 µsec.

In order to provide higher availability we must design
networks that are more resilient to failures. To this end,
many modern network designs incorporate various forms
of “backup” or “failover” paths into the forwarding tables
that enable a router (or switch), when it detects that one
of its attached links is down, to use an alternate outgoing
link. We call these resilient routing tables since they em-
bed failover information into the routing table itself and
do not entail changes in packet headers (and so require no
change in the low-level packet forwarding hardware). Be-
cause these failover decisions are purely local — based only
on the packet’s destination, the packet’s incoming link, and
the set of active incident links — they occur much more

Copyright is held by the author/owner(s).
PODC’12, July 16–18, 2012, Madeira, Portugal.
ACM 978-1-4503-1450-3/12/07.

rapidly than the global recovery algorithms used in tradi-
tional routing protocols and thus result in many fewer packet
losses.

While such resilient routing tables are widely used in prac-
tice (e.g., ECMP), there has been little theoretical work on
their inherent power and limitations. In this short note we
initiate the theoretical study of resilient routing tables and
take the first few steps in this research direction. We prove
that routing tables can always provide resilience against sin-
gle failures (so long as the network remains topologically
connected). We show, in contrast, that perfect resilience is
not achievable in general (i.e., there are cases in which no set
of routing tables can guarantee packet delivery even when
the graph remains connected). We leave open the question
of closing the large gap between our positive and negative
results. Other interesting open questions include exploring
resilient routing tables in the context of specific families of
graphs, randomized forwarding rules, and more.

The literature is replete with discussions of how to make
routing more resilient, but these approaches differ from ours
in one or more important respects: (a) use bits in the packet
headers to determine when to switch from primary to backup
paths (this includes MPLS Fast Reroute [6]); (b) encode
failure information in packet headers to allow nodes to make
failure-aware forwarding decisions (see [3, 5] and work on
fault-tolerant compact routing [7]); (c) use graph-specific
properties to achieve resilience [2]; and (d) modify routing
tables on the fly [4].

Because of space limitations, full proofs can be found in
our technical report [1].

2. MODEL
The network is modeled as an undirected graph G =

(V,E), in which the vertex set V consists of source nodes
{1, 2, . . . , n} and a unique destination node d /∈ [n]. Each
node i ∈ [n] has a forwarding function fd

i : Ei × 2Ei → Ei,
where Ei is the set of node i’s incident edges. fd

i maps
incoming edges to outgoing edges as a function of which
incident edges are up. We call an n-tuple of forwarding
functions fd = (fd

1 , . . . , f
d
n) a forwarding pattern.

Consider the scenario that a set of edges F ⊆ E fails. A
forwarding path in this scenario is a loop-free route in the
graph HF = (V,E \ F) such that for every two consecutive
edges e1, e2 on the route which share a mutual node i it
holds that fd

i (e1, Ei \ F) = e2.
Intuitively, our aim is to guarantee that whenever a node

237

is connected to the destination d, it also has a forwarding
path to the destination. Formally, we say that a forwarding
pattern f is t-resilient if for every failure scenario F ⊆ E
such that |F | ≤ t, if there exists some route from a node i
to d in HF then there also exists a forwarding path from i
to d in HF .

3. POSITIVE RESULT

d

1

2 3

4 5

d

1

2 3

4 5

(a) (b)

1

4

3

5

2 6

8

79

10

11d

(c)

We now present our main result, which establishes that
for every given network it is possible to efficiently compute
a 1-resilient forwarding pattern.

Theorem 3.1. For every network there exists a 1-resilient
forwarding pattern and, moreover, such a forwarding pattern
can be computed in polynomial time.

We prove Theorem 3.1 constructively; we present an algo-
rithm that efficiently computes a 1-resilient forwarding pat-
tern. We now give an intuitive exposition of our algorithm.
We first orient the edges in G so as to compute a directed
acyclic graph (DAG) D in which each edge in E is utilized.
Our results hold regardless of how the DAG D is computed.
An example network and corresponding DAG appear in fig-
ures (a) and (b), respectively. The DAG D naturally induces
forwarding rules at source nodes; each node’s incoming edge
in D is mapped to its first active outgoing edge in D, given
some arbitrary order over the node’s outgoing edges (e.g.,
node 4 in the figure forwards traffic from node 5 to node 2
if the edge to 2 is up, and to node 3 otherwise).

Intuitively, the next step is to identify a “problematic”
node, that is, a node that is bi-connected to the destination
in G but not in the partial forwarding pattern computed
thus far, and add forwarding rules so as to “fix” this sit-
uation. Once this is achieved, another problematic node is
identified and fixed, and so on. Observe that nodes 1-4 in the
figure are all problematic. Observe also that adding the two
following forwarding rules fixes node 4 (i.e., makes node 4 bi-
connected to the destination in the forwarding pattern): (a)
when both of node 4’s outgoing edges in D are down, traffic
reaching 4 from node 5 is sent back to 5; and (b) when node
5’s direct edge to the destination is up, traffic reaching node
5 from node 4 is sent along this edge. Thus, the algorithm
builds the forwarding functions at nodes gradually, as more
and more forwarding rules are added to better the resilience
of the forwarding pattern.

Implementing the above approach, though, requires care;
the order in which problematic nodes are chosen, and the
exact manner in which forwarding rules are fixed, are impor-
tant. Intuitively, our algorithm goes over problematic nodes

in the topological order <D induced by the DAG D (visiting
problematic nodes closer to the destination in D first), and
when fixing a problematic node i, forwarding rules are added
until a minimal node in <D whose entire sub-DAG in D does
not traverse i is reached. We prove that this scheme outputs
the desired forwarding pattern in a computationally-efficient
manner.

4. NEGATIVE RESULT
We say that a forwarding pattern f is perfectly resilient if

it is ∞-resilient — so that regardless of the failure scenario
F ⊆ E, if there exists some route from a node i to the
destination d in HF then there also exists a forwarding path
from i to d in HF . We next prove that forwarding patterns
cannot always achieve perfect resilience.

Theorem 4.1. There exists a network for which no per-
fectly resilient forwarding pattern exists.

We now present the intuition for the proof of Theorem.
Consider the example network in figure (c). We show that
after certain failures, no forwarding pattern on the original
graph allows each surviving node in the destination’s con-
nected component to reach the destination. In figure (c),
the surviving links are shown in bold; all other links fail.

We argue that in any perfectly resilient forwarding pattern
fd, node 1 has to route packets in some cyclic ordering of
its neighbors. By the topology’s symmetry, we can suppose
w.l.o.g. that this ordering is 2, 3, 4, 5, 2, i.e., fd is defined
such that 1 forwards packets from 2 to 3, packets from 3 to
4, etc. Note that a forwarding loop is formed when a packet
repeats a directed edge in its path (rather than just a node).
To show that this occurs, consider the path taken by packets
sent by 5 after the failures. It can be shown that to achieve
perfect resilience, packets sent 1 → 2 must not loop back
and so must travel 2→ 10→ 4→ 1. As a result the packet
travels 5 → 1 → 2 → 10 → 4 → 1 → 5 → 1 which is a loop
since the edge 5→ 1 is repeated.

5. REFERENCES
[1] Joan Feigenbaum, P. Brighten Godfrey, Aurojit Panda,

Michael Schapira, Scott Shenker, and Ankit Singla.
Technical report YALEU/DCS/TR-1454. On the
resilience of routing tables. 2012.

[2] Nate Kushman, Srikanth Kandula, Dina Katabi, and
Bruce M. Maggs. R-BGP: Staying connected in a
connected world. In NSDI, 2007.

[3] K. Lakshminarayanan, M. Caesar, M. Rangan,
T. Anderson, S. Shenker, and I. Stoica. Achieving
convergence-free routing using failure-carrying packets.
In SIGCOMM, 2007.

[4] Junda Liu, Baohua Yan, Scott Shenker, and Michael
Schapira. Data-driven network connectivity. In
HotNets, 2011.

[5] S.S. Lor, R. Landa, and M. Rio. Packet re-cycling:
eliminating packet losses due to network failures. In
HotNets, 2010.

[6] P. Pan, G. Swallow, and A. Atlas. RFC 4090 Fast
Reroute Extensions to RSVP-TE for LSP Tunnels. May
2005.

[7] Koichi Wada and Kimio Kawaguchi. Efficient
fault-tolerant fixed routings on (k+1)-connected
digraphs. Discrete Applied Mathematics, 1992.

238

