
Deconstructing Datacenter Packet Transport

Mohammad Alizadeh†, Shuang Yang†, Sachin Katti†,
Nick McKeown†, Balaji Prabhakar†, and Scott Shenker‡

†Stanford University ‡U.C. Berkeley / ICSI

{alizade, shyang, skatti, nickm, balaji}@stanford.edu shenker@icsi.berkeley.edu

Abstract

We present, pFabric, a minimalistic datacenter fabric
design that provides near-optimal performance in terms
of completion time for high-priority flows and overall
network utilization. pFabric’s design eliminates nearly
all buffering on switches (switches have only ∼20KB of
buffering per port), requires almost no congestion con-
trol and uses only simple mechanisms at each switch.
Specifically, switches are only required to locally and
greedily decide what packets to schedule and drop ac-
cording to priorities in the packet header and do not
maintain any flow state or rate estimates. Rate-control
is almost unnecessary, all flows start at line-rate and
only slow down in the extreme case of congestion col-
lapse. We show via simulations using realistic workloads
and topologies that this simple design achieves near op-
timal flow completion times and network utilization.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design

General Terms

Design, Performance

Keywords

Datacenter fabric, Flow scheduling, Quality of service

1. INTRODUCTION

Datacenter network fabrics are required to provide
high fabric utilization and effective flow prioritization.
High fabric utilization is of course a natural goal, how-
ever flow prioritization in datacenters has unique and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’12, October 29–30, 2012, Seattle, WA, USA.
Copyright 2012 ACM 978-1-4503-1776-4/10/12 ...$10.00.

stringent requirements. Specifically, datacenters are used
to support large-scale web applications that are gen-
erally architected to generate a large number of short
flows to exploit parallelism, and the overall response
time is dependent on the latency of each of the short
flows. Hence providing near-fabric latency to the short
latency-sensitive flows while maintaining high fabric uti-
lization is an important requirement in datacenters.
Recent research [2, 3, 11, 7, 12, 9] has begun to ad-

dress this problem. One line of work [2, 3] tries to adapt
congestion control algorithms to provide flow prioritiza-
tion. The basic idea is to strive to keep queues empty
through a variety of mechanisms (pacing, ECN based
feedback, throttling the elephant flows etc) so that la-
tency sensitive flows see small buffers and consequently
small latencies. While they improve latency, such im-
plicit techniques are fundamentally constrained because
they can never precisely estimate the right flow rates to
use so as to schedule flows to minimize latency. Fur-
thermore, due to the bursty nature of traffic, keeping
network queues empty is challenging and requires care-
fully designed rate-control and hardware packet pacing
at the end-hosts, and trading off network utilization [3].
Having recognized the above limitation, subsequent

work [11, 7] explicitly assigns a sending rate to each flow
in order to schedule the flows according to some notion
of urgency. The assigned rates are typically computed
in the network based on flow information such as the
deadline or estimated completion time. While this ap-
proach can potentially provide very good performance,
it is rather complex and challenging to implement in
practice. The difficulty is in requiring the network to
explicitly assign a rate to each flow to perform schedul-
ing. Doing this efficiently requires maintaining fairly
accurate flow information (size, deadline, desired rate,
round-trip time, etc) at switches, and also coordination
among switches to identify the bottleneck for each flow
and avoid under-utilization [7]. This is a major burden,
both in terms of communication overhead and requisite
state at switches, particularly in the highly dynamic
datacenter environment where flows arrive and depart

133

at high rates and the majority of flows last only a few
RTTs [6, 4].
Despite these various problems, we should be clear

that these proposed mechanisms provide vastly improved
performance for datacenter networks. Our goal here
is not to try to beat these proposals in a quantitative
race, but instead to deconstruct datacenter transport
and examine which fundamental pieces of functionality
are necessary for good performance. In other words,
we are asking: What is the simplest fabric design that

provides high fabric utilization and effective flow prior-

itization?

We present pFabric, a minimalistic datacenter fabric
design that meets these requirements. pFabric’s entire
design consists of the following:

• End-hosts put a single number in the header of
every packet that encodes their priority (e.g. the
deadline, remaining flow size). The priority is set
independently by each flow, and no coordination
is required across flows or hosts.

• Switches are simple, they have very small buffers
(max 22.5KB per port) and decide which pack-
ets to accept into the buffer and which ones to
schedule strictly according to the packet’s prior-
ity number. When a new packet comes in, if the
buffer is full and the incoming packet has lower
priority than all buffered packets, it is dropped.
Else, the lowest priority packet in the buffer is
dropped and replaced with the incoming packet.
When transmitting, the switch sends the packet
with the highest priority. Thus each switch oper-
ates independently in a greedy and local fashion.

• Rate control is minimal, all flows start at line-rate
and throttle their sending rate according to a sim-
ple control law only if they see high and persistent
loss rates approaching congestion collapse. Hence
rate control need not be accurate and is almost
trivial to implement.

pFabric thus requires no flow state at the switches,
no feedback from the network, no rate calculations and
assignments at the switches, no high-speed large switch
buffers, nor complex congestion control mechanisms at
the end-host.
The key insight behind our design is to decouple the

mechanisms for flow prioritization from rate control.
Specifically, the priority based dropping and schedul-
ing mechanisms at each switch ensure that each switch
schedules flows in order of their priorities at any time.
Further, as we will discuss in §2, the local and greedy
decisions made by each switch lead to an approximately
optimal flow scheduling decision across the entire fabric.
Once flow prioritization is handled, rate control’s goal
is much simpler: to avoid persistently high packet drop
rates. Hence, the rate control design gets correspond-

ingly simpler, flows start at line rate and throttle only
if bandwidth is being wasted due to excessive drops.
The above design coupled with the fact that datacenter
networks have small bandwidth delay products (BDP)
of around 10–15 packets allows us to keep the buffers
on each switch very small. Switches only need to keep
the highest priority packets that will fill one BDP, since
with the aggressive sending rates a lesser priority packet
that is dropped will get retransmitted by the time the
switch buffer drains.
We evaluate our design with detailed packet-level sim-

ulations in ns2 [8] using two widely used datacenter
workloads: one that mimics a typical data mining work-
load [6] and one that mimics a web application work-
load [2]. We show that pFabric achieves near-optimal
fabric latency for the short flows. Further, the network
utilization is kept close to the optimal depending on the
load on the network. pFabric reduces the latency for
short flows compared to traditional TCP and DCTCP
by more than 7–11× and 2.5–4× respectively at the
mean, and more than 33–69× and 7–17× respectively
at the 99th percentile.

2. DESIGN

pFabric’s key design insight is a principled decoupling
of flow prioritization from rate control. Specifically, if
we take a broader view of recent work in this space,
in effect these proposals are attempting to do flow pri-
oritization by precisely controlling rates of flows. For
example, DCTCP [2] is using feedback from the net-
work and adjusting the rate control loop to ensure that
high-priority small flows do not see large queues of pack-
ets from long flows. Similarly D3 [11] and PDQ [7]
are explicitly controlling rates for individual flows at
the switches to perform flow prioritization (thus ensur-
ing that small flows have a reserved link capacity and
long flows are appropriately throttled). A similar line
of thinking can be traced across other recent proposals.
We argue that rate control is a complex and inef-

fective technique to perform precise flow prioritization.
Specifically, precisely computing rates to prioritize flows
requires accurate information on the number of flows,
their relative sizes, the paths they traverse and so on.
Since such information cannot be scalably collected,
prior approaches have to resort to making informed
guesses at the end-hosts on what rates to use based on
network congestion feedback. Or they have to keep dy-
namic flow state at the switches, and compute and sig-
nal per-flow rates continuously as flows arrive and leave.
The first approach leads to sub-optimal performance,
while the second approach increases network complex-
ity and signaling overhead. Further, it requires the sup-
port of complex pacing mechanisms at the end-hosts to
actually be able to send at the rates specified.
pFabric decouples these goals. We design a simple

134

1

2

3

1

2

3

!"#$%&&'()%)%&'

*+$&,'-./'0,'1!2&3'
4#$%&&'()%)%&'

*50&,'-./'0,'678&3'

Figure 1: Conceptual view of flow scheduling

over a datacenter fabric.

switch based technique that takes care of flow prioritiza-
tion and this ends up significantly simplifying rate con-
trol. Throughout this section, similar to prior work [11,
7] we will assume that packet headers carry one number
that indicates the priority of that flow (e.g. the deadline
for the flow, remaining flow size etc).

2.1 Flow prioritization

Our conceptual contribution in designing the flow pri-
oritization technique is a viewpoint that abstracts out
the entire fabric as one giant switch. Specifically, the
datacenter fabric typically consists of two or three layers
of switches in a Fat-tree or Clos topology. Instead of fo-
cusing on the individual switches, the whole fabric can
be abstracted as one giant switch that interconnects the
servers as shown in Fig. 1. The ingress queues into the
fabric switch are at the NICs and the egress queues out
of the fabric switch are at the last-hop TOR switch.1

Each ingress port (source NIC) has some flows destined
to various egress ports. It is convenient to view these
as organized in ‘virtual output queues’ at the ingress as
shown in Fig. 1. For example, the red and blue flows at
ingress 1 are destined to egress 1, while the green flow
is destined to egress 3.
In this context, transport over the datacenter fab-

ric can essentially be thought of as scheduling flows
over the back-plane of a giant switch. The problem
is to find the best schedule for sending packets over
the fabric in accordance with some objective. Many
objectives are possible (e.g. throughput maximization,
max-min fairness), but for the datacenter context a nat-
ural goal is minimizing average flow completion time
(FCT) [7]. Since datacenter workloads are dominated
by large numbers of short flows, minimizing average
FCT will ensure that the short, high-priority flows see
very low latency. Further, scheduling disciplines for
minimizing average FCT are theoretically tractable and
well understood (see below). However, we stress that

1We assume the receiver NICs run at line rate and are not
bottlenecks. Therefore, we do not consider the receiver NICs
as part of the fabric.

our conceptual model can be used to design transport
for other objectives (such as minimizing missed dead-
lines) as well.
The optimal algorithm for minimizing average FCT

when scheduling over a single link is the Shortest Re-

maining Processing Time (SRPT) policy, which always
schedules the flow that has the least work remaining.
However, we are not scheduling over a single link, but
rather over an entire fabric with a set of links connecting
the ingress and egress queues. Unfortunately, a simple
universally optimal policy does not exist for simultane-
ously scheduling multiple links. In fact, even under the
simplifying assumption that the fabric core can sustain
100% throughput and only the ingress and egress access
links are potential bottlenecks, the scheduling problem
for minimizing the average completion time is equiva-
lent to the NP-hard sum-multicoloring problem [5].
Our key observation is that a greedy algorithm which

schedules flows across the fabric switch based on size —
in non-decreasing order of size in a maximal manner
such that at any time a flow is blocked if and only if
either its ingress port or its egress port is busy serv-
ing a different (smaller) flow — is theoretically proven
to provide at least a 2-approximation to the optimal
scheme (see [5] for more details). In fact, in practice,
the performance is even closer to optimal (§3). Thus
the takeaway is that a greedy scheduler that prioritizes
small flows over large flows end-to-end across the fabric
can provide near-ideal average flow completion time.

2.2 pFabric switches

To realize the above greedy scheduling discipline, our
switch design consists of two simple mechanisms:

• Priority scheduling: Whenever a port is idle,
the packet with the highest priority buffered at
the port is dequeued and sent out.

• Priority dropping: Whenever a packet arrives
to a port with a full buffer, if it has priority less
than or equal to the lowest priority packet in the
buffer, it is dropped. Otherwise, one or more of the
lowest priority packets in the buffer are dropped to
make room for the new packet.

In both mechanisms, ties are broken at random.
The packet priority number can be chosen in various

ways at the end-hosts to approximate different schedul-
ing disciplines. The above discussion has been focused
on minimizing the average FCT, and to achieve that
that objective, end-hosts can set the priority for each
packet to be the remaining flow size. However if the net-
work designer wished to minimize the number of missed
flow deadlines, she can emulate the Earliest Deadline

First (EDF) policy with pFabric by setting the packet
priority to be the remaining time until the deadline,
quantized in some unit (e.g. microseconds).

135

Implementation complexity. Priority scheduling and
dropping are easy to implement since pFabric switches
only buffer about a bandwidth-delay product worth of
packets at each port (typically 15–22.5KB in a 10Gbps
fabric). Traditionally, datacenter switches use nearly
10–30× more buffering per port. Thus, with a 22.5KB
buffer, in the worst-case of minimum size 64B packets,
we have 51.2ns to find the highest/lowest of at most
∼350 numbers. A straight-forward implementation of
this as a binary tree requires just 9 (log2(350)) clock
cycles. Today, this is trivial in 40nm or 28nm ASICs.
Note that our switches do not keep any other state,

nor are they expected to provide feedback, nor do they
perform rate computations. Further, the significantly
smaller buffering requirement lowers the overall switch
design complexity and die area [3].

2.3 Rate control

What about rate control? Because pFabric switches
send and drop the ‘right’ packets, the need for rate con-
trol is minimal. In particular, we do not need rate con-
trol to prevent spurious packet drops due to bursts, as
can occur, for example, in Incast [10] scenarios. Such
events only impact the lowest priority packets at the
time, which can quickly be retransmitted before the
bottleneck switch runs out of higher priority packets,
essentially without impacting performance (see §2.4 for
details). Further, we need not worry about keeping
queue occupancy small in switches to control latency.
Since packets are dequeued based on priority, even if
large queues could form in the fabric (which they can’t,
because buffers are small by design), there would be no
impact on the latency for high-priority traffic.
However, there is one corner case where a limited

form of rate control is necessary. Specifically, whenever
a packet traverses multiple hops only to be dropped at
a downstream link, some bandwidth is wasted on the
upstream links that could have been used to transmit
other packets. The bandwidth inefficiency is most se-
vere when the load is high and multiple elephant flows
collide at a downstream link. For example, if two ele-
phant flows sending at line rate collide at the last-hop
access link, half the bandwidth they consume is wasted.
If such high loss rates persist, it would eventually lead
to congestion collapse in the fabric. Note that packet
drops at the ingress are not an issue, since they do not
waste any bandwidth in the fabric.
Fortunately, designing a rate control scheme that only

has to prevent congestion collapse (maintain an accept-
able loss rate) is simple; after all, that was the initial
goal of the simplest TCP designs. In fact, we disable
all of the newer mechanisms in TCP such as fast re-
transmit, dup-ACKs, and timeout estimation and re-
turn TCP to its roots. Flows start with a large window
size (at least a BDP) and the window undergoes normal

additive increase each round-trip time. Decreases only
happens upon a timeout. No other congestion signal is
used. This simple scheme is sufficient to avoid conges-
tion collapse, and can in fact be deployed right now after
disabling the appropriate “features” from TCP stacks.

2.4 Why this works

Ideal flow scheduling is achieved so long as at each
switch port and at any time, one of the highest priority
packets that needs to traverse the port is available to
be scheduled. Now, when a packet is dropped, by de-
sign it has the lowest priority among all buffered pack-
ets. Hence, even if it were not dropped, its ‘turn’ to
be scheduled would not be until at least all the other
buffered packets have left the switch.2 Therefore, the
packet can safely be dropped as long as it is retransmit-
ted before all the existing packets depart the switch.
This can easily be achieved if the buffer size is equal
to (or larger than) one bandwidth-delay product and
hence takes at least an end-to-end RTT to drain, and
the rate control allows the flow to transmit another
packet within a RTT. The rate control outlined above
which keeps flows at line-rate most of the time easily
meets this requirement.

2.5 Extension to multiple traffic classes

For simplicity, our description of pFabric assumed
that the same priority assignment scheme is used for
all traffic. However, in practice, datacenter fabrics are
typically shared by a variety of applications or traf-
fic classes with different requirements and a single pri-
ority structure may not always be appropriate. This
can easily be handled by operating the pFabric priority
scheduling and dropping mechanisms within individual

traffic classes in an hierarchical fashion. Essentially,
conventional high-level quality of service is provided for
traffic classes based on user-defined policy (e.g., a soft-
real time application is given a higher weight than a
data-mining application), while pFabric provides near-
optimal scheduling of individual flows in each class to
minimize flow completion times.

3. EVALUATION

In this section we conduct a preliminary evaluation of
pFabric using detailed packet-level simulations in ns2 [8]
of a realistic datacenter topology with empirical mod-
els of workloads derived from recent studies [6, 2]. We
show that pFabric achieves near-ideal flow completion
time metrics, both at the mean and at the 99th per-
centile for the small flows. Further, this performance is
achieved in almost all the cases with no congestion con-

2Note that the packet’s turn may end up being even further
in the future if higher priority priority packets arrive while
it is waiting in the queue.

136

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

2

3

4

5

6

7

8

9

10

Load

N
o
rm

a
liz

e
d
 F

lo
w

 C
o
m

p
le

ti
o
n
 T

im
e

TCP + DropTail
DCTCP
MinTCP + pFabric
LineRate + pFabric
Ideal

(a) Data mining workload

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

2

3

4

5

6

7

8

9

10

Load

N
o
rm

a
liz

e
d
 F

lo
w

 C
o
m

p
le

ti
o
n
 T

im
e

TCP + DropTail
DCTCP
MinTCP + pFabric
LineRate + pFabric
Ideal

(b) Web search workload

Figure 2: Overall average flow completion time.

The results are normalized with respect to the best

possible completion time for each flow size.

trol algorithm, flows can simply start at line rate and
stay there until their last packet is acknowledged.
Topology. We simulate a 54 port three-layered fat-tree
which is a very common datacenter topology [1]. The
fabric consists of 45 6-port switches organized in 6 pods
and has full-bisection bandwidth. All links are 10Gbps
and the end-to-end round-trip latency (across 6 hops)
is ∼12µs.
Workloads. We simulate dynamic workloads where
flows are initiated between randomly chosen source and
destination servers. We use two flow size distributions
that are based on measurements from production data-
centers reported in the literature. The first distribution
is from a cluster running large data mining jobs [6]. The
second distribution is from a datacenter supporting web
search [2]. Both of these workloads have a diverse mix
of small and large flows with heavy-tailed characteris-
tics. In the data mining workload, more than 80% of
the flows are less than 10KB and more than 80% of all
bytes are in flows larger than 100MB. The web search
workload is less skewed: Over 95% of all bytes come
from the 30% of the flows that are 1–20MB. Flow ar-
rivals are according to a Poisson process. We vary the
flow arrival rate to simulate traffic with overall load lev-
els between 10%–80%.
Schemes. We compare the following schemes:
(i) TCP+DropTail: TCP with standard 225KB (150
packets) DropTail queues.
(ii) DCTCP: DCTCP with 225KB queues and 22.5KB
ECN marking threshold.
(iii) MinTCP+pFabric: MinTCP and pFabric with 22.5KB
queues. MinTCP is the following stripped down vari-
ant of TCP: 12 packet initial window size; no fast-
retransmission; no retransmission timeout estimation,
RTO is fixed at 40µs.
(iv) LineRate+pFabric: No rate control and pFabric
with 22.5KB queues. Flows constantly send at the NIC
line rate.
(v) Ideal: Ideal end-to-end SRPT scheduling as de-
scribed in §2.1. A central scheduler with a full view of
all flows preemptively schedules existing flows in nonde-
creasing order of size, and in a maximal manner. Only

the access link capacity constraints are considered and
the internal links are ignored (see Fig. 1). This is a flow-
level simulation (not packet-level) conducted in Matlab.
For all pFabric simulations, we assume that packets

contain the remaining flow size in the priority field ap-
proximate SRPT scheduling.
Note: We have simulated a variety of load-balancing
schemes, including Equal-Cost-Multipathing (ECMP),
and packet spraying, where each switch blindly sprays
packets among all shortest-path next hops in round-
robin fashion. We found that both TCP and DCTCP
perform better with packet spraying (after fast retrans-
missions are disabled to cope with re-ordering), as com-
pared to standard TCP/DCTCP with ECMP. Hence to
make a fair comparison, we compare pFabric with the
above modified versions of TCP and DCTCP. We have
also tuned the minRTO to find the best settings for
the retransmission timer for all schemes and found that
minRTO = 200µs for 225KB queues with TCP and
DCTCP, and minRTO = 40µs for 22.5KB queues with
LineRate+pFabric and MinTCP+pFabric achieve the
best performance.
Analysis: Overall Average FCT. The overall av-
erage flow completion times (FCT) for the two work-
loads are shown in Fig. 2 as we vary the load. We
normalize each flow’s completion time to the best pos-

sible value — given the 10Gbps link speed and the
round-trip time — for a flow of that size. We observe
that for both workloads, MinTCP+pFabric and LineR-
ate+pFabric achieve near ideal average FCT and sig-
nificantly outperform TCP and DCTCP. The average
FCT is reduced by a factor of 2.5 − 11× especially at
high load.
Analysis: FCT breakdown. To understand the ben-
efits further, we show the FCT statistics across three
flow size bins (0, 100KB], (100KB, 10MB], and (10MB,
∞) in Figures 3 and 4 for both workloads. We plot the
average FCT for each bin and also the 99th percentile
FCT for the smallest flow size bin for which the tail
latency is important.
Data mining workload. MinTCP+pFabric and LineR-
ate+pFabric both have near-optimal FCT for the small-
est flows (0, 100KB] even under heavy loads as well as at
the high percentiles. For example, the average (normal-
ized) FCT with LineRate+pFabric is 1.04–1.25 and the
99th percentile is 1.68–2.18. MinTCP+pFabric is sim-
ilar: 1.04–1.21 at the mean, and 1.90–2.12 at the 99th
percentile. Both are nearly an order of magnitude bet-
ter than TCP and DCTCP. LineRate+pFabric is also
very good for the medium and large flows and is always
within ∼10% of the Ideal scheme. MinTCP+pFabric
is slightly worse for the large flows, but still performs
better than TCP and DCTCP. This is because MinTCP
conservatively reduces its window size and goes through
slowstart after each packet drop.

137

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

2

3

4

5

6

7

8

9

10

Load

N
o
rm

a
liz

e
d
 F

lo
w

 C
o
m

p
le

ti
o
n
 T

im
e

TCP + DropTail
DCTCP
MinTCP + pFabric
LineRate + pFabric
Ideal

(a) (0, 100KB]: Avg

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1

5

10

15

20

25

30

35

40

45

50

Load

N
o
rm

a
liz

e
d
 F

lo
w

 C
o
m

p
le

ti
o
n
 T

im
e

TCP + DropTail
DCTCP
MinTCP + pFabric
LineRate + pFabric
Ideal

(b) (0, 100KB]: 99th prctile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

2

3

4

5

6

7

8

9

10

Load

N
o
rm

a
liz

e
d
 F

lo
w

 C
o
m

p
le

ti
o
n
 T

im
e

TCP + DropTail
DCTCP
MinTCP + pFabric
LineRate + pFabric
Ideal

(c) (100KB, 10MB]: Avg

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

2

3

4

5

Load

N
o
rm

a
liz

e
d
 F

lo
w

 C
o
m

p
le

ti
o
n
 T

im
e

TCP + DropTail
DCTCP
MinTCP + pFabric
LineRate + pFabric
Ideal

(d) (10MB, ∞): Avg

Figure 3: Data mining workload: Normalized FCT statistics across different flow sizes.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

2

3

4

5

6

7

8

9

10

Load

N
o
rm

a
liz

e
d
 F

lo
w

 C
o
m

p
le

ti
o
n
 T

im
e

TCP + DropTail
DCTCP
MinTCP + pFabric
LineRate + pFabric
Ideal

(a) (0, 100KB]: Avg

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1

5

10

15

20

25

30

35

40

45

50

Load

N
o
rm

a
liz

e
d
 F

lo
w

 C
o
m

p
le

ti
o
n
 T

im
e

TCP + DropTail
DCTCP
MinTCP + pFabric
LineRate + pFabric
Ideal

(b) (0, 100KB]: 99th prctile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

2

3

4

5

6

7

8

9

10

Load

N
o
rm

a
liz

e
d
 F

lo
w

 C
o
m

p
le

ti
o
n
 T

im
e

TCP + DropTail
DCTCP
MinTCP + pFabric
LineRate + pFabric
Ideal

(c) (100KB, 10MB]: Avg

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2

4

6

8

10

12

14

16

18

20

Load

N
o
rm

a
liz

e
d
 F

lo
w

 C
o
m

p
le

ti
o
n
 T

im
e

TCP + DropTail
DCTCP
MinTCP + pFabric
LineRate + pFabric
Ideal

(d) (10MB, ∞): Avg

Figure 4: Web search workload: Normalized FCT statistics across different flow sizes.

Web search workload. The improvement with pFab-
ric for the small flows is even larger in the Web search
workload. For instance, at 80% load, the 99th percentile
FCT for the (0,100KB] flows is only 1.75 with LineR-
ate+pFabric, while it is 16.97 and 66.03 respectively
for DCTCP and TCP. For the large flows (> 10MB),
however, we do observe a slowdown with pFabric at
high loads particularly with LineRate+pFabric. This
is because of persistent high loss rates for the elephant
flows that leads to wasted bandwidth. It demonstrates
that while in majority of scenarios, rate-control is un-
necessary, some form of it is required in extreme cases.
In fact, MinTCP+pFabric is much better than LineR-
ate+pFabric for the large flows at high load. It still
exhibits a (∼20–28%) slowdown compared to TCP and
DCTCP though. This is because the large flows are
de-prioritized with pFabric. Since in the Web search
workload, more than 65% of the total load is from flows
smaller than 10MB, the de-prioritization impacts the
large flows.3 The takeaway is that a minimal rate con-
trol scheme that essentially operates flows at line rate
most of the time, but uses a stripped down version of
TCP such as MinTCP at very high load and persistently
high packet loss would provide the best performance
across all scenarios.

4. CONCLUSION

This paper deconstructs the different aspects of data-
center packet transport (flow prioritization and network
utilization), and shows that by designing very simple
mechanisms for these two goals separately, we can real-

3Note that this effect is not noticeable in the Data min-
ing workload, since less then 5% of the traffic is from flows
smaller than 10MB.

ize a minimalistic datacenter fabric design that achieves
near-ideal performance. Further, it shows how surpris-
ingly, buffers or even congestion control are largely un-
necessary in datacenters. Our next step is to prototype
and evaluate the performance of pFabric in a deployed
datacenter testbed with real traffic, as well as develop
a general theoretical model that provides a principled
analysis of how close to ideal pFabric is.

5. REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,

commodity data center network architecture. In Proc. of
SIGCOMM, 2008.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data center
TCP (DCTCP). In Proc. of SIGCOMM, 2010.

[3] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat,
and M. Yasuda. Less is more: trading a little bandwidth for
ultra-low latency in the data center. In Proc. of NSDI, 2012.

[4] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny.
Workload analysis of a large-scale key-value store. In Proc. of

SIGMETRICS, pages 53–64, New York, NY, USA, 2012. ACM.
[5] A. Bar-Noy, M. M. Halldórsson, G. Kortsarz, R. Salman, and

H. Shachnai. Sum multicoloring of graphs. J. Algorithms,
37(2):422–450, Nov. 2000.

[6] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: a
scalable and flexible data center network. In Proc. of

SIGCOMM, 2009.
[7] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing Flows

Quickly with Preemptive Scheduling. In Proc. of SIGCOMM,
2012.

[8] The Network Simulator NS-2. http://www.isi.edu/nsnam/ns/.
[9] B. Vamanan, J. Hasan, and T. N. Vijaykumar. Deadline-Aware

Datacenter TCP (D2TCP). In Proc. of SIGCOMM, 2012.
[10] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G.

Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller. Safe
and effective fine-grained TCP retransmissions for datacenter
communication. In Proc. of SIGCOMM, 2009.

[11] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better
never than late: meeting deadlines in datacenter networks. In
Proc. of SIGCOMM, pages 50–61. ACM, 2011.

[12] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. H. Katz.
DeTail: Reducing the Flow Completion Time Tail in
Datacenter Networks. In Proc. of SIGCOMM, 2012.

138

	hotnets12-final31
	hotnets12-final34
	hotnets12-final38
	hotnets12-final46
	hotnets12-final51
	hotnets12-final55
	Introduction
	SMPC-Based Interdomain Routing
	SMPC Background
	Application to Interdomain Routing

	Proof-of-Concept
	Simplifications and Structure
	Overall Structure
	Structure of Computation
	Computation Time Estimates

	Discussion
	References

	hotnets12-final76
	Introduction
	Our Approach
	Software-Defined Internet Architecture
	Top-Down Perspective
	Interdomain Task
	Intradomain Tasks

	Interdomain Service Models
	Three Detailed Examples
	Interdomain Packet Delivery via Pathlets
	An Information-Centric ISM
	A Middlebox-Services ISM

	Discussion
	References

	hotnets12-final77
	hotnets12-final78
	hotnets12-final85
	hotnets12-final86
	hotnets12-final92
	hotnets12-final94
	hotnets12-final101
	Introduction
	3G OnLoading: The Context
	The Network
	The Economics
	The Service

	Feasibility of 3GOL
	3G Bandwidth Augmentation
	Application Performance
	Impact on 3G Network

	System Sketch and Challenges
	Conclusions
	References

	hotnets12-final107
	1 Introduction
	2 Semiconductor Roadmaps
	3 Networking Roadmaps
	4 Case Studies
	5 Related Work
	6 Conclusions
	7 References

	hotnets12-final116
	hotnets12-final119
	Introduction
	Characterizing Breaches
	Data Breaches
	User Behavior

	A Data Breach Insurance?
	Risk Assessment: Users
	Risk Assessment: Businesses
	Discussion
	Summary
	References

	hotnets12-final133
	hotnets12-final135
	hotnets12-final141
	Introduction
	Motivation
	Why Now?

	Design Overview
	System Components
	Permissions and Storage Policy
	Application Distribution
	Cross-app data sharing
	Reliable storage
	Messaging
	API

	Case Studies
	Collaborative WebDB
	Implementation
	Evaluation

	Distripedia: A User powered wiki

	Discussion
	Related Work
	Conclusion
	References

	hotnets12-final145
	hotnets12-final151

