Greed Is Not Enough: Adaptive load sharing in large heterogeneous systems

Abel Weinrib
Bell Communications Research
435 South Street
Morristown, NJ 07960

Scott Shenker
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304

ABSTRACT

We consider the problem of job placement in load
sharing algorithms for large heterogeneous distributed
computing environments. We present simulation results
on a simple model indicating that under heavy loads the
usual policy of placing jobs where they will incur the
shortest eapected delay leads to inefficient system
performance. Thus, purely greedy policies are not
sufficient; we identify a simple threshold algorithm that
dues significantly better. We then introduce a novel
aduptive algorithm whose performance is much closer to
optimal.

1. Introduction

In contrast to the days when mainframes dominated
computing, many users now rely on powerful personal
workstalions to serve their computational needs.
These workstations are usually linked together through
a local area network, and often there are somne
significantly faster compute servers on the network as
well. The tolal computing power of these workstations
and compute servers can be quite large, easily reaching
hundreds of MIPS. Effective distributed computing
environments should utilize this excess bulk processing
power through load sharing mechanisms that enable
overloaded computers to shift some of their workload
to underutilized machines. These load sharing
algorithms are currently a subject of much research
interest (see, for example, [Eag86a,b, Ier87] and
references therein).

The problem is typically posed as a tradeoff between
the decrease in execution delay realized by using a
remote machine versus the transfer cost thereby
incurred. Finding the optimal tradeoff is a hard
problem, and its solution depends on the nature and
speed of the underlying communication system
(compare the radically different communication models
mn [Her87) and [Eag86a,b]). There i1s another critical
issue in load sharing: that of where best to place a job

even If transfer costs are negligible and exact
knowledge of the global system state is assumed. In
the case where all machines are identical, this choice is
easy: use the machine with the fewest outstanding
jobs. However, in heterogeneous distributed
environments this simple rule does not suffice;
choosing the optimal target machine is an unsolved
problem.

The purpose of this paper is to investigate the issues
involved in this choice of optimal target machine.
Since we are not addressing the reduced execution
delay versus transfer cost tradeoff that is the focus of
most previous studies, we will consider the limit of
free and instantancous transfer of jobs, thereby
removing the distinction between local and remote
processing. We will first discuss a simple model of
computation with N exponential servers, each having a
(perhaps different) service rate u, with ke[1,N]. Later,
we will further simplify the model to have only two
classes of servers; we then focus on the behavior of
policies in the important crossover region where the
system first starts to use the slow servers, and observe
that the behavior in this region remains unchanged
even if we let the number of slow servers become
infinite. Each server has a local queue, and the
number of jobs in each queue (including the job in
service) is denoted by x,. With our assumption of free
and instantaneous job transfers, we can consolidate the
system-wide arrival of jobs into a single Poisson stream
of strength \. Since the arrival and servicing of jobs
are both memoryless processes, the instantaneous state
of the system is completely characterized by the set of
queue lengths {x, }. The goal is to find a policy 7 that
will tell us where to put newly arrived jobs. This policy
will, in general, depend on the system parameters {u;}
and X in addition to the instantaneous state information

e -

In this framework, the problem reduces to the more
general problem of joining the right queue in a set of
parallel queues with differing server rates (see the
simplified schematic in Figure 1). As such, it has
applications to many other problems of current

10A.4.1.
0986 CH2534-6/88/0000-0986 $1.00 © 1988 |EEE

Figure 1. Model system with three fast servers
of rate jiy,, and a large number of slow servers
of rate u,,,. The controller executes policy 7
to place jobs.

interest, such as routing in communication networks
and scheduling in flexible manufacturing systems. The
difference between applications typically lies in the
amount of system and state information available when
scheduling decisions are made. There is a vast
litcrature on the general problem of joining the right
gueue, and we cannot attempt to do it justice here.
The review articles [Sti85, 86] provide a good overview
of the field and contain an extensive list of references.

In the next section we will discuss two optimization
criteria, and their properties in the homogeneous and
heterogeneous cases. In Section 3 we introduce the
simple model that we believe captures the essence of
the problem. In Section 4 we describe a number of
dynamic policies for the model, observing that in the
separable case (to be defined later) they reduce to
threshold policies. These threshold policies fall
between two limiting cases: never queue for a fast
server, and queue until the expected delay for a fast
server is the same as for a slow one (the greedy policy
in which each job minimizes its own delay).
Simulation data indicates, surprisingly, that never
queueing is usually the better policy. Then, in Section
5, we introduce two adaptive policies that improve
upon the performance of the never queue policy.
Throughout the paper the graphs we present are based
on simulation results for the performance of the
various policies with the various choices of the model
parameters. In Section 6 we briefly describe the
simulation package. Finally, we provide a discussion
of our results.

2. Individual and Social Optimization in
Homogeneous and Heterogeneous Systems

It is important to clarify what we are trying to
optimize. One possible goal is to minimize each
individual job’s expected delay (until completion). The
policy that achieves this is quite straightforward. Since
the quantity (14+x;)/p, gives the expected delay the job
will experience if sent to the k" server, the individually
optimal policy merely chooses the value of & that
minimizes this quantity. We will call this policy the
shortest expected deluy (SED) policy. It is a greedy
policy in that each job does what is in its own
immediate best interest. However, for distributed load
sharing, one is more likely to want a policy that
minimizes the expected delay averaged over all jobs;
such a policy is sometimes called the socially optimal
policy.

The goals of individual optimization and social
optimization do not always coincide [Nao69, Bel83].
This fact, which is somewhat counterintuitive, can be
seen more clearly by noting that when a job chooses a
server which minimizes the job’s own delay, it does not
consider the delay its presence will impose on future
jobs that enter that queue. Socially optimal policies
sometime require jobs 1o sacrifice themselves by going
to a less than individually optimal server in order to
allow the system to achieve better overall performance.

In the case where all servers are identical (equal p.’s),
the individually optimal SED policy, or the join
shortest queue policy to which it reduces here, is also
the socially optimal policy [Win77]. For
nonexponential distributions of service times, [Whi86]
has constructed examples where the join shortest queue
policy is neither socially nor individually optimal. This
may have ramifications for scheduling policies on real
systems which have highly irregular service time
distributions [Lel86].

While the load sharing literature usually treats the
homogeneous case, reality often presents us with a
heterogeneous set of servers. As distributed systems
grow larger, the presence of different service rates will
become increasingly common. Here the goals of
individual and social optimization are often at odds. In
fact, as we shall see later, the individually optimal
policy of SED can, under moderately heuvy loads,
produce socially inefficient results. No general solution
to the heterogeneous social optimization problem is
known. While it is important to understand the
structure of socially optimal algorithms [Lin84, Rub85],
the exact solutions will depend in detail on all of the
modeling assumptions, and hence may not casily
generalize to more realistic systems. The goals of this
paper are somewhat more modest: to find policies that
produce good, but not necessarily optimal, results with
minimal reliance on the exact knowledge of the system

10A.4.2.

0987

parameters. One can then hope that the insights
gained from our simple model may also apply to real
systems.

3. Model

Before constructing policies, we will simplify our
model further; consider my,, fast servers with service
1ate g, and an infinite number of slow servers with
service rate pig,, . (We can, without loss of generality,
always set ji,,,.=1 by redefining the time scale. From
now on we shall assume this to be the case.) The rate
of Job arrival is given by . This set of assumptions
produces the simplest nontrivial large heterogeneous
system, and is not as unrealistic as it might first
appear. One can think of the fast servers as a set of
vompute servers that are significantly faster than the
typical workstation, of which there are very many.
The question we are addressing is then: given that our
goal is 10 achieve the social optimum of minimizing the
mean delay averaged over all jobs, when is it better to
use an idle workstation rather than to send the job to
the more heavily loaded but faster compute server?
{Note that, tor this simpliied model, there 1s never any
quencing at the slow servers, so the model is
equivalent to the control of arrivals 10 a set ol 1dentical
parallel servers with penalties for rejecting jobs and for
delays in the queues [Sti85].)

1.41

Se
1.21 Mo

otatic
1.01 \'&
0.8 /

Mo ”

¥

0.67

Mean Delay
S
=

0.4

0.2

0.0 T T

A

Figure 2. The shortest expected delay (SED)
policy with m,,, =30 and m,,,, = slow servers;
My 6. The server rates are Hpa=5 and
fiyan 1, su that for the finite number of slow
server case (with my,, =30) the mean delay
dive,ges at y=60. We also display the mean
delay for Bernouilli splitting, the optimal static
random policy, for the finite case.

Figure 2 shows that the behavior of the system with a
finite number of slow servers is very similar to that of
a system with infinite slow scrvers. Figure 2 compares,
for the SED policy, the average delay with m,,, =30 to
that with m,, = (my,=6 and y,=5). The curves are
the same until A=mig g +Mgouition s at which point
the finite system’s delay diverges. (The delay’s
insensitivity to the value of m,,, until the system is
close to fully utilized is even more pronounced for
larger systems, much as M/M/m systems increasingly
resemble M/M/>o systems as m gets large.) We are
not addressing the extremely heavily loaded limit (see,
e.g., [Fos78] for a study of this limit), where the delays
diverge regardless of the load sharing policy, since this
limit does mnot represent reasonable operating
conditions. Instead, we will focus on the crossover
region where one first needs to use the slow servers in
order to provide enough power to serve the arriving
jobs. This crossover occurs when A=mpg, ppy,-

4. Policies

We will consider two main types of policies: sraric and
dynamic, distingmished in part by the amount of
information that is available. 1f no state information is
available, then one can only use a static policy, where
the decisions about where to send jobs are set in
advance. The optimal randomized static policy is
Bernoulli splitting [Eph80] where a job is assigned to a
server with probability p,. The result is to split the
original source stream into N independent Poisson
streams of strength A =p.\. Bernoulli splitting chooses
the p,’s so as to minimize the total system delay of
these N M/M/1 queues subject to the constraint that
Mae=x. [Haj83] discusses static policies in which the
spliting of the streams is done in a deterministic
manner.

Dynamic policies make use of the state information
{x.} in making decisions; in general, dynamic policies
can always do better than stauic policies. See, for
example, Figure 2 where the static Bernoulli split
policy is compared to the greedy SED dynamic policy.
Many load sharing situations lend themselves to
dynamic policies because one does have available at
least partial state information.

There are several classes of dynamic policies.
Separable policies [Kri87] assume a model where each
server computes a local cost or roll and the job is
placed on the server with the minimal such cost.
Nonseparable policies relax the independent cost
constraint, allowing a decision to depend on the full set
of state information. Nonseparable policies include
separable ones as a special case, of course, and m
general can be expected to perform better by using the
extra information made available to them. In addition,
in the next section we introduce two adapuve policies,
one separable and one nonseparable. We use the term
adaptive to indicate that the policy is explicitly history

10A.4.3.

dependent, as opposed to merely using the
mstantancous state information as do all dynamic
policics.

Separable policies are especially relevant to distributed
load sharing where polling strategies are commonly
employed [Eag86al; the workstation at which the job
originates polls some of the servers (it might not be
practical to poll all of them) and then sends the job to
the processor with the lowest toll. (While n this paper
we assume the availability of global state information,
s0 that all servers are candidates for job placement,
our policy analysis is also relevant to the case with
incomplete polling.)

Given a choice between two servers of the same speed,
jobs should always be assigned to the one with the
shorter queue. Furthermore, given a choice of two
idle servers with different speeds, jobs should always
be assigned Lo the faster server. These two elementary
obscrvations imply that, for our simplified model of
only two server speeds and an infinite number of slow
servers, either we send a job to the fast server with the
shortest queue or to an idle slow server. Thus, for our
model, separable policies reduce merely to threshold
policies: send 1o the fast server with the shortest queue
if and only il its queuc length is shorter than some
threshold 7, and otherwise send the juob to a slow
server. Notice that only the integer part of r matters,
since the queue lengths 1y arc integers.

Intuitively, one would never want 1o send a job to a
fust server on which its expected time-to-service
(44 /#pau) 18 greater than its expected time-to-
completion 1/, on a slow server, so we expect that
the optimal threshold always satisfies the inequality
r<r, where we debfine r=pp,/iy,- In fact, this
inequality has previously been conjectured by |Lin84]
for a similar model. The SED policy is equivalent to a
threshold policy with r=r, so that it has the greatest
threshold and the most queucing of all sensible
policies. Conversely, the never quete policy where one
never queues for a server is equivalent to a threshold
policy with r=1.

Iigure 3 shows the behavior of various threshold
policies with model parameters my,, =6 and jpg,,=5.
For very small A\ the threshold of r=r (SED) is
optimal. At small loads, queueing for the fast servers
minimizes the individual job’s delay; since the load is
light, it is unlikely that the job will cause delays for
future jobs.

For very large A, a cutoff of r=1 (never gqueue) is
optimal. Queucing for fast servers is inadvisable here
since the slower scrvers must be used in order to
provide enough total processing power. Soon alter a
fast server becomes idle a new job will arrive that can
occupy the fast server (the time elapsed will be roughly
I/x); as long as all the fast servers are utilized, it is
better to unmediately serve a newly arrived job at an
idle slow seiver than to wait for a [fast server.

10
T=5
(s£9) T=4
0.8 Ts3
T=

g 0.61 o
:

0.4

0.2 v T T
0 20 40 &0 80

A

Figure 3. The mean delay for the threshold
policies with r=1,2,3,4,5. mp,=6, j5,=5, and
‘".duﬂ;l'

Queueing at fast servers is merely postponing the
inevitable of having to use the slow servers, at a cost
of adding delay to the jobs waiting at the fast servers.

The graph in figure 3 clearly illustrates that the SED
policy performs poorly at high loads; in fact it is the
worst threshold policy within the common sense
constraint of r<r. Figure 3 also indicates that a
threshold of r=1 performs reasonably well over the
entire range of loads. It is somewhat surprising that
this policy, which always sends jobs to the fastest open
scover and never has any queueing, seems to provide
the best average performance of any single threshold
policy. However, for loads in the range of A=m iy
the =1 policy performs significanily worse than the
best threshold policy. In Figure 3 at A=20 the delay is
18% higher than optimal; also see Figure 8 where at
A=40 the delay is 63% higher than optimal. In general,
the never queue policy will perform less well in these
intermediate load ranges for larger values of r. In
Section § we introduce some adaptive policies that do
better in the crossover region. These policies will be
most applicable in systems with large differences in
processing speed (and hence large values of r) where
the simpler never-queue-up policy is less attractive.

Between the extreme cases of small and large x, where
r=r und r=1 are the best thresholds, we expect that
there are parameter ranges [MP, A7) where a
threshold of r=; 1s optimal. Finding the optimal
separable policy in our model reduces to the problem
of finding the optimal cutoffs 3 as a function of the
system parameters. For a given set of servers one
could, of course, use numerical simulation to build a
table of the cutoffs. The performance of the optimal

10A.4.4.

0989

policy would then be given by the lower envelope of
the curves in Figure 3. If one huad a truly stable
system, this might indeed work. However, this
solution gives us no insight into the problem, and is
inappropriate for evolving systems.

Alternatively, one can attempt to estimate the
additional system delay caused by placing a job on a
given server. The fast servers will have some cost
function Cp,(x) which is the system delay incurred by
placing a job on a fast server when it already has x
jobs in its queue. Since we are assuming an infinite
number of slow servers, an idle slow server always
exists, with cost function given by Cy,,=1/py,,. . The
policy is then to send to the server with the minimal
cost. This approach produces a threshold 7, where 7 is
the solution to the equation Cp,(7)=C,,,. The SED
policy is equivalent to using the expected delay for the
individual job as the cost function: Cy (x,)= (x4 4 1)/p -

We can derive an estimate of the true system cost,
which is better than the SED cost, by the following
argument: assume that we know in advance the arrival
times of all jobs and have already prescheduled them
on the various servers according to some rule. Each
server will then have some fraction of time idle, call it
1. Now consider adding one more job. When we
schedule the job, imagine that we will allow all
previously scheduled jobs to preempt our present job,
allowing it to be served only when the server would
otherwise be idle. Then, on average, the time-to-
completion on a server will be (x,+1)/(piie).- By
allowing, in this formulation, future jobs to precmpt
our additional one, the scheduling of this job will not
cause future jobs any extra delay; everything is
included in the expression for the additional job’s
delay. If the fractions of time idle i, were indeed
known, then the cost would be merely the above
expression for the time to completion.

|Kri87] arrived at an equivalent expression for the cost
using a different and more rigorous line of reasoning
involving one step of policy iteration [How60].
Considering a static policy where each server had an
independent Poisson arrival stream of strength X,
|Kri87] showed that the asymptotic difference in total
delay of starting in state x, versus starting in state x, +1
is Cy e)=(xx +1)/(tx=2y). The fraction of time idle at
each server is given by the M/M/1 result i =1-X /uy,
so this cost function is the same as the one derived by
_the above heuristic argument.

Taking the)\;’s to be the static optimum Bernoulli
split, [Kri87] then used the cost function to derive a
separable policy that is guaranteed to do better than
the static policy. Applied to our model with two
classes of servers, this dynamic policy has the correct
qualitative property of predicting a series of thresholds
7(A) with r=r for A»—0, and r decreasing with increasing

3 However for all AS>A, with
Ne=Migeu (Mo~ V Mg Haow), the policy reduces to a

threshold of r \/:J, whercas we observed above that

the correct limit is r—1 for large A. In practice, for
the paramcter values we have studied,), i1s small, and
the simulation results for this policy are
indistinguishable from those for a fixed threshold of
7=V r . Thus, we observe that on our model the policy
does well for small and intermediate X\, but not for
large A. See, e.g., the curve in Figure 3 with r=2. This
curve is also the result for the policy with r=V5 since
only the integer part of the threshold is relevant; also
see Figures 7 and 8 for two other choices of the model
parameters.

We now have three candidate separable policies. The
first is the natural choice of SED (the r=r threshold
policy) that performs well at low loads but poorly at
high loads. The second is the simple never queue
policy (the r=1 threshold policy) that does well at high
loads. Lastly, we have the policy of [Kri87], which is
the only one of the three that explicitly uses the load
information; however, it is indistinguishable from a
threshold policy of r=Vr on our model. As discussed
above, this choice of r works well for small and
mtermediate loads, but does not exhibit desirable high
load behavior. Other policies exist in the literature
(see, for example, [Cho79] and [Yum81]), but these do
not perform as well as the policies already discussed.
Thus, we do not yet have a policy that performs well
over the entire range of loads. Our attempt to find
such a policy is the topic of the next section.

5. New Adaptive Policies

In real systems one does not a priori know the load. It
is possible to measure arrival statistics and then use
the resulting estimate of the load as an input to a
separable policy. However, the load is not a quantity
local to an individual workstation, and measuring it
would require coordination and communicativn among
the processors. Furthermore, once one considers the
possibility of using statistical system measurements to
determine the policy, certain locally measured statistics
may be more useful than the load. For instance, one
can easily measure the fraction of time idle i, in each
server. (In fact, many workstation operating syslems
already do this.)

This locally measured iy can be used to define an
adaptive policy using the cost function
Crrn) = 222
Hilk
discussed in the previous section. Here we use the
measured 1, for a given server to determine its cost
function. The cost function affects the acceptance of
jobs to the server, which in turn determines the future
i. In this way the policy can adapt to the system and
can casily accommodate to changes in arrival rate and
system configuration. This approach is analogous to
carrying out policy iteration [How6l| restricted to
separable cost functions of the form Cj#. As such, we

10A.4.5.

can hope that it will perform well as long as the form
of the cost Tunction is adequalte.

To reahize the adaptive policy, we must measure the
fraction of time idle i,. We deline

<idle time >, (1)
<idle time >, (1)+ <service time >, (1)

i (1) =

where <idle time >, (1) denotes an estimate of the past
idle time per job for server k at time ¢, and similarly
for <service time >, (r). The brackets indicate an
exponentially weighted average over past jobs for this
estimate, requiring that a server maintain only a single
number to keep the average, updating it as cach job
completes. This approach would be relatively easy to
unplement.

In general, define A 1o be a quantity related to each
job such as the wdle time or the service time, with A,
the value of A associated with the »’th job which
finishes at time r,. Then, when job n 41 completes, the
exponentially weighted average is updated:
<A = U, 0=)<A= (1,)40Ad, ;. The size of the
exponential "window" 1s determined by «, the job o !
in the past contributes ¢! compared to a recent job.
(Note that <service time > (t)—1/p, for reasonably
large values of « !, so that the system can measure its
own g if necessary.) In our simulation studies we
found that the results were insensitive to choices of !
in the range 100 1o 1000. In a real implementation the
choice of o 1s a tradeoff between obtaining better
averages and guickly responding to changes in loads
and in the server population.

10
Ts
(sep)
0.8
0.61

Mean Delay

L@ kr&Ll‘t

0.4+ o.Lfﬂw 3

0.2 T
[} 20 60 80

A

Figure 4. The mean delay for the separable
adaptive policy. We also show the threshold
policies for comparison. =6, py,,~5, and

Mstan=1.

Figure 4 shows the performance of this adaptive policy
for the my, =6, p,,~5 system. The results are
compared to the various threshold policies. One can
sce that wlhile the policy is not optimal, 1t does
perform reasonably well. Furthermore, the results of
simulations on systems with other model parameters
show that the policy’s performance mnproves as the
size of the system grows.

To our knowledge, this kind of adaptive policy has not
been previously used for the general join the right
gueue problem. It can be easily implemented in real
systems, and does not assume knowledge of usually
unknown system parameters. IHowever, we can
improve upon it. As we see in Figure 4, and have also
observed for other choices of the model parameters
not displayed here, the policy does not perform well in
the crossover region A=my,, iy, where it first becomes
necessary Lo utilize the slow servers (e.g., for =22 the
delay for the adaptive policy is 17% more than the
delay Irom the best separable policy). In this region it
either settles down 1o a suboptimal threshold or
oscillates between two thresholds, as it does [or A=20
i Figure 4. (The oscillations occur when there 1s no
threshold policy, with threshold 7, whose 1 "s lead to
cost functions €y, that are consistent with r.)

For small A the separable adaptive policy correctly
mimics a high threshold r=r, but il switches over to a
threshold of r=1 prematurely. The less than ideal
Lehavior of this policy can be attributed, in part, to an
overly simplified and restrictive cost function. We are
presently working on generalizing the cost function to
utilize more detailed local statistics such as state
dependent arrival rates.

This adaptive policy also suffers from a granularny
problem. Since only the integer part of the threshold
function r matters, the threshold jumps in unit
imcrements. To loosen this restriction we introduce a
nonseparable policy (although it still uses only local
statistics): a policy where the job placement depends
on more complicated state information than just the
minimum of the cost functions. Nonseparable policies
involve a single cost function Cj*# which is now a
function of the entire instantaneous state of the fast
servers {x.} with k¢[l, my,]; when this cost is less
than C,,,, we send the job to the fast server with the
shortest quene. We use the function

L3 x,
. k
CRire = ——
DMl
k

which, according to our heuristic derivation of the
previous section, can be interpreted as the extra delay
introduced into the system if the processing of the job
could be divided among all of the fast servers. This
cost function also leads 1o a policy of threshold form,
but now the threshold 1s applied to the sum over the
quene lengths instead of 1o the queues individually,
The degree of granularity has been decreased roughly

10A.4.6.

by a tactor of e

Note that this policy still requires only statistics that
can be measured locally: the s, Nonseparable
policies that use more detailled multi-server stalistics
are possible, and we plan to study them in the [uture.
In the separable policy the server must provide only
one number, C{, to the decision maker. This
nonseparable policy requires that servers provide rwo
numbers to the decision maker, a, and the product
Iimre

05 sz

0.4 1
§

0.3 scPchJ ¢ o seperehle

T=1
0.2 ¥ T T
0 10 20 30 40
A

Figure 5. A comparison of the separable
adaptive and non-separable adaptive policies.
The threshold policies with r=1 and r=2 are
also shown. mg, =6, pg,=5, and p g4, =1.

Figure 5 shows a direct comparison of the two adaptive
policies together with the bounding separable threshold
policies. (Note that the scale is much enlarged
compared to Figure 4 to better illustrate the
differences.) We see that while neither policy attains
the optimal separable threshold result, the
nonseparable adaptive policy does substantially better.

To gain insight into the performance of our
nonseparable adaptive policy, we have studied the set
of nonseparable threshold policies where one sends a
job to the slow servers if the sum of the fast server
queue lengths is more than 7,,,,,. We find that the
nonseparable threshold policies smoothly interpolate
buetween the corresponding separable threshold
policies. lor the case of my, =6 the nonseparable
policy with r,,,,., =6 is identical to the separable policy
with 7, -1, and for 7,,,,,-12 and 7, -2 the results are
indistinguishable. The nonseparable policies with
O<T,umep <12 lic between the scparable policies with
rp=1 and 2. In particular, the non-separable
threshold policics do not significantly fall below the
envelope defined by the best separable threshold

policy. Thus, the improvement of the nonsepurable
over the separable adaptive policies can be attributed
to the decrease in the granularity, rather than 1o the
better use of the extra information available.

Based on the above observations, we conjecture that
the performance of the best threshold policy is very
close to that of the most general nonseparable optimal
policy. To test this conjecture, we studied a lower
bound obtained by considering a model with only one
central queue. This model admits only threshold
policies: only for queue lengths above a threshold
value will the policy use the slow servers. By
simulating all of the possible thresholds and taking the
lower envelope of the curves, we determined the
optimal performance of this single-queue model. This
envelope is then a lower bound to the performance of
any policy for our problem with separate queues. We
found that this lower bound is typically within 10% of
the optumal separable threshold policy, so that these
policies look quite good. In addition, this bound
cannot be realized with separate queues, since a
central queue is unaffected by variations in job service
time; thus, the best separable policy is sure to be
considerably closer to optimal than this bound would
indicate.

1.0
T=5
=Y
) £
0.8 .
> T T=t
i 0.6
o ceperable
041 a.c‘fﬂu
Tt
0.2 T T T
0 20 40 80 80

Figure 6. The non-separable adaptive policy.
The threshold policies are also shown. mig,, =6,
J =5, and jig,,,=1. Note that ;=5 is equivalent
to the SED policy.

In ligures 6-8 we show the performance of our best
policy, the nonseparable adaptive policy, for a number
of choices of model paramecters. The policy closely
matches the best separable threshold policy for all but
a narrow range of A near the crossover pomnt
A=y, frg. Note that compared to the greedy policy
with r=r our policy does excecdingly well over the

10A.4.7.

T=5
(sev)
0.8

0.6

Mean Delay

o leparable
d@rﬁﬁﬂ

0.2 Y
40 80 120 160

Figure 7. The non-separable adaptive policy.
The threshold policies are also shown.
mﬁ,,,—lz, ;;Ih,.—_s, and jiy,,=1. Note that r=5 1s
equivalent to the SED policy.

T=1i0
0.91 (5ev)
0.74
i 0.51
hb‘“r*’-r‘u‘
adaptive
0.31
0.1 T - T T
0 40 80 120 160

Figure 8. The non-separable adaptive policy.
The threshold policies are also shown. mg,,, =6,
P 10, and gy, =1, Note that .10 is
cyuivalent to the SED policy.

whole range of arrival rates x; and our policy does
consistently better than the never quewe policy with
=1,

The adaptive policies introduced in this section can be
generalized 1o systems with more than two classes of
servers. The separable adaptive policy immediately

generalizes by simply assigning a job to the server with
the minimun cost as measured by C*. A way 1o
gencralize the nonsepamable policy 1s 1o use the cost
function ¢ 1o determine whether 1o send the job
1o the fastest open scrver or to one of the faster
servers with non-empty quenes. 1 the decision is to
send 1t to one of the faster servers, then C*F can be
used to decide between them. We plan to study the
performance of these generalizations n future work.

6. Simulations

The results graphed in Figures 2-8 were obtlaimed using
a simulation package we constructed for the problem.
The results were averages of the job delays over N,
after discarding the first Ny,_,; (typically 2x10%) jobs to
account for transient behavior as the system filled up.
The data was taken in blocks so that confidence
mtervals could be determined. With typical values of
N s 0f 2.5x10" the confidence intervals were much less
than 1%. Consequently, we have not displayed error
bars on the graphs.

7. Discussion

We have introduced a simple model system that
captures the essence of the problem of joining the right
quene. For this model, all separable policies wme
equivalent 1o one of only a small number of possible
simple threshold policies. With the use of computer
stmulation, we have studied these policies to show that
the greedy SED policy is a very poor choice,
lustrating that in queueing systems, as i life, greed is
not e¢nough. Perhaps surprisingly, we find that a
simple policy of never guene displays quite good overall
performance.

For cases where the never guene policy is iadequate
(generally when there is a large disparity in server
rales), we presented two adaptive algorithms; a
separable and a nonseparable one. They require only
that cach server knows its queue length, its relutive
processor speed, and its average utilization.

The adaptive nature of the policies make them very
attractive for situations where the system parameters
change fairly often. In addition, because the adaptive
policy in elfect measures and reacts to how well it is
doing (through i), we anticipate that it will perform
well on more realistic system models in which the
arrival and service time statistics are not of the simple
memotyless type.

The results of this paper are based primarily on
simulations; in a [uture publication [She87] we study
similar models in the limit my,—>. Here we can
show that the never quewe policy achieves optimal
performance.

10A.4.8.

0993

Acknowledgments

The authors thask Ko R. Krishnan for several helplul
discussions, and also G. Teomun and G. Gopal for
comments on a prelimimary draft of this paper.

References

[Bel83]

[ChoT9]

[Tiug8oa]

|IF 1R6b)

[1ipha0)]

[FosT78]

{11aj83)]

|1es87)

[HTowo0]

[Krig7]

{1.¢180)

|1.in84]

0994

C. Bell and S. Stidham, "Individual versus
Social Optimization in the Allocation of
Customers to Alternative Servers,”
Management Science, Volume 29, pp 831-
839, 1983.

Y. Chow and W. Kohller, "Models for

Dynamic Load Balancing in a
llcterogeneous Multiple Processor
System,” IEEE Transactions on

Computers, Volume 28, pp354-30l, 1979.
D. Eager, E. Lazowska, and J. Zahorjan.
"Dynamic Load Sharing in Homogencous
Distributed Systems,” ILHLL Transactions
on Software Enginecring, Volume SE-12,
No. §, pp 662-675, 1986.

D. Eager, E. Lazowska, and J. Zahorjan.
"A Comparison of Recciver-initiated and
Sender-initiated Dynamic Load Sharing,”
Performmance Evaluation, Volume o, pp
53-68, 1986.

A. Ephremides, P, Varaiya, and J.
Walrand, "A Simple Dynamic Routing
Problem,” IEERE Transactions on
Automatic Control, Volume 25, pp 6Y0-
693, 1980.

G. TFoschini and J. Salz, "A Basic
Dynamic Routing Problem and Diffusion,”
IEEE Transactions on Communications,
Volume 26, pp 320-327, 1978.

B. Iajek, "Extremal Splittings of Point
Processes,” Mathematics of Operations
Research, Volume 10, pp 543-550, 1983,
G. Herman and A. llolsinger, "Adaptive
Resource Allocation mn [Homogeneous
Processor Networks," to appear.

R. Howard, "Dynamic Programming and
Matkov Processes,” The MIT Press,
Cambridge, Massachusetts 1900,

K. R. Krishnan, "Joining the Right Queue
and Routing in Data Networks," Bellcore
Technical Memorandum; also sec "Joining
the Right Queune: A Murkov Decision

Rule," Proceedings of the 1EEE
Conference on Decision and Control,

Dec. 1987 (1o appear).

W. Leland and 'U'. Ou, "Load-Balancing
[eunstics and Process Behavior,”
Proceedings of the 1980 ACM Sigmetrics
Conlerence on Measurcment and Modeling
ol Computer Systems, 1980.

W. Lin and P. Kumar, "Optimal Control
of a Quecucing System with - Two

[Naovoy)

[Rub85]

|She87)

[Sti8s)

| Stigo)

[WhiSo]

[Win77]

|Yum81|

10A.4.9.

& B

Conitrol,

Heterogeneous Scrvers,"”
Transactions on Automalic
Volume 29, pptv6-703, 1984,
P. Naor, "Oun the Regulation of Queue Size
by Levying Tolls," Econometrica, Volume
37, pp 15-24, 1969.

M. Rubinovitch, "The Slow Server
Problem: A Queuc with Stalling,” Journal
of Applied Probability, Volume 22, pp
879-892, 1985.

S. Shenker and A. Weinrib, "Asymptotic
Analysis of Large letcrogencous
Queueing Systems,” Submiited to the 1988

ACM Sigmeltrics Conference on
Measurement and Modeling of Computer
Systems.

S. Stidham, "Optimal Control of

Admission 1o a Queneing System,” IEEE
Transactions on Automatic Control,
Volume 30, pp 705-713, 1985.

S. Stidham, "Scheduling, Routing, and
Flow Control in Stochastic Networks,"”
preprint.

W. Whitt, "Deciding Which Queuc to Join:
Some Counterexamples,” Operations
Rescarch, Volume 34, No. 1, pp 55-62,
1986.

W. Winston, "Optimality of the Shoitest-
Processing-Time Discipline,” Journal of
Applied Probability, Volume 14, pp 181-
189, 1977.

T. Yum and M. Schwartz, "The Join-
Biased-Queue Rule and Its Application to
Routing in Computer Communication
Networks,” IEELE ‘Transactions on
Communications, Volume 29, pp 505-511,
1981.

