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Abstract-Sensor networks pose new challenges in the collec- 
tion and distribution of data. Recently, much attention has heen 

approach to storing time series data is to have all sensing 
nodes feed their data to a central rewsitow external to 

over time series data, we consider searches over semantically rich 
high-level events, and present the design, analysis, and numerical 

cant energy expenditure fO send every Sensor reading to an 
external site. Furthermore, links near a gateway to an external 

by that node. 

1. INTRODUCTION 

There has heen considerable interest recently in research in 
wireless sensor networks, a technology that promises analysis 
of and interaction with the environment at spatial and temporal 
densities not possible using conventional approaches. The 
nodes in such networks are equipped with sensors, local 
storage, CPUs and radio communication facilities, allowing 
them to both sense the local environment and communicate 
locally with other sensors in order to construct semantically 
rich conclusions about the environment that they are sensing, 
such as detecting the presence of animals, or of hotspots, or 
of other “events” [121, (151, [161, [231. 

The primary resource constraint of nodes in such networks 
is energy. Nodes are expected to he long-lived (deployed 
not for hours, but for years), untethered (both in terms of 
communication and power), and unattended (and so must be 
self-configuring and self-adapting). Energy must be carefully 
budgeted and conserved, so all sensomet algorithms must 
minimize energy use. The primary energy consumer in such 
systems is radio transmission. For one scenario, Pottie and 
Kaiser explain that the cost of transmitting 1Kb a distance of 
100 meters is approximately equal to the cost of executing 
three million CPU instructions [21]. Furthermore, the cost of 
reception in these systems is often almost as much as that of 
transmission. 

Sensornets collect a tremendous amount of detailed time 
series data about the environment. As sensornet research and 
experience has accumulated, many different approaches for 
accessing this data have heen proposed. The conventional 
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generation. 
One approach to retrieve this stored data is to flood a query 

to all nodes that could potentially have suitable data, and have 
them send their response to the (perhaps external) querying 
node. In such an approach, data is sent when (i.e., in response 
to an actual query) and where it is required. Some queries will 
originate within the sensornet itself, and in that case it makes 
little sense to send the data to an external site only to have 
it shipped back to the internal querying node. Furthermore, if 
far more data is collected than is actually required to answer 
queries, then this local storage approach results in significant 
energy savings. 

There are two extensions of this approach that lead to fumher 
energy savings. First, the data can be processed, aggregated, 
andor pruned as it propagates toward the query sink. The 
authors of Directed Diffusion, TAG, and others describe par- 
ticular forms of in-network aggregation and pruning of data 
that can select relevant data and produce statistics such as 
medians, averages or maximums [16], [I]. This approach uses 
“data-centric” routing in that queries are not directed towards 
individual nodes, but rather are stated only in terms of the 
desired data. Second, the data can be processed locally to 
identify high-level “events” that are of interest. These events 
can refer directly to sensor readings, such as areas of relatively 
high temperatures, or to the conclusions of rather sophisticated 
identification algorithms, such as animal or vehicle sightings. 
In either case, the queries are directly for such events, and the 
responses contain summarized data about such events. Here, 
too, the routing is data-centric, but the queries (and responses) 
deal with higher-level abstractions. 

These energy saving extensions reduce the energy required 
to respond to queries, but do not alter the basic ”flood-then- 
respond” approach which incurs an inherent cost of flooding 
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each query to all nodes (or at least to all nodes that could 
possibly have relevant data). If the rate of queries is relatively 
high, this expense can he substantial.’ 

In contrast, the “data-centric storage” (DCS) approach, 
proposed in [IO], avoids the flooding of queries. All events 
are named, and then stored at a network location based on the 
name. Queries for that particular kind of event are routed to the 
appropriate network node, where the relevant data (or pointers 
to that data) can be found. Storing the data by name provides 
a logical rendezvous mechanism between data and queries so 
that queries need not be flooded. GHT [I 11 describes a specific 
solution to achieving DCS in which event names are hashed 
to geographic locations and stored at the node closest to the 
hashed location. For improved efficiency and load balancing. 
GHT proposes structured replication in which a rendezvous 
point is replicated so that events can be stored at, and retrieved 
from, the rendezvous point closest to the detecting node. 

While the basic idea of data-centric storage is quite general, 
the original instantiation was binary in the sense that it 
was limited to reporting whether a certain high-level event 
had occurred. If the events had additional attributes, such 
as temperature or humidity, one had no way of efficiently 
scoping the request based on the values of these attributes. 
For example, to discover only those event Occurrences that 
recorded a temperature between 50 and 60 degrees, one had 
to query each of the replicated rendezvous points individually, 
instead of querying only the relevant rendezvous points. 

In this paper, we extend the data-centric storage architecture 
to efficiently support range queries-that is, queries where only 
events with attributes in a certain range are desired. DIFS, our 
proposed distributed index, provides for low average search 
and storage communication requirements and seeks to balance 
these requirements over participating nodes. 

Note that DIFS, like GHT, is well-suited to scenarios where 
the nature of some archetypal high-level events is well-defined. 
In such cases, efficient index structures (such as DIFS) may 
he applied that save on communication overhead since only 
data about high-level events is communicated rather than the 
lower-level time series data from which events are composed? 
However, when the notion or type of events is not yet clearly 
defined, alternate search mechanisms may be required. For 
example. a protocol such as DIMENSIONS [6] also relies on 
the placement of data within the sensomet and the use of data- 
centric rendezvous points but, unlike DIFS, works with lower 
level sensor readings. DIMENSIONS takes time series data 
as input and compresses it while retaining significant features. 
This compressed data is then stored within the sensomet to 
produce a multiresolution map. Such maps allow users to drill 
down into areas that appear to contain significant phenomena 
without requiring a pre-defined notion of what constitutes such 

‘However. if the queries are relatively few, and the &sued data streams are 
long-lived (such as moniloring the tempenlure readings in a local hotspot), 
then this approach is reasonably efficient. 

*USRS can always retrieve low-level readings by having each event n o 6  
fication include the event’s location, so thal 10 gather &miled data one need 
only dawnland the d i n g s  fmm the relevant S ~ ~ S O R .  

phenomena. 
We describe events and provide a classification of their 

properties in Section 11. Section I11 describes the rationale 
behind the design of DIFS. Section IV discusses one pos- 
sible index on event data. Section V demonstrates the DIFS 
model. In Section VI we describe other ongoing projects. VI1 
discusses the path ahead and Section VI11 concludes our paper. 

11. EVENTS AND QUER~ES 

The authors of TAG describe how time series queries can 
be categorized [I]. They classify the partial state of the query 
as distributive, algebraic, holistic, unique, or context sensitive. 
They separate those queries that are duplicate sensitive from 
those that are not; those that are exemplary from those that 
are summary; and those that are monotonic from those that 
are not. We seek to provide a similarly detailed categorization 
of range queries for high-level events, and provide four query 
categories. 

A. High-Level Evenrs 

High-level events, such as a hot region or a target detection, 
a map, a histogram, or a contour, can be described in a number 
of ways. We propose adding new data structures to store high- 
level data abstractions to the simple attribute types provided by 
Diffusion. Like Diffusion, such abstractions would be defined 
system-wide at deployment time. Such abstractions would 
include vectors, maps, histograms, parametric equations, and 
n-degree functions. It is our intention that individual attributes 
describing a high-level event would be indexed using our 
system. Although the queries we address in this paper are 
for ranges and distributions, future work should do a more 
careful investigation of the tradeoffs between this and other 
approaches for range and binary queries. 

B. Classification of Event Pmperfies and Relurionships 

The classification proposed in this section has primarily 
been designed with attribute range and distribution queries 
in mind. It is for future work to investigate how it might he 
extended to apply to detections (as in GHT) and other domains. 

The goals of a system directed at binary events like “ele- 
phant sightings” are different from our goals of providing 
range searches over events that are each comprised of attributes 
with values. The fundamental goal of a search over binary 
events is to determine the locations of such events. When 
such events are rare (i.e., the ratio of events generated to 
nodes that are capable of generating events is low), it is much 
more energy-efficient to construct a rendezvous point where 
events could register and queries could search than to flood a 
search. Events defined by attributes with values that fall within 
a specified range are by definition less common. For example, 
there may be many hot regions in a network, but few with a 
heat gradient with a slope greater than s. For this reason we 
develop a new method to support range queries efficiently. This 
paper proposes mechanisms to run on top of GHT to address 
range queries, for which GHT alone was not intended. 
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1 TABLE I 
EVENT PROPERTY A N D  RELATIONSHIP CLASSIFICATION 

data and duration and size of over time 
an event and space 

We propose the following classification of the properties of 

Sensor value(s). This category includes raw sensor values 
that comprise high-level events, as well as composite 
measurements and summaty statistics such as average, 
median, maximum, standard deviation, etc. Some exam- 
ples of sensor values are the peak temperature of a hot 

and relationships among high-level events: 

Fig. I 
ASTORAGEANDSEARCHARCHITECTURE. 

as in "return a region that has moved more than 10 feet 
in the last hour and has become elongated,., Such queries 
can be evaluated in a straightforward manner using simple 

can be disseminated to generate ranked results for top-k 
queries. A user might be interested, for example, in large high 
temperature regions, but heat might be more important than 
c:*p 

region, the radiation flux density in the area of a sunfleck, 
the variance in direction of a gust of wind, and the speed 
at which an animal target is moving. Searches for sensor 

the distribution. Sensor values are typically represented 
as integers or floating point numbers. . Timing parameters. Often it is not enough to know a 
particular value for a region, but it is integral to know 

values may either be Over a designated range or section of comparators, complex evaluation functions 

l.*b_ 
how this value varies over time. For example, one might 
care about a hot region that has been hot for some period 
of time, or that has increased in temperature over time, 
Or that has moved above a minimum 'peed for a period 

C. The Big Picture 
Before delving into the details of our index protocol, we 

describe where such an index fits into the bieeer oicture of a 
of time, 
Spatial dimensions (including shape and size). This 
refers to the physical shape and location of an event. 
Some examples of queries over spatial dimensions in- 
clude hot regions larger than a given m a ,  elongated 
beyond a certain ratio, with a primary hot ridge greater 
than a certain length, or with some defined curvature. 
Regions can he described as enclosing circles, ellipses, 
or polygons. Their centers or other points of interest can 
be represented in integer or floating p i n t  coordinates [7]. . Relationships between events. Finally, there are rela- 
tionships between events. In the spatial domain, this 
translates to proximity or intersection. Is, for example, 
an area of high CO2 concentration also an area of bright 
sunlight? Is the event of an animal detection near other 
events of animal detection? In the temporal domain, this 
translates to succession and temporal separation. Did an 
area of high CO2 concentration come about immediately 
after bright sunlight? Is the hottest region in the sensing 

-- . 
storage and search architecture for sensor networks. 

Sensor nodes typically generate time series data. This data is 
locally processed by statistical and pattern recognition engines 
to generate high-level events. These events, in turn, are stored 
locally where they are created, and information about their 
various attributes is inserted into indices. A human user or 
interested automaton (a sensor node or actuator) poses queries 
to these indices. Query results then are found in the indices 
themselves, at the storage nodes, and possibly, when high- 
level event descriptions are not complete, even at the nodes 
that generate time series data. 

Figure I describes the high-level relationships among the 
components of the storage and search architecture for sensor 
networks that is briefly described above. 

In terms of event generation and search, nodes serve two 
functions. First, all nodes in the network may be used to store 
raw time series data and events. Second, a subset of nodes 
serve as index nodes to facilitate search. 

environment at the same time also the driest? 111. APPROACH 
This classification serves as a logical base for potential 

queries of high-level events. Of course, there are often cases 
in which these classes are used in combination as in, "Did 
the hot region change shape over time?" and "Did the peak 
temperature of the region move location?" or composed, 

Since DIFS builds on top of GHT, we hegin with a brief 
description of GHT in Section 111-A explaining its limitations 
when used for range queries. In Section 111-B, we use a quad 
tree as an example of how range queries might be achieved 
using a traditional hierarchical search structure. The limitations 
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Fig. 2 
EXAMPLE OF STRUCTURED REPLICATION WITH A 2-LEVEL 

OECOMPOSLTION. 

of GHT and the quad tree motivate the design of DIFS. We 
end this section with a quick overview of the DIFS search 
structure in Section 111-C. 

A. GHT: A Geographic Hash Table 
GHT provides a key/value-based distributed index. Events 

are named with keys. Both the storage of an event and its 
retrieval are performed using these keys. In GHT, a key is 
hashed to a geographic position: geographic routing is used 
to locate the node closest to this position, which then stores 
the data associated with that key and, in general, acts as the 
rendezvous node for that key. 

By hashing keys, GHT spreads the load due 10 different 
keys evenly throughout the sensomet. When many events with 
the same key are stored, GHT avoids creating a hotspot of 
communication and storage at their shared rendezvous node 
by employing structured replication. whereby data for a single 
event is divided among multiple mirrors. Structured replication 
uses a hierarchical decomposition of the geographic space 
similar to that used in GLS [ZO]. Let us say that an event 
name hashes to a geographic location T ,  which acts as the 
root for that name. Given T and a hierarchy of depth d, one 
can compute 4d ~ 1 mirror images of T. For example, Figure 2 
shows a d = 2 decomposition, and the mirror images of the 
root point (3,3) at every level. 

Now, an event is stored at the associated mirror that is 
closest to the detecting node. Queries, however, must now be 
routed to all mirror nodes3, thus trading off lower communi- 
cation costs for the storage of events versus more expensive 
querying. 

In GHT, keys are event names and hence range queries 
over the values associated with an event are not efficiently 
supported though only a small fraction of event occurrences 

3Geographically rcaped queries need only be disseminated to the subat of 
nodes h a t e d  within the spatial extent specified in the search milcia. 

might actually fall within the specified range, such queries 
would still have to visit every mirror node. While it might 
seem like an obvious fix would be to propagate summary 
information towards the root node while aggregating at mirror 
nodes along the way, this results in a hotspot at the root node 
since all range queries must traverse through the root. (This 
problem of overloading root nodes in tree-based hierarchies is 
discussed in greater detail in the following section.) 

B. Simple Quad Tree Appmach 
Perhaps the simplest approach to indexing values in a 

sensor network is to build a spatially distributed quad tree 
of histograms. A root index node maintains four histograms 
describing the distribution of data in each of four equally sized 
quadrants of the network. Each quadrant, in tum, maintains 
histograms for each of four subquadrants. In such a manner, 
an index tree is formed in which a parent node covers exactly 
four times the network area of each of its children. In this 
approach, data events are assumed to be stored locally at or 
near the node(s) that created them. 

The simple quad tree approach differs from the hierarchical 
decomposition of structured replication in three aspects. First, 
a quad tree forms a search tree over events. Branches of 
the tree may be pruned during search if descending them 
would not add to the result set. Structured replication does 
not propagate information about event detections to the root. 
Therefore branches of the search tree can never be pruned 
and therefore all searches must descend to all leaf nodes. 
Second, the leaf and internal nodes in structured replication 
are derived from the event key and hence parent nodes need 
not explicitly point (i.e., know the precise node address 00 
to its children. This makes a structured replication hierarchy 
more robust and easier to maintain. Finally, each parent in 
a quad tree has four children, one for each quadrant of the 
area the parent covers. Each parent in structured replications 
has three children. The parent itself serves to cover the 
fourth quadrant. Like structured replication, DIFS uses hashing 
to define its hierarchical structure; like a quad tree. DIFS 
maintains histograms at each internal node in the hierarchy, 
describing the values found for an event attribute in the region 
an index node covers. 

Quad trees allow for efficient searching since the histograms 
can direct queries to only the relevant nodes. However, two 
problems arise when applying hierarchical search trees, such 
as a quad tree. to a distributed and energy-constrained setting. 
First, every time data to be indexed is generated anywhere in 
the network, that information must be propagated to the root. 
Since all data must be propagated to the root and all queries 
originate from it, the root handles significantly more traffic 
than any other node. This problem can be partially alleviated 
by caching data changes in intermediate level nodes and only 
propagating such information toward the root periodically. 
Note that this problem does not apply to structured replication 
since in that scheme, event detections are not propagated to the 
root. Second, every query over the entire spatial domain must 
originate with the root. If only a few queries are to be posed, 
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this might not be a problem. Imagine, however, a network 
of thousands of actuators each capable of inserting multiple 
queries. The one-root approach clearly is not scalable to such 
a situation. 

As outlined in the following section, DIFS achieves ef- 
ficiency by using histograms but avoids the load balance 
problem by avoiding the use of a single tree-based hierarchy. 

C. DIFS overview 
DIFS extends GHT to support efficient range queries while 

maintaining balanced load across nodes. DIFS achieves this by 
constructing a multiply rooted hierarchical index that differs 
from traditional binary and quatemary trees in that non-root 
nodes can have multiple parents. Nodes store event informa- 
tion for a particular range of values detected within a particular 
geographic region. Higher-level nodes cover smaller value 
ranges detected within large geographic regions while lower 
level nodes cover a wider range of values from within a smaller 
geographic region. The key idea behind the construction of this 
hierarchy is to incorporate (in addition to the event name) the 
value of an event, as well the location of the detecting node in 
determining the storage node for that event occurrence. Using 
this index, DIFS can efficiently support range queries, queries 
related to the distributions of values in space and so forth. 

We include the quad tree in our performance evaluation to 
serve as an example of a conventional hierarchical approach. 
Our evaluation also covers structured replication. 

IV. DISTRIBUTED INDEXING OF HIGH-LEVEL EVENTS 
DIFS was created with the following design goals in mind: 

Even at the cost of a modest increase in overall traffic, a 
sensor network search solution should he load balanced 
both in  terms of message traffic and storage. Hierarchical 
approaches that drill down through search trees are useful 
in general, but have limitations for sensor networks. The 
root of any such tree becomes a communication bottle- 
neck, receiving the full brunt of search communication. 

s Searches for data by name, value range, and location 
should be communication-efficient and fast. 
The solution should also allow for efficient answers to 
queries on the distribution of data, such as “Is my event’s 
flux density in the top 10 percent of values seen?” 
Transactions should be reliable. 

A. DIFS Design 
DIFS was designed to provide the search efficiency of 

a quad tree in a manner that balances communication load 
across the index. Like GHT, DIFS uses a geographical hash 
within a hierarchically decomposed key space. Like a quad 
tree, it constructs a search hierarchy of histograms. Unlike 
the single-tree hierarchies of structured replication and quad 
trees, in DIFS each child has bfact parents, where bfacr 
= 2“,i 2 1. Moreover, the range of values a child maintains 
in its histograms is bfacr times the range of values maintained 
by its parents. That is, nodes in a DIFS hierarchy all have the 
following defining property: The wider the spatial extent an 

Fig. 3 
A N  ILLUSTRATION O F T H E  DIFS HIERARCHY. 

index node knows about, the more constrained the value range 
it covers. 

To make this idea more concrete, consider a high-level 
event with an attribute called $U densify, which represents 
the radiation flux density of an instance of this high-level 
phenomenon. It is known perhaps that the flux density of 
such a phenomenon has never been recorded above 255 and is 
always at least zero. Suppose an event is detected and a flux 
density of 57 is to be recorded in the index. In a DIFS, this 
value would be stored in a local leaf node covering a value 
range of 0 to 255. It would also be stored in a parent of the 
leaf that covers a range of 0 to 63, in a grandparent covering 
48 to 63, and in a great-grandparent with a value range of 56 
to 59. The geographic area the parent covers is four times that 
of the leaf. The area covered by the grandparent is four times 
that of the parent and the area of the great-grandparent is four 
times that of the grandparent, and perhaps covers the entire 
spatial extent of the network. 

To ensure a balance of communication load over the net- 
work, the range of values that an index node knows about is 
inversely related to the spatial extent the node coven. Rather 
than having one query entry point, as in the root of a quad 
tree (as will be shown in subsection IV-D), DIFS searches may 
originate at any nodes in the tree, including those below the 
root level. Query entry points are selected in accordance with 
both the spatial extent, as well as the range of values requested 
in the query. 

To build this hierarchy, a node storing an event forwards 
information first to the local index node with the narrowest 
spatial coverage but covering the widest value range. This 
index node then forwards a histogram describing the values 
it has seen to a node with wider spatial coverage but narrower 
value range, and so on and so forth. The convention by which 
index nodes are selected is similar to that of GHT in that 
a geographical hash function is used. However, rather than 
hashing to any location in the network, the DIFS hash function 
limits its output to the area that a node in the hierarchy is to 
cover. Specifically, the DIFS hash takes a source location, a 
string of characters to hash, and a bounding box, and produces 
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Fig. 4 
A GEOGRAPHICALLY BOUNDED HASH FUNCTION. 

a location. The smaller the hounding box, the more high- 
order hits of the source location that are included in the 
output location. The expected distance of an index node from 
the event source node increases as one progresses up the 
hierarchy. In particular, the expected distance from a node to 
its parent is one half the expected distance from its parent to 
its grandparent. 

B. Geogi-aphically Bounded Hash 

The DES indexing method requires the use of a geograph- 
ically hounded hash function that takes as input a location, a 
key, and a hounding box. and returns a location within that 
box. Our geographical hash has the same functional form as 
the geographical hash used in structured replication. 

To simplify index construction and to provide a convention 
for index node selection, the partitioning of the network must 
be regular. The network is assumed to he rectangular and 
is divided into four quadrants of equal size. Each quadrant, 
in turn, is again divided into equal sized suhquadrants. This 
process is repeated as many times as there are levels in the 
index hierarchy. 

As a consequence, the hounding box given as input to 
the hash function must exactly describe a quadrant for some 
desired level in the hierarchy. Assuming an origin of (0, 0) at 
one comer of the network, the starting x and y coordinates of 
the hounding box must he integer multiples of the box’s width 
and height, respectively. 

The output of the hash function is a pair of coordinates 
somewhere within the hounding box that is supplied as input. 
To achieve this, first a hash location (xh,yh) is generated that 
falls somewhere within the network at large. Two separate hash 
functions are used to generate the output x and y coordinates 
respectively. Them high-order hits common to all points in the 
input hounding box and enough low-order bits of (xint, yint) 
to produce a valid pair of coordinates are concatenated. The 
value of m is dependent on the level in the DIFS for which 
an index node is sought. 

For example, if the box is bounded by (0.0) and (15,151 and 
coordinates are one byte each, the four leading zeros common 
to all points in the bounding box are combined with the four 
low-order bits of the hash results to produce a hash location 
within the box. 

C. lnsening a High-Lwel Event 
Suppose potential query sinks are interested in the flux 

density attribute of various events. Below, we describe how 
an event containing this attribute will register itself with a 
DIFS index. 

The first step in registering this event is to compute a 
geographically hounded hash on the concatenation of the 
attribute name and the range of values held by a local leaf 
index node. A character delimiter such as a colon is inserted 
between the name and each value to avoid ambiguity. Recall 
from Section IV-B that such a hash produces a location within 
a specified hounding box. This first hounding box has the 
dimensions of the system-specified minimum coverage region 
of an index node. For example, if the network has a length 
I and a width w and the DIFS is to have h levels. then the 
width and height of the minimum bounding box are l/2h-1 
and ~ / 2 ~ - ’  respectively. 

As in the quad tree, the node storing the event sends a 
message containing the location where the event is stored and 
the value for flux density to the geographically closest leaf- 
level index node, which in turn stores the flux density and a 
pointer hack to the storage node. In practice, this leaf-level 
node is the node geographically closest to the result of the 
hounded geographical hash function. 

Recall quad tree nodes each have one parent. DIFS nodes 
have bfaci parents. Periodically (the interval is system- 
defined), the leaf forwards information it maintains as a 
histogram to bfact parents that each are responsible for main- 
taining information for l lbfact the values of the leaf. While 
these parents each hold information on l l b f a d  of the values, 
they cover four times the spatial extent of a leaf. Consequently 
such parents each have four children. 

Again periodically, parents forward information in the form 
of histograms to grandparenu, and grandparents forward to 
great-grandparents until nodes covering the entire spatial ex- 
tent of the network are reached. Every node except the leaves 
has exactly four children and every node except the roots has 
exactly bfact parents. A parent covers four times the spatial 
extent of each of its children. A child covers bfacr times the 
value range of its bfact parents. 

Suppose an event has been found in the vicinity of geo- 
graphical coordinates (14, 37) and has a flux density of 57. 
Also, for the time being, suppose nothing is known a priori 
about the expected distribution of flux density other than that it 
always falls in the range [0-255]. Let the minimum hounding 
box have a width of 8 units. The hash will first he called 
with the key “flux density:O255” and will return a location 
somewhere in the bounding box defined by the corners (8,321 
and (15, 39). A message containing the string “flux density”, 
the coordinates (14, 37), and the value 57 will he sent to a 
leaf-level (level 0) index node. 

Suppose for the moment that this is the only instance of an 
event in the system with a flux density attribute and that bfact 
= 2. The level 0 leaf index node will forward a histogram 
containing counts for values 0 to 127 to a level 1 index 
covering the region (0, 32) to (16, 47). The level 1 nodes 
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will in turn forward a histogram containing counts for values 
0 to 63 to a level 2 node covering the region (0, 32) to (32, 
63). This process is continued until the value is forwarded to a 
node covering the entire network. Each index node at levels I 
and above stores four histograms, one pointing to each of the 
composite lower-level index nodes. The level 0 indices point 
directly to storage nodes. 

D. Querying for a set of events 
Queries over a DIFS may be described by value range or 

by range in the distribution. Both types of queries may be 
constrained geographically. 
By value. A user might be interested, for example, in flux 

densities ranging from 47 to 68. This query is decomposed 
and forwarded to those nodes that can service.the query in the 
following manner. < 

As in the previous sections, let bfac: be the factor by which 
the range of index values is decreased as one progresses up 
the index hierarchy. That is, if a level 0 node has a range of 
256 values and bfac: is 2, then a level 1 node will have a range 
of 128 values. If bfac: is 4, then a level 1 node will have a 
range of 64 values. 

The decomposition of the query selects the smallest number 
of nodes that exactly covers the query range. Suppose we have 
a bfac: of 4 and a square network of width 128 with minimum 
index coverage of width 8 and a range of values between 0 and 
255. Each level 0 leaf node covers 256 values over a width of 
8, each level 1 node covers 64 values over a width of 16, each 
level 2 node covers 16 values over a width of 32, each level 
3 node covers 4 values over a width of 64, and each level 4 
node covers 1 value over a width of 128. 

The minimum set of index nodes exactly covering this range 
is: . One level 4 node for value 47 . One level 2 node for range [48-631 

One level 3 node for range C64-671 
One level 4 node for value 68 

Using the same hash function as in storage, the query will 
start at these index nodes and propagate down to any events 
that satisfy this query. 

Over space. In the previous subsection, the search was 
conducted for a range of values over the full spatial extent 
of the network. DIFS handles location criteria specified by 
a bounding box as well. The straightforward approach to 
geographically constraining a query is to parse the initial 
search range as was done above, but to send the query only to 
those index nodes that cover any pan of the geographical range 
of interest. If any of these nodes covers no more of the region 
of interest than one of its children, we use the child instead. 
If we use the child, we make the same test recursively, to use 
the grandchild, great-grandchild, etc. 

By distribution. One of the added benefits of percolating 
histograms up the index is that queries on the distribution of 
data can effortlessly be executed so long as each histogram 
passed contains a total count of values below the histogram 
range and a total count of values above the histogram range. 

An index node, for example, that maintains counts for values 
5 ,  6, 7, and 8, would also keep a count for less than 5 and 
greater than 8. Given these two added bits of information, an 
index node knows exactly where in the distribution its values 
fall. 

A question such as “What is the minimum value in the top 
ten percent of values?” may be answered using a binary search 
of root-level index nodes. A more intelligent strategy than a 
binary search may be applied if an estimated distribution (e.g., 
normal) is provided. Alternatively, a special dis:ribu:ion node 
may be tasked with collecting the distribution from root-level 
nodes and with keeping that distribution current. 

E. Removing a High-Level Event 

Leaf-level index nodes control the insertion of data into the 
index, as they are the only nodes that directly communicate 
with storage elements. They also control storage-initiated dele- 
tion from the index using two mechanisms: explicit deletion 
and timeou:. On the one hand, since leaf-level nodes are 
responsible for propagating histograms to their parents, an 
explicit deletion requires only removing a pointer to the 
storage location of the event to be deleted and decrenienting 
the histogram bin associated with that event’s attribute value. 
Timeout deletions, on the other hand, require that a time 
stamp be maintained with each source pointer in a leaf index. 
Periodically, these time stamps are checked and, if found to be 
older than a system-defined age, are deleted. A second method 
by which index values may be deleted is search-ini:ia:ed. That 
is, a node may propagate a “delete” message for a range of 
values in the same way a search propagates. As in explicit 
delete and timeout, leaf nodes delete pointers associated with 
the value range specified. Search-initiated deletion can also be 
used to “un-task” the system from indexing mundane sections 
of the distribution. For example, if searches always tend to 
he for the top and bottom ten percent of values, there is little 
utility in expending the energy to index the middle 80 percent. 
A search-initiated deletion may contain a ‘hever again” flag to 
prevent the system from ever again indexing a desired range. 

V. SIMULATION AND ANALYSIS 

In this section we compare DFS to the quad tree, Diffusion, 
and shuctured replication using numerical simulations. All 
simulations are performed over a 1024 meter wide square 
topology. The communication costs of search and storage as 
well as bottleneck analysis are presented for 2048 node scenar- 
ios with a communication radius of 25m. Three distributions 
are considered for the event values to be indexed: uniform, 
gradient, and hotspot. For all three distributions, 2048 events 
are generated over the time interval [0,10] at uniformly random 
locations. For the uniform case, the value generated for each 
event is also random. For the gradient case, the value generated 
is proportional to the x coordinate of the event’s location. For 
the hotspot case, five peak locations are chosen at random. An 
event’s value is inversely proportional to the minimum distance 
to any one of these peak locations. 

169 



...* ................... ........ I- 

0 S I m I m m M  0 I) 7m lyl m 2% 0 I) Im 
*P.VWin *-%.win *-%.- 

(a) Uniform Dislribution (b) Gradient (c) HOU~OU 

Fig. 5 
THE COST OF SEARCH I N  TERMS OFTHE NUMBER OF PER HOP RECEPTIONS OFTHE SEARCH MESSAGE AS A FUNCTIONOP THE WIDTH OF THE SEARCH 

RANGE FOR 21148 NODES WITH A TRANSMISSION RADIUS OF 2 5 .  

(a) Uniform Dislribution 

se.w--.c- 
I- 

,- 

................................ .......... * ................................ ...... *... . * 

I" 1 2  3 1 I 6  I 8  il I O  I 2  3 1 I I I I .) 10 

P- n w  -on- 

(b) Graden1 

Fig. 6 
T H E  COMMUNICATION COST O F  STORING VALUES IN THE INDICES IN TERMS OF THE NUMBER OF RECEPTIONS OF MESSAGE AS A FUNCTION OF THE 

INTERVAL BETWEEN PROPAGATIONS U P  THE INDEX HIERARCHY FOR 2048 NODES WITH A TRANSMISSION RADIUS OF 2 5 .  

(a) Uniform Dislribution (b) Gradienl (c) Howpots 

Fig. I 
THE CDF OF INDEX NODE INVOLVEMENT IN A SEARCH. 2048 NODES WITH A TRANSMISSION RADIUS OF 25 .  

170 



Our simulations have been devised to evaluate the perfor- 
mance of our scheme for queries related to a possible range 
or distribution of values for a particular attribute of a high- 
level event. As our index was designed for range queries, we 
do not investigate the performance of our index for binary 
queries, but would expect performance results comparable to 
GHT with structured replication. 

We present the quad tree and structured replication as ex- 
amples of techniques that rely on a hierarchical decomposition 
of the sensing environment. The key difference between these 
two techniques is that the hierarchy in the quad tree forms a 
search tree in which branches may be pruned during search, 
whereas the hierarchy in structured replication forms a dis- 
semination tree whereby a query descends to all leaves. We do 
not make comparisons to GHT without structured replication 
because the single rendezvous p i n t  of GHT without structured 
replication is not suitable to range searches in networks with 
dense event generation. Finally, in our presentation of search 
costs, we also include Directed Diffusion, a technique that 
searches by flooding, as a reference. 

Diffusion's performance is directly related to the deploy- 
ment density and hence the degree of connectivity of partici- 
pating nodes. When connectivity is high, it performs rather 
poorly when compared to the other techniques because of 
its underlying nature of flooding queries, in which every 
node broadcasts once, and every neighbor of every node 
receives once for each broadcast. In our comparisons, we use 
a network that is, on average, minimally connected. We set the 
transmission radius to l j f i  where p is the density in nodes 
per square meter? 

In our simulations, all queries were for a range of val- 
ues. Queries were not constrained by geography. Search and 
storage communication cost results are given in terms of the 
aggregate number of communication hops traversed by all 
messages as a function of the query range width. 

In dense deployments, such as the ones presented in this 
section, a uniform distribution of data values results in the 
wont-case search costs for DIFS and quad tree searches 
because most searches will result in all leaves being explored. 
Figure 5(a) demonstrates that in this situation, DIFS and 
the quad tree approaches only perform better than structured 
replication for extremely narrow search ranges. DIFS, the quad 
tree, and structured replication all perform roughly an order 
of magnitude better than Diffusion. 

In the gradient case, every leaf is not necessarily explored 
by DIFS and the quad tree. Consequently, the search cost is 
less for these two techniques than structured replication for 
search ranges of less than about 20 values. In queries with 
larger search ranges, the greater dissemination costs of DIFS 

'Unicast vansmissions are assumed to require one umsmission and one 
reception per hop. Broadcast transmissions, as are used in Rmding. require 
one VansmiSsion and as many receptions as there are nodcs in me sender's 
umrmission radius per hop. Routing is assumed to be on rhc smight line path 
from sender to receiver and the number of hops fmm sender to receiver i s  
assumed to be the told sourcc Io destination dislance divided by Ule e x p l e d  
discmancc between a node and is neighbar closcsI 10 the destination. For an 
infinitely dense nerwork, Us is  just the -mission radius. 

and the quad tree dominate the total cost of search, and hence 
both are outperformed by structured replication. 

Finally, in the hotspot case we see that search tree branch 
pruning of DIFS and the quad tree lead to significant per- 
formance improvements over the non-pruning technique of 
structured replication. 

There is an enhancement to DIFS that is not presented 
in these simulations that should improve the search cost 
somewhat. Suppose there are 256 leaf nodes each holding the 
full range of values. In the current version of DIFS, a search 
over the entire value range would result in 256 query messages 
being sent, each with an average path length of approximately 
nj2, where n is the width of the network, resulting in a total 
message distance of 128n. If DIFS were to use the same 
dissemination technique as in structured replication for these 
cases, the cost could be reduced dramatically. For a trElof 
depth d, the path length for the same scenario would he +. 
Ford = 5 (as in the simulations), the message distance would 
be En. 

DIFS was designed for scenarios in which there are many 
queries relative to stores. It incurs a greater storage-related 
communication cost than non-indexing techniques because 
event values propagate to interior nodes of the tree. The 
communication cost of storing event data within indices is 
presented in Figure 6. These plots show the effect of varying 
the time between propagations of data up the hierarchy. In 
these simulations, events are generated in the network roughly 
every 0.004 seconds. These graphs show the communication 
cost of storage for intervals ranging from one to ten seconds. 
In general, both DIFS and the quad tree are outperformed 
by GHT with structured replication. The incorporation of the 
propagation delay into DIFS allows it to have storage costs 
that are better than those of the quad tree. 

One of the design goals of DIFS was to provide a load 
balanced solution to range searching. Figure 7 describes the 
cumulative distribution function of the involvement of nodes 
in search. In the uniform case, some of the nodes of DIFS are 
involved in every query. This is because most of the leaf nodes 
are involved in every search. This is also the case for the quad 
tree. The quad tree's root is also involved in every search. In 
structured replication, every node in the tree is involved in 
every search. 

The results for the gradient case show that the bottleneck 
nodes of DIFS are involved in a much smaller fraction of 
searches than in  the quad tree or in structured replication. 
The hotspots case demonstrates this result in the extreme. The 
bottleneck nodes are involved in only about one-fifth of the 
searches. 

In summary, structured replication performs best in terms of 
communication for storage. This is because beyond the initial 
registration of an event with its local leaf level mirror point, no 
additional work needs to be done to form a search tree. DIFS 
and the quad tree approach form search trees and pay for this 
tree formation up front. Queries with sufficiently constrained 
search criteria will lead to the pruning of branches in the search 
trees of both DIFS and the quad tree and will consequently 
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lead to lower overall search costs. Queries requesting the 
most of the entire range of data will result in no pruning 
and will perform no better using DIFS or the quad tree than 
using structured replication. In DIFS, when the query range 
is sufficiently constrained, the average bottleneck utilization 
is greatly reduced. In the quad tree, the bottleneck is always 
the root and its utilization is 1. In structured replication, every 
node in the tree is explored during every search. 

VI. RELATED WORK 

In the short time since sensor networks have emerged 
as an academic area of widespread research, many query 
dissemination and response architectures have been proposed 
[I], 131, [41, [51, 161, [Il l ,  [16]. Directed Diffusion is one 
publishlsubscrihe architecture for sensor networks. Standing 
queries are disseminated into the network via controlled 
flooding. Gradients are constructed for efficient reverse path 
forwarding of data. This model works best when there are 
very few queries relative to the amount of data produced by 
the network that matches them. 

Another approach is to leverage the strong spatial and tem- 
poral correlation typical of time series data. If, for example, a 
node senses warmth, then nearby nodes are likely to also sense 
warmth. Likewise, if the node is warm right now, it follows 
that it was likely warm just a moment ago. DIhlENSIONS uses 
wavelet compression to reduce data redundancy due to spatial 
and temporal correlation [6]. It produces a multiresolution 
index (or view) of data. High-level events have attributes such 
as size, shape, and lifetime that do not necessarily correlate 
well in space or time. A more generic indexing mechanism is 
therefore needed. 

The authors of TAG [11 propose a method to consmct 
a search tree to collect statistical aggregates from raw time 
series data. An imponant contribution of this work is a list 
of canonical search types for time series data with details 
of their associated properties. Our work also proposes as 
classification, but is different in that the classification is for 
high-level events. Their queries are standing and continuous 
and do not attempt to provide a mechanism for retrieving data 
created before a query is instantiated. There is no storage 
system in their scheme other than a buffering mechanism to 
collect intermediate results at nodes while data is aggregating 
and propagating toward a sink. 

In GADT, a continuous probability distribution function is 
proposed as a new object-relational abstract data type that 
models physical data as Gaussian pdfs. The focus is on a data 
representation, not on the indexing of such a representation 
[31. 

Bonnet et ai. describe the Cougar system. a distributed 
database for sensor networks [4]. They summarize character- 
istics they believe are common to all sensomet queries. The 
queries are long-running. The desired result is a series of noti- 
fications of system activity. Queries need to correlate data over 
space and aggregate data over time and often are constrained 
to a geographical region. In contrast, we address queries that 

run above the aggregators and correlators that construct high- 
level events. Consequently. their system operates on time series 
data. 

VII. FUTURE WORK 

DIFS is work in progress. As such, there are many issues 
identified for future work. Of highest priority is to implement 
DES on an experimental platform, to collect and aggregate 
real data into high-level events, and to evaluate DIFS’s per- 
formance over such events. Below is a list of other areas for 
future and continued work. 

The distribution of values stored in histograms is implicitly 
assumed to be uniform. If the distribution is known a priori, 
then the width of the histogram bins in the system should be 
adjusted to balance the storage and communication require- 
ments of all index nodes. Dynamic repartitioning when the 
distribution changes over time is a subject of future study. 

The underlying mechanism for robustness to node failure 
is that of GHT, in which data is cached along the minimum 
routing perimeter surrounding a hash location. A structured 
replication service caches data at remote locations in the 
network (in case of regional outages), and is a subject of future 
work. 

All transactions are assumed to be reliable. This is not a 
formal requirement of the system, hut is instead a starting 
point. Applications that can tolerate some degree of loss of 
data will be considered in future work. 

We also plan to investigate the construction of an index 
keyed on more than one attribute. Such a scheme might 
create separate indices for each attribute or might collect the 
various attributes into one DIFSikd-tree hybrid. Alternatively, 
n-dimensional histograms might be used for n attributes and 
would be propagated through one index. Finally, rather than 
treating attributes separately, an evaluation function may be 
disseminated to storage nodes and run over multiple attributes 
to produce a ranking that would then be indexed. 

Furthermore, it is a topic of future work to investigate how 
indexing only part of the possible range of values affects 
system performance. 

Hierarchy construction uses hashing. The resulting hash 
locations may serve directly as index storage nodes, or they 
may be index rendezvous nodes that know the current optimal 
locations of storage nodes. The latter, in effect, builds an 
overlay over an overlay and is a subject for future work. 

The search strategy presented in this paper breaks down a 
search range into component ranges that each map directly 
to an index node in the tree. For example, a query range of 
16 to 28 (with a bfact of 4) is broken down into components 
with ranges of 16-19, 20-23, 24-27, and 28-28. The query 
components are sent directly to the associated index nodes 
using independent unicasts, each with an average distance 
traveled of roughly half the network width. In cases in which 
the search range is small, and hence the covering nodes are 
higher up in the tree, each node covers a wider spatial extent, 
and consequently, fewer index nodes must be contacted to 
disseminate the search to the entire spatial extent of the query. 
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In cases in which the range width is large, covering nodes 
may live lower down in the tree and may consequently cover 
smaller spatial extents; many more messages must be sent 
to disseminate the search. At some range width, the cost of 
disseminating the query to the covering set is greater than the 
cost of dissemination using structured replication. 

Two enhancements may be introduced to improve DIFS 
search cost. The first is to route the query using hierarchical 
dissemination, as in structured replication, rather than sending 
unicast messages to each of the covering nodes. The second 
is to route to nodes in the highest tree level that will cover the 
entire query range, rather than decomposing the query range 
into a minimal covering set. 

The minimum cost of search (which is the cost of search 
when no data matches the query) should be used as a heuristic 
to determine which enhancement to use. It is a subject of future 
work to evaluate these enhancements, as well as to determine 
how the adjustment of bfacr and the number of free levels 
affect overall performance. 

VIII. CONCLUSION 
We presented an index structure for sensornets that provides 

for energy-efficient and load balanced range searches over 
previously generated high-level events. This index is designed 
to satisfy queries requesting data within a range of values or 
falling within some section of the distribution. Queries may 
be geographically constrained. 

DIFS performs best when there are many queries posed 
relative to the number of events generated, when each result set 
is small, and when the result set is not likely to be distributed 
over the network in such a manner as to be discovered by most 
leaf level search nodes. Consequently, structured replication is 
preferred when many more events are stored in the system 
than searches are posed and when at least some of the result 
set would he found via most of the leaf level mirrors. 

The quad tree described in the paper outperforms DIFS both 
in terms of the aggregate communication cost of storage and 
of search, but is not scalable to a large number of searches or 
stores. The root of a quad tree is involved in every search and 
unless a technique such as progressive resolution degradation 
or interval updating is employed, the root is involved in every 
store as well. DIFS scales well to large-scale networks by 
using a multiply rooted tree and a geographylvalue coverage 
tradeoff that balances communication overhead over many 
nodes. 

The proposed event classification and the introduction and 
analysis of the DlFS scheme, as well as the comparison of 
DIFS to structured replication and the quad tree should serve 
as an initial framework for further work in this area. 

REFERENCES 
[I1 Samuel R. Madden, Michael 1. Franklin, Joseph M. Hellerstein, and Wei 

Hong. TAG: (I Rny AGgregation Service /or Ad-Hoc Sensor Nenuorks. 
OSUI, 2002. 

121 Joseph M. Hellenrein. Michael I. F d i n ,  Sirish Chandrasek-, Amol 
Ueshpande, Kris W i l d " .  Sam Madden, Vijayshankar Raman, Mehul 
Shah. Adoprive Query Pmcersing: rechMlogy in Evolurion IEEE Dam 
Engineekg Bulletin 23(2): 7-18, 2000. 

131 Anlon Faradjian, I. E. Gehke, and Philippe Bonnet. GADP A Pmbobility 
Space ADT For Keprescnring and Querying the Physical World To appar 
in Roceedings of.the 18lh lnemationd Conference on Dam Engineering 
(ICUE 2002). San Jose, California, February 2002. 

(41 Philippe Bonnel, 1. E. Gehke, and Praveen Seshadn. Towardr Sensor 
Database Systrms. In b e e d i n g s  of the Second International Conference 
on Mobile Dala Management Hong Kong. January 2001. 

[5]  Philippe Bonnet. I. E. Gehrke, and PPdveen Seshadn. Querykg the 
Physicol World IEEE Personal Communications. Spsial  Issue on Smm 
Spa- and Envimnments. Vol. 7. No. 5. pp. 10-15. Oclober 2W. 

(61 D q a k  Ganesan, Deborah Esvin, John Heidemann, DIMENSIONS: Why 
do we need (I new Doto Hondling archirectum for Sensor Networks? To 
Appear in Firs1 Workshop on Hot Topics in Networks (Hotnets-I). October 
2002. 

171 Badn Nath and magm Nieulem. Routing on Y Curve To appear in First 
Workshop on Hot Topics in Networks (Homets-I), October 2002. 

[ X I  I. Kubiatowicr, U. Bindel, Y. Chen, P. Eaton, D. &Is, R. Gummadi, S. 
Rhea, H. Weatherspoon, W. Weimer, C. Wells. and B. Zhao. Oceanstore: 
An orchitccrure /or global-scale persistent Stomge. In R d n g s  of 
ACM ASPLOS. ACM. November 2000. 

[9l A. Rowslon and P. h s c h e l .  Sromgc mnnngemsnt and caching in past, 
a large-scale, persisten! pear-to-peer stomge utility. In 18th ACM SOSP. 
volume 1, Lake Louise, Canada, October 2001. 

[IO] Shenker, S., Ramasmy, S., K q .  B., Govindan, R.. and Esuin, U.. Dota- 
Centric Storage in Sm$omem. To appear in the Firs1 ACM SIGCOMM 
Workshop on Hot Topics in Networks (HolNee 2002). Princeton, NI, 
October, 2002. 

[ I l l  Ramasmy, S., Karp, B., Kn, L., Yu, F.. Esuiin. U., Govindan, R., and 
Shsnker, S.. GHT A Geographic Hash Table /or Dota~Cenrtic Sroroge. 
First ACM lnremationd Workshop on Wireless Sensor Networks and 
Applications (WSNA 2002). Atlanlq CA. September. 2002. 

1121 I. Hill. R. Snnvctyk, A Woo, S. Hollar, U. Culler. and K. Piser. 
System orchilecture directions for neworked senron. In R d i n g s  of 
ASPLOS-IX, pp. 93 104. Cambridge. MA, USA, November 2000. 

[I31 W. Adjie-Winoto, E. S c h w m .  and H. Balakrishnan, 7he Dcrign Md 
lmplemenrotion of an lnlentional Naming System. In b e e d i n g s  of the 
Symposium on Operating Systems Principles, pp. 186-201. Charleston. 
SC, USA. Dec. 1999. 

1141 A. Cerpr. I. Elson, D. Esuin, L. G d .  M. Hamilton. andl. Zhao, Hobi- 
fat monitoring: application driver for wireless communicorion techlogy  
In 2001 ACM SIGCOMM Workshop on Uala Communications in Latin 
America and the Cacibbean, Cos- Rica, Apr. 2001. 

[IS]. J. Heidemann. F. Silva, C. Inmagonwiwal, R. Govindan. U. €shin. 
and U. Gannesan. Building cflcimt wireless sensor nenuorh with low- 
lwei naming. In Proceedings of he Symposium on Operating Systems 
Principles, pp. 146-159, Banff, Albella, Canada Ocf. 2001. 

(161 C. Intanagonwiwat, R. Govindan, and D. Esuiin, Direcred dt@sion: Y 
scaloble and mburf commmicorion pomdigm for  enso or unuorks. In 
Praceedings of the SUlh Annual ACMnEEE lntmational Conference 
on Mobile Computing and Networking (Mobicom 2OW). Boston, MA. 
USA, Aug. 2 W .  

[I71 J. M. Kahn. R. H. Katr and K. S. I. Pisrer. Mobile nerworkingforrman 
dust. In ACMnEEE Intl. Conf. on Mobile Computing and Networking 
(MobiCom 99). Seattle, WA, USA. Aug. 1999. 

[I81 B. Karp and H.T. Kung. GPSK: greedy perimeter mtnreless mUIing/or 
wireless nenuorh. In Roceedings of the Sixth Annual ACMnEEE Inter- 
national Conf-ce on Mobile Computing and Networking (Mobicom 
2000). Boston, MA, USA. Aug. 2W. 

1191 S. Kumar, C. Alaeltinoglu. and U. Esuiin, Scaloble objccl-lmcking 
thmugh unattended techniques (SCOOT). In Pmceedings of the 8th 
lntemational Conference on Network Rolocols (ICNT), Osaka, Japan. 
Nov. 2000. 

[ZO] 1. Li, 1. Jannotti, D. M a u t a ,  D. K q e r ,  and R. Morris. A scnlnble 
bcnrion service /or geographic adhoc muting. In Roceedings of the 
Sixth Annual ACMmEE lnlemalional Conference on Mobile Computing 
and Networking (MohiCom 2000) Boslon. MA, USA. Aug. 2000. 

[Zll  G. Pottie and W. Kaiser, wireless integrated nenuork smsor$. Commu- 
nications of the ACM, 2000. 

1221 T. Schoellhammer, Disftibured Portem Matching in Sensor Nenuorks. 
Poser CENS Opening Ceremony, October 2002. 

1231 U. Eru'in, R. Govindan. J. Heidemann, and S. Kumar, Nen Cenfury 
Challenges: Scnloblc Coodinotion in Senror Nenuorh. In Proceedings 
of the Fifth Annual lnlemafional Conference on Mobile Computing and 
Nelworks (MobiCom 1999). Seattle, Washington. August 1999. 

173 


