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Abstract: A class of acknowledgment-based
transmission control algorithms is considered. In the
finite population case, we claim that algorithms based
on backoff functions which increase faster than
linearly but slower than exponentially are stable up to
full channel capacity, whereas sublinear, exponential,
and superexponential algorithms are not. In addition,
comments are made about the nature of the
quasistationary behavior in the infinite population
case, and about how systems interpolate between the
finite and infinite number of station cases. The
treatment presented here is nonrigorous, consisting of
approximate analytic arguments confirmed by
detailed numerical simulations.

Introduction

One way of networking computers is to connect them
to a common communication channel and allow them
to access the channel whenever they have a message
to transmit. The obvious drawback in such schemes is
that several stations may transmit simultaneously,
creating a collision and necessitating retransmission of
the garbled messages. The key to efficient random
access networks is effective retransmission control
algorithms. While the algorithms are exceedingly
simple in nature, their behavior has been quite hard to
divine[1-13]. In this paper, we use a simplified model

Permitsion to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Associ-
ation for Computing Machinery. To copy otherwise, or to republish,
requires & fee and/ or apecific permission.

© 1987 ACM 0-89791-225-x/87/0005/0245......... 5e

245

of a random access channel, introduced by Goodman
et. al: [6], to study a family of transmission control
algorithms that resemble the binary exponential
backoff of Ethernet [11]. The model is synchronous, in
that time is discretized into slots, and it is assumed that
the duration of all messages is exactly one slot.
Furthermore, the retransmission algorithm is a random
process with the following restrictions after a
collision, the probability that the message will
retransmit on each successive slot is constant until
retransmission occurs (yielding a geometric
distribution of resend times). This probability of
retransmission will depend only on the number of
collisions, or backoffs, that particular message has
previously experienced.

More specifically, consider n workstations attached to
a common bus, with each workstation having a local
storage queue. _Since the resend probability of a
message depends only on the number of its collisions,
the entire state of the network can be specified by the
number of messages in each station's queue and the
number of collisions (or backoffs) the topmost
message at each station has had. We will denote these
two sets of quantities by {q,} and {b } respectively. We
can characterize the level of activity on the network,
the average number of new messages generated per
time slot, by a global source strength r. For the
purposes of simplicity, we will assume that this load is
spread evenly among the stations. The retransmission
algorithm is described by a function p(b), the
probability of resending a message that has had b
collisions. Since messages that have just arrived at the
top of a queue will transmit immediately, we always
set p(0)=1. The average time until transmission is



given by what we will call the backoff function f(b),
with f(b)= [p(b)]''. During each time interval, the
following happens:

® Each workstation increments q, by one with
probability r/n, representing the generation of new
messages.

® Each station i having a nonempty queue (q,>0)
transmits its topmost message with probability
p(b).

e |f only one station transmitted, then the
transmission is successful and that station
decrements g, by one and sets b, to zero. If more
than one station transmitted, then there is a
collision and the transmitting stations leave q,
unchanged and increase b, by one.

The behavior of a retransmission or backoff algorithm
can be characterized by Q_(r), defined to be the total
average queue length of a system with load r and n
stations. Q_(r) will become infinite at some value of r,
called r (n). Clearly r (n)= 1, since the transmission rate
can never exceed the channel capacity of one. The
main focus in this paper is not on quantitative aspects
of Q,(r) nor on the exact value of r(n). These
properties will depend on the details of the system, so
quantitative results from simplified models such as the
one considered here will not apply to the more
general situation. Instead, we will focus on the
qualitative question of whetherr (n)=1,orr (n) =0, or
0<r(n)<1. We will identify those functions p(b) that
have r(n)=1 and thereby allow the channel to
operate at full capacity. Given the qualitative nature
of the issue, it is hoped that the results derived from
this simple model are relevant to more realistic
systems.

In the previous description of the model, we tacitly
assumed that there was a finite population of stations.
The limit n+= yields the infinite population case where
new messages are generated via a Poisson source with
strength r, and stations have no local queue (since no
station ever generates more than one message). Here,
the state of the system is completely specified by the
set {n_}, where n_ is the number of messages that have

been backed off b times. This case has quite different
behavior than the finite population case (it has, in fact,
r.=0 for all backoff algorithms in the class we are
considering) and will be discussed separately.

For qualitative questions about asymptotic stability,
which is what we will be discussing, it appears that the
only relevant property of the algorithm is the
asymptotic behavior of p(b) for large b. We will
consider three classes of functions (normalized so that
p(0)=1):

Algebraic: p(b) =(1 +b)* for some
constant z>0.
Exponential: p(b) =a® for some constant

a>1.

Superexponential: p(b) =ali-a®) for some constant
a>1.

The commercially implemented Ethernet transmission
control algorithm utilizes binary exponential backoff
(a=2), but there are substantial differences (packet
dropping after a certain number of backoffs, uniform
distribution of resend times, etc.) between the
commercial implementation and the algorithms
presented here. Algebraic backoffs were first
discussed in [6]. Another similar algorithm that is
commonly referred to in the literature is the Aloha
algorithm[1], where p(0)=1 and p(b)=c<1 for ali
b>0.

Before proceeding, a quick word about terminology is
in order. An overloaded system is transient or
unstable, in that eventually the system will tend
toward an infinite total queue. An underloaded
system, one with asymptotically finite queues, is
recurrent or stable. We often encounter situations
where a system is asymptotically transient, but for long
times appears to be recurrent. These cases will be
referred to as quasistationary or metastable states.
The rigorous formulation of the concept of
metastability in this context is not yet available, but it
will be assumed that there is indeed a well defined
quasistationary total queue length Q(r).

In the first section we will consider the finite
population case. Approximate analytic arguments will



be made for the optimal stability (r (n) = 1) of algebraic
backoff algorithms with z>1, followed by supporting
numerical evidence. Recently, D. Aldous and R.
Fresnedo have formulated similar conjectures in a
rigorous fashion and have made substantial progress
toward a proof. This treatment also predicts that
0<r.(n)<1 for sublinear algebraic (z<1) and
exponential algorithms, and r (n)=0 for
superexponential algorithms. These results hold for
any finite number of stations. The second section will
describe the quasistationary states of the infinite
station case, where there is a state that has (in the
quasistationary sense) full throughput (equal to r) but
infinite queue. We conclude with conjectures on how
systems interpolate between the finite and infinite
number of station cases. In particular, we claim that in
the limit of large n, the superlinear (z>1) algebraic
and the exponential algorithms have stable behavior
for r below some finite critical value, which is
somewhat counterintuitive given the fact that the
Poisson model is never stable.

Finite Population of Stations

General Theory

For the finite number of stations case, it has been
shown by Goodman et. al.[6] that r (n)>0 for binary
exponential backoffs. Numerical simulations in the
same paper with n =2 suggested that the linear (z=1)
algorithm is stable up to full channel capacity
(re(2) = 1), whereas the binary expaonential backoff has
r(2)<1. Furthermore, it is known that the Aloha
algorithm, where p(b) is constant for b>0, has
0<r/(n)}<1[13]. These results are consistent with the
folk wisdom that an efficient backoff algorithm should
back off fast enough to avaid collisions but not so fast
as to waste too much time. in this section we will try to
make this notion more precise.

Under a heavy load (r=1) the system exhibits an
oscillatory behavior consisting of either one or two
phases. The first phase is the dumping phase. One
station, the dumping station, has a large queue with
its backoff counter set at zero, and is sending messages
every time step. The other stations, the nondumping
stations, have increasing queues with large backoff
counters. Whenever one of the nondumping stations

attempts to transmit, its message will collide with a
message from the dumping station. Since the backoff
counter at the dumping station is low (usually only
one), and the backoff counter of the nondumping
station is high (rendering the probability of resending
low), the dumping station’s message will usually win
the collision. By winning we mean that it will resend
its message before the other station, thereby having a
successful transmission, resetting its backoff counter to
zero, and regaining use of the channel. Thus, the
backoff counters and the queues of the nondumping
stations increase while the queue of the dumping
station decreases. If the dumping station is able to
exhaust its queue before losing a collision, we enter
the idle phase. The dumping station, now having an
empty queue, is sending out newly generated
messages at a rate of r/n and otherwise is idle. The
other stations are not sending, and will not send for a
time proportional to p(bj)'. Eventually, one of the
nondumping stations starts sending and we are back
in a dumping phase, except we now have a different
station in the role of the dumper. There is one phase
with very high throughput (close to channel capacity)
and another phase with a low throughput of r/n. The
relative durations of these phases will determine the
system’s asymptotic throughput. If the original
dumping station does not exhaust its queue before
relinquishing the channel, that is if it loses a collision
while dumping, then there is no idle phase and the
system goes straight from one dumping phase to
another.

If p(b) decreases rapidly, then the long queues will
have a chance to dump completely. If p(b) decreases
slowly, then the dumping phase will be cut short. For
instance, in the Aloha case the probabi-lity that the
dumping queue will lose a collision is constant,
independent of the backoff counter of the
nondumping station, so that the average number of
messages it dumps before it loses a collision and
relinquishes the channel is bounded above. To get a
more precise estimate of how fast one must backoff in
order to have a finite probability of dumping an
essentially infinite queue completely, we must
compute several quantities. First let us consider a
station attempting to transmit a newly generated
message, which we artificially block (i.e., we ensure, by



fiat, that each of its attempted transmissions results in
a collision) for a period of time t. We are interested in
the value of the backoff counter after this time t. An
approximation to this value, call it B(t), is given by the
largest integer satisfying the following inequality (for
a more exact analysis, see Kelly[8] and Goodman et.
al.[6]).

Bigy-1

= > [pl™’

c=0

In the three cases under consideration, the function
has the following asymptotic behavior (where ~
denotes that the ratio of the two quantities is finite
and bounded away from zero as the implied
parameter, t in this case, approaches its limit; = will be
used to denote approximate equality without any
guarantee that the approximation is asymptotically
correct within a multiplicative constant):

B(ﬂ_tum 1)

B(t)~log(t)
Superexponential: B(t)~log(log(t))

Algebraic:

Exponential:

Next, consider a quantity 8(q), defined to be the
duration of the dumping phase given that the
dumping station starts with a queue of length g, and
has no new messages generated during the dumping.
To approximate 8(q), first consider the two station case
when an old message with backoff counter b-1 collides
with a new message having a backoff counter of zero.
Define W(b) as the probability that the older message,
now having backoff counter b, wins the collision. If we
ignore the case where the messages collide again, then
W(b) can be approximated as

WB)= D p®)1 —pEN™1 - pI™* =

m=0

p(B)1 —p(1)]
p(&)+p(1)—p(1)p(b)

Returning to the n station case, and making the
further approximation that each of the n-1
nondumping stations experience B(q) collisions with
the dumping station’s messages during the dumping
phase, then

B(g)-1 d
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Since p(b)+0 as b+x, the product can be approximated

by an exponentiated sum
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If p(b) is summable, then 8(q) diverges as g+,
Otherwise, 8(q) reaches some finite limit as g+= (to be
precise, there is a more complicated condition on how
fast the sum of p(b) must diverge in order for §(q) to
reach a finite limit). Thus, we have the following
behaviors as g»=:

Algebraic: z<1 &(q)+constant
z>1  B(q)~q

Exponential: 3(q)~q

Superexponential: &(g)~q

Thus, algorithms that backoff faster than linearly have
a finite chance to completely dump an essentially
infinite queue. Algorithms that backoff slower than
linearly will never be able to dump an infinitely long
queue. The linear case, z=1, is rather more delicate,
with the behavior of 8(g) depending on the number of
stations n and on the details of the function p(b).

The duration of the idle phase is closely linked to the
function B(t). If we block n-1 stations for time t, the
delay before one of them attempts a transmission is
given roughly by D(t) = [(n-1)p(B(t))]". The asymptatic
behaviors are:

Algebraic: D(t)~txfz+ 1

Exponential: D(t)~t

Superexponential: D(t)®t (=17

A rough estimate of the asymptotic throughput can be
obtained by calculating the time the system spends in
its various phases. Consider a system starting with the
dumping station with queue q and backoff at zero.
Then, the time that is spent in the dumping phase is
just T,=8(q/(1-r/n)). The extra multiplicative factor
(1-r/in)' is due to the messages generated during the
dumping phase. The time spent resolving collisions
that occur during the dumping phase is merely
propartional to the backoff counter on the
nondumping stations; T_=B(T,). The duration of the



idle phase, if indeed we are in a case where there is an
idle phase, is given by T, = D(T ).

In the case of a sublinear algebraic backoff algorithm,
there is no idle phase and the throughput of the
system for a cycle starting off with a queue length of q
is given by

Td—T

Ta

c

E(q)=

The throughput of the system for a cycle which has an
idle phase is:

T,~T +EnT,

E(q)=
T+T,

One can write a differential equation for the
dynamical behavior of the queue length,

% =r—Elq)

that, while a drastic oversimplification of the process,
seems to capture the essential ingredients. Define Q(r)
to be the limit of q(t) as t+.

Plugging the various expressions (not just the
asymptotic large q values) into these two throughput
formulae, we find that for the algebraic and
exponential cases, the function E(q) is monotonic in q.
For r<E(=), Q(r) will be finite and the system is stable.
For r>E(=), q(t) will increase linearly in time and the
system is unstable. Thus, when E(g) is monotonic,
r.=E(=). The superexponential E(q) is not monotonic,
and will be discussed later.

The asymptotic throughput for large q is

Algebraic: z<1 E(g)+constant<1
z>1 1-E(q)~gq'z+")
Exponential: E(gq)+constant<1

Superexponential: E(g)+0

In the algebraic case, with z<1, E{q) has a maximum
value less than one. The reason for the less than
optimal throughput is that the algorithm does not
back off quickly enough. A very long queue never gets
to dump completely; it is always eventually cut off by
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one of the nondumping stations winning one of the
collisions in spite of its higher backoff count. When
the average number of messages a station can dump
before losing a collision is bounded above, the time
spent resolving collisions becomes a finite fraction of
the dumping time, so the maximal throughput is
always less than optimal. For z>1, this problem
disappears, and the throughput asymptotically
approaches 1 as q increases, yielding r{n)=1. If one
plugs in the expression for E(g) into the differential
equation, one finds that

a+l

g~ **? forr=1

and

Q~(1—n~*"Y fr(-nal

These power laws, as will be discussed in the numerical
results section, provide an important test of the
validity of the preceding calculations.

The linear case is special and the above
approximations no longer give exact asymptotic
results. However, the qualitative nature of the results
may still apply. If we define a family of functions
p(b) =(2 + (b-1)/x)" for b>0 and p(0) =0, then the
treatment here indicates that there will be a function
K (n) such that for x<x (n) we have r(n)=1. The
above approximation yields the function x (n) = 2/(n-1).

In the exponential case, as in the algebraic case with
z<1, the system has r(n)<1. When the algorithm
backs off this quickly, the idle time becomes a finite
fraction of the dumping time, thereby limiting the
throughput to be less than one.

In the superexponential case the asymptotic
throughput goes to zero for large q. Thus, r(n)=0.
Here, the idle time dominates the dumping time.
However, it is to be expected that this lack of stability
may be apparent only after long times; the
throughput goes to zero only for large q. If one does a
more careful calculation of the throughput in this case,
one finds a unimodal function and, as in Aloha-like
schemes with a Poisson source, there is a metastable
solution for small enough r. The system will settle into
a quasistationary state until there is a large enough



fluctuation to knock the system into the unstable
solution.

Numerical Results

The preceding results were obtained with rather
cavalier approximations. Numerical simulations,
however, support the conclusions. The model
simulated was as described in the introduction. For
the algebraic case, Tables 1 and 2 give the values of
Q,(r) for z=0.5 and z=2.0; they clearly support the
prediction that sublinear algorithms have 0<r(2)<1
whereas superlinear algorithms have r (2) =1. Similar
data was obtained for higher values of n. Figure 1
contains a plot of log(Q,(r)) vs. log(1-r) for z=2.0;
fitting to a power law yields Q(r)~(1-r)Y where y = 2.89,
in reasonable agreement with the theoretical result of
y=(z+ 1) =3. Figure 2 shows a plot of In{q(t)) vs. In(t)
for a two station system with algebraic backoff with
z=2; when fit to a power law we find q(t)~t* where
x=0.737, in agreement with the prediction of
x=(z + 1)/(z + 2) =0.75. The discrepancies between the
theoretical and numerical values of the exponents are
smaller than the uncertainties in the numerical values
themselves. Similar supporting results were found for
n=2,z=2.5and forn=3, 2= 2.0. These exponents are
of limited value in and of themselves, but they provide
asignature for the dynamics of the system: a signature
in the sense that it reflects the details of the dynamics,
not just some qualitative macroscopic quantity. The
fact that the experimental and theoretical signatures
are in agreement gives us more confidence in the
arguments presented here and in the claim of optimal
throughput in the superlinear algebraic case. This is
especially crucial to note since simulations for large n
with nearly full loads are not feasible (equilibration for
n>5 and r>.99 was not possible on the time scales,
= 107, simulated here). The simulations by Goodman
et. al. [6] that gave the original evidence for the
optimal stability of algebraic backoffs involved the
case z=1 with n=2 and a constant x=1. Further
simulations performed here were consistent with the
prediction of the existence of x (n). However, overly
long equlibration times prevented a quantitative test
of the approximate result x (n) = 2/(n-1).

Simulations of the exponential algorithms, bath here
(see Table 3) and in previous publications[6], have

indicated that 0<r (n)<1. The nature of the dynamics
of exponential algorithms in the heavily loaded
regime is noticeably different than the dynamics of
algebraic algorithms with z<1. In the sublinear
algebraic case, the inefficiency is caused by the fact
that long queues never completely dump. There are
no long idle periods and the average queue length
reaches equilibrium reasonably quickly. In the
exponential case, the duration of both the idle and
dumping phases are proportional to the queue size, so
the system reaches equilibrium very slowly.

Simulations of the superexponential case were
consistent with the prediction thatr =0, and indicated
the presence of metastable states with full throughput
and finite queues.

Infinite Population of Stations

General Theory

Since it is well known that a throughput of full channel
capacity is impossible for the Poisson source multiple
access channel, the interesting question here is
whether or not the system is stable at all. Aldous|2]
has answered this question in a recent preprint which
proves that the binary exponential algorithm is always
unstable (in fact, he shows that the asymptotic
throughput is zero); it appears that this proof can be
simply modified to apply to any backoff scheme in the
class considered in this paper. However, these are
asymptotic results, and simulations have indicated that
there are long-lived metastable states[6]. It is the
purpose of the following discussion to illuminate the
nature of these metastable states, and to relate them
to the behavior of the finite station case in the limit of
the number of stations becoming large. To do this, |
will start by reviewing a mean value analysis of the
Poisson case that was first done by Hajek (readers
wishing more details should consult the original[7}).

Let us assume that the environment of message
transmissions that a particular message sees is largely
decorrelated from its own history, and then
characterize the equilibrium behavior of the system by
{m,} where these numbers are the average values of
the numbers {n_}. We assume that for each b there is
a Poisson source of strength m, generating



transmissions (we set m =r). The total traffic on the
net is then given by a Poisson source of strength
S=Zm_p(b). If we focus attention on some “test
message” which is attempting to transmit, we see that
the probabilities of a successful transmission and a
collision are just e and (1-e) respectively. To find the
equilibrium properties, we look for the steady state
solution of the following dynamical equation

m(t+1)=m(0-mOp®)+{l —e Sm, _ @Opb-1)

which is just m, = m,_,(p(b-1)/p(b))(1-e-%) = r{1-e)%/p(b).
There is always the transient solution S ==, with
m, = r/p(b), which represents the completely jammed
case. This was the basis for Hajek’s conjecture, which
Aldous has proven, that the system is transient for all r.
There are other solutions, the metastable or
quasistationary solutions, which have finite . As
Hajek noted, the steady state solution, when
combined with the expression for S in terms of the
m,’s, yields the Poisson source equation Se”* =r, which
has solutions for r=e"'. Thus, metastable solutions
exist only when r=e”' . This result, in the mean value
analysis, applies to any algorithm in the class under
consideration. These metastable solutions always have
throughput equal tor. The total queue length is given
by Q=Zm(b) =rZ(1-e3)®/p(b). When the backoff
function is algebraic this is always finite (for finite ),
and in the superexponential case it is always infinite.
For exponential backoffs, this is finite only if (1-e%) is
less than a'. The only novel point here is that there
are some metastable solutions that have infinite
queues but, rather surprisingly, still have throughput
equaltor.

Note that for the algebraic case, and the exponential
case with a<a_=(1-e"")"=1.52, the value of the queue
at the metastable threshold, Q(e™"), is finite. This
means that one can operate near the threshold
without incurring large queues. In the other cases,
Q(r) becomes infinite below threshold. Q is finite at
the threshold in those systems which do not exhibit
the infinite queue, full throughput metastable state.

Numerical Results

The Poisson model was simulated for each of the
classes of backoff functions and the results are in
general agreement with the treatment above. For

example, for each backoff function there is a value of
the load above which the system would quickly
overload (with throughput going to zero and total
queues becoming infinite). Well below this threshold,
the system would appear to have full throughput for
the duration of the simulation (which were typically
on the order of 107 iterations). This critical value of the
load is not, as | have described it here, a precisely
defined quantity; possibilities for a more precise
definition will be discussed later. In this metastable
regime, the Hajek prediction of m, =r(1-e*)b/p(b) is
qualitatively, but not quantitatively, correct.
However, the predictions for the fraction of time slots
that are idle, successful transmissions, and collisions,
which are given by e3, Se’, and 1-(1+5)e’, were in
good agreement with the simulation results (see the
last line in Table 4; the agreement depended more on
p(1) being small than it did on the asymptotic nature
of p(b)). This tends to validate the approximation that
the messages can be treated independently.

More specifically, for the algebraic backoff functions,
simulations were run for 2 =0.5 and z = 2.0. Below the
threshold, the system appeared stable with finite
queue and full throughput. The exponential case with
a=10 and r =0.05 exhibited metastable behavior with
finite queues. For r=0.2, the queue length diverged
while still maintaining full throughput, verifying the
prediction above of this unusual state (see Table 5). In
the superexponential case, below threshold the
metastable state always had diverging queue lengths
and full throughput. Also, simulations were consistent
with the prediction, in certain cases, of a discontinuity
in Q(r) at the metastable threshold (see the last line in
Table 6, where the queues are quite small even whenr
is within 10% of threshold).

Discussion

The conjectures of the first section of this paper give a
relatively complete classification scheme for
algorithms with a finite population of stations. The
sweeping applicability of Aldous’ result and Hajek's
analysis leave little else to be understood about the
Poisson case. These two sets of results are very
different, so one is left with the issue of how the
results for finite n cross over into the results for infinite



n. Since all of the algorithms under consideration are
unstable in the Poisson case, are they unstable in the
large but finite n case? What is the behavior of Q,(n
and r(n) as ns=? There is no mystery for
superexponential algorithms, where r (n)=0 and
Q,(r) ==. For n+=, simulations indicate that sublinear
algebraic algorithms have r (n)~1/n and Q, (r)+=.
However, the simulations suggest that for superlinear
algebraic and exponential algorithms there is a
threshold R such thatin the limit of n+« (see Table 6):

Q,(1-Q(n, r<R,
Q,(1)+=, R.<r

For the exponential case we expect r(n)+R_. This will
clearly not be true in the z>1 algebraic case since
r{n)=1 for all n. For both the superlinear algebraic
and exponential algorithms, the dynamics of the
system in the finite n case (as measured by the queue
length, the number of attempted transmissions per
time slot, and the fraction of time slots that are idle,
successful transmissions, and collisions) appears to
converge to the metastable Poisson dynamics when n
becomes large (see Table 4). Therefore, this quantity
R, can be considered the aforementioned threshold for
the Poisson model; when r<R_, the Poisson model
exhibits the “normal” finite queue metastable
behavior. Note that the algorithms that still have
stability in the n+= limit are those that, in the finite n
case, have the ability to dump long queues. This
allows them to recover from the fluctuations that drive
the Poisson model unstable.

There are two aspects to the large n results here. The
more theoretical one is that for the superlinear
algebraic and exponential aigorithms, the limit n+=
provides precise definitions of Poisson metastable
quantities, such as the queue Q(r) and threshold R..
The more practical point is that both the superlinear
algebraic and exponential backoff algorithms remain
stable in the limit of large n, even though the Poisson
maodel is never stable. There has been much interest in
algorithms that are stable in the Poisson model, not
just far purely intellectual reasons, but also because it
was tacitly assumed that Poisson behavior was a good
indicator of large n behavior. That has been
confirmed here, but in a different sense; Poisson

metastability, not just stability, is sometimes a good
predictor for large n stability. When r<R_, systems
with large but finite n will have behavior resembling
that of the Poisson metastable state, but, for the cases
we have outlined here, the finite system will be truly
stable. Whatever paradox this poses can be resolved
by noting that to describe the limit of large n behavior,
one takes the t+= limit first, then the n+= limit; the
asymptotic behavior of the Poisson model is described
by taking the limits in reverse order. The difference in
stability between large but finite n and the Poisson
model merely reflects the fact that these two limits do
not commute.
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.--"d Table 1: Q,(r) for algebraic backoff with z=0.5. For
g | g.-v" ) r>.63, the value of Q kept increasing with time,
’ indicating that .62<r(2)<.63. The statistical
ﬁ,--' uncertainties in the data are less that 10%.
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Figure 2: In(q(t)) vs In(t) for an algebraic

backoff function with n =2, z=2.0. The slope
of the least-squares fit line is 0.737.



n Q. (.2) S idle T?gf"s. lisi?)lt-\s
31 227 .796 .200 014
A2 .239 781 .200 .019
5 .50 .249 776 .200 .024
10 .55 .261 a7 .200 .029
20 .56 .266 .768 .200 .032
30 .55 .269 .768 .200 .032
100 .54 271 .767 .200 033
Poisson| .54 .275 .765 .200 .035

r Q,(n)
0 0

A 044
2 31
3 14
4 6.5
S 26
6 79
.65 134

i ; 241
75 420
8 785
.85 1957
9 5921
92 10987
94 24542
96 78413
.98 617020

Table 2: Q,(r) for algebraic backoff with z=2.0. The
statistical uncertainties in the data are less than 10%.

Table 4: Properties of algebraic backoff with z=2.0
for various values of n. The last row contains the
Poisson results. For the averages in the columns, S
denotes the total number of attempted transmissions
per time slot, and the next three columns give the
fraction of time slots which are idle, successful
transmissions, and collisions. The statistical
uncertainty of Q_(.2) is less than 5%, the other
quantities have uncertainties closer to 1%. The
simulations were run for 10° iterations.

Suc. Col-
Q s Idle Trans. lisions
e e
103.8 .2625 .767 .200 .033

r Q,(r)
ﬁ_
.05 .0058
A 028
15 .082
2 2
.25 5
3 1.2
.35 4.2
4 24
425 184

Table 3: Values of Q,(r) for exponential backoff with
a=2.0. The statistical uncertainties of the values are
quite large, due to the extreme fluctuating nature of
the dynamics. The value of r (2) is difficult to estimate,
but the system is clearly unstable for r>.6.

Table 5: Properties of Poisson exponential backoff
with a=10.0 and r=0.2. Q denotes total queue
length, 5 denotes the total number of attempted
transmissions, and the next three columns give the
fraction of time slots which are idle, successful
transmissions, and collisions. The simulation was run
for 107 iterations. For longer times the total queue
increased but the other numbers were unchanged.



n Q. (1) Q. (.2) Q. (.3) Q,(.4)
E—

2 044 31 1.4 6.55

3 .056 A2 2.4 143

5 .069 .50 3.1 25.7

10 .073 35 3.7 53

20 .076 .56 35 130

30 077 .55 a5 428
Poisson .076 .54 35 w

Table 6: Values of Q,(r) for several values of r with
varying n for algebraic backoff with z=2.0. Further
simulations showed that R =0.33. The statistical
uncertainty of the values is less than 10%.
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