
DIFS: A Distributed Index for Features
in Sensor Networks

Benjamin Greenstein*, Deborah Estrin’, Ramesh Govindant, Sylvia Ratnasamyj, and Scott Shenkers
*Department of Computer Science, University of California at Los Angeles, email: {ben,destrin}@cs.ucla.edu

tDepartment of Computer Science, University of Southern California, email: ramesh@usc.edu
h e 1 Research, Berkeley, email: sylvia@intel-research.net

§International Computer Science Institute, email: shenker@icsi.berkeley.edu

Abstract-Sensor networks pose new challenges in the collec-
tion and distribution of data. Recently, much attention has heen

approach to storing time series data is to have all sensing
nodes feed their data to a central rewsitow external to

over time series data, we consider searches over semantically rich
high-level events, and present the design, analysis, and numerical

cant energy expenditure fO send every Sensor reading to an
external site. Furthermore, links near a gateway to an external

by that node.

1. INTRODUCTION

There has heen considerable interest recently in research in
wireless sensor networks, a technology that promises analysis
of and interaction with the environment at spatial and temporal
densities not possible using conventional approaches. The
nodes in such networks are equipped with sensors, local
storage, CPUs and radio communication facilities, allowing
them to both sense the local environment and communicate
locally with other sensors in order to construct semantically
rich conclusions about the environment that they are sensing,
such as detecting the presence of animals, or of hotspots, or
of other “events” [121, (151, [161, [231.

The primary resource constraint of nodes in such networks
is energy. Nodes are expected to he long-lived (deployed
not for hours, but for years), untethered (both in terms of
communication and power), and unattended (and so must be
self-configuring and self-adapting). Energy must be carefully
budgeted and conserved, so all sensomet algorithms must
minimize energy use. The primary energy consumer in such
systems is radio transmission. For one scenario, Pottie and
Kaiser explain that the cost of transmitting 1Kb a distance of
100 meters is approximately equal to the cost of executing
three million CPU instructions [21]. Furthermore, the cost of
reception in these systems is often almost as much as that of
transmission.

Sensornets collect a tremendous amount of detailed time
series data about the environment. As sensornet research and
experience has accumulated, many different approaches for
accessing this data have heen proposed. The conventional

8 7 8 0 3 - 7 8 7 9 - 2 / 0 3 6 1 7 . W ~ 2 ~ 3 I€€€.

generation.
One approach to retrieve this stored data is to flood a query

to all nodes that could potentially have suitable data, and have
them send their response to the (perhaps external) querying
node. In such an approach, data is sent when (i.e., in response
to an actual query) and where it is required. Some queries will
originate within the sensornet itself, and in that case it makes
little sense to send the data to an external site only to have
it shipped back to the internal querying node. Furthermore, if
far more data is collected than is actually required to answer
queries, then this local storage approach results in significant
energy savings.

There are two extensions of this approach that lead to fumher
energy savings. First, the data can be processed, aggregated,
andor pruned as it propagates toward the query sink. The
authors of Directed Diffusion, TAG, and others describe par-
ticular forms of in-network aggregation and pruning of data
that can select relevant data and produce statistics such as
medians, averages or maximums [16], [I]. This approach uses
“data-centric” routing in that queries are not directed towards
individual nodes, but rather are stated only in terms of the
desired data. Second, the data can be processed locally to
identify high-level “events” that are of interest. These events
can refer directly to sensor readings, such as areas of relatively
high temperatures, or to the conclusions of rather sophisticated
identification algorithms, such as animal or vehicle sightings.
In either case, the queries are directly for such events, and the
responses contain summarized data about such events. Here,
too, the routing is data-centric, but the queries (and responses)
deal with higher-level abstractions.

These energy saving extensions reduce the energy required
to respond to queries, but do not alter the basic ”flood-then-
respond” approach which incurs an inherent cost of flooding

163

mailto:ben,destrin}@cs.ucla.edu
mailto:ramesh@usc.edu
mailto:sylvia@intel-research.net
mailto:shenker@icsi.berkeley.edu

each query to all nodes (or at least to all nodes that could
possibly have relevant data). If the rate of queries is relatively
high, this expense can he substantial.’

In contrast, the “data-centric storage” (DCS) approach,
proposed in [IO], avoids the flooding of queries. All events
are named, and then stored at a network location based on the
name. Queries for that particular kind of event are routed to the
appropriate network node, where the relevant data (or pointers
to that data) can be found. Storing the data by name provides
a logical rendezvous mechanism between data and queries so
that queries need not be flooded. GHT [I 11 describes a specific
solution to achieving DCS in which event names are hashed
to geographic locations and stored at the node closest to the
hashed location. For improved efficiency and load balancing.
GHT proposes structured replication in which a rendezvous
point is replicated so that events can be stored at, and retrieved
from, the rendezvous point closest to the detecting node.

While the basic idea of data-centric storage is quite general,
the original instantiation was binary in the sense that it
was limited to reporting whether a certain high-level event
had occurred. If the events had additional attributes, such
as temperature or humidity, one had no way of efficiently
scoping the request based on the values of these attributes.
For example, to discover only those event Occurrences that
recorded a temperature between 50 and 60 degrees, one had
to query each of the replicated rendezvous points individually,
instead of querying only the relevant rendezvous points.

In this paper, we extend the data-centric storage architecture
to efficiently support range queries-that is, queries where only
events with attributes in a certain range are desired. DIFS, our
proposed distributed index, provides for low average search
and storage communication requirements and seeks to balance
these requirements over participating nodes.

Note that DIFS, like GHT, is well-suited to scenarios where
the nature of some archetypal high-level events is well-defined.
In such cases, efficient index structures (such as DIFS) may
he applied that save on communication overhead since only
data about high-level events is communicated rather than the
lower-level time series data from which events are composed?
However, when the notion or type of events is not yet clearly
defined, alternate search mechanisms may be required. For
example. a protocol such as DIMENSIONS [6] also relies on
the placement of data within the sensomet and the use of data-
centric rendezvous points but, unlike DIFS, works with lower
level sensor readings. DIMENSIONS takes time series data
as input and compresses it while retaining significant features.
This compressed data is then stored within the sensomet to
produce a multiresolution map. Such maps allow users to drill
down into areas that appear to contain significant phenomena
without requiring a pre-defined notion of what constitutes such

‘However. if the queries are relatively few, and the &sued data streams are
long-lived (such as moniloring the tempenlure readings in a local hotspot),
then this approach is reasonably efficient.

*USRS can always retrieve low-level readings by having each event n o 6
fication include the event’s location, so thal 10 gather &miled data one need
only dawnland the d i n g s fmm the relevant S ~ ~ S O R .

phenomena.
We describe events and provide a classification of their

properties in Section 11. Section I11 describes the rationale
behind the design of DIFS. Section IV discusses one pos-
sible index on event data. Section V demonstrates the DIFS
model. In Section VI we describe other ongoing projects. VI1
discusses the path ahead and Section VI11 concludes our paper.

11. EVENTS AND QUER~ES

The authors of TAG describe how time series queries can
be categorized [I]. They classify the partial state of the query
as distributive, algebraic, holistic, unique, or context sensitive.
They separate those queries that are duplicate sensitive from
those that are not; those that are exemplary from those that
are summary; and those that are monotonic from those that
are not. We seek to provide a similarly detailed categorization
of range queries for high-level events, and provide four query
categories.

A. High-Level Evenrs

High-level events, such as a hot region or a target detection,
a map, a histogram, or a contour, can be described in a number
of ways. We propose adding new data structures to store high-
level data abstractions to the simple attribute types provided by
Diffusion. Like Diffusion, such abstractions would be defined
system-wide at deployment time. Such abstractions would
include vectors, maps, histograms, parametric equations, and
n-degree functions. It is our intention that individual attributes
describing a high-level event would be indexed using our
system. Although the queries we address in this paper are
for ranges and distributions, future work should do a more
careful investigation of the tradeoffs between this and other
approaches for range and binary queries.

B. Classification of Event Pmperfies and Relurionships

The classification proposed in this section has primarily
been designed with attribute range and distribution queries
in mind. It is for future work to investigate how it might he
extended to apply to detections (as in GHT) and other domains.

The goals of a system directed at binary events like “ele-
phant sightings” are different from our goals of providing
range searches over events that are each comprised of attributes
with values. The fundamental goal of a search over binary
events is to determine the locations of such events. When
such events are rare (i.e., the ratio of events generated to
nodes that are capable of generating events is low), it is much
more energy-efficient to construct a rendezvous point where
events could register and queries could search than to flood a
search. Events defined by attributes with values that fall within
a specified range are by definition less common. For example,
there may be many hot regions in a network, but few with a
heat gradient with a slope greater than s. For this reason we
develop a new method to support range queries efficiently. This
paper proposes mechanisms to run on top of GHT to address
range queries, for which GHT alone was not intended.

164

1 TABLE I
EVENT PROPERTY A N D RELATIONSHIP CLASSIFICATION

data and duration and size of over time
an event and space

We propose the following classification of the properties of

Sensor value(s). This category includes raw sensor values
that comprise high-level events, as well as composite
measurements and summaty statistics such as average,
median, maximum, standard deviation, etc. Some exam-
ples of sensor values are the peak temperature of a hot

and relationships among high-level events:

Fig. I
ASTORAGEANDSEARCHARCHITECTURE.

as in "return a region that has moved more than 10 feet
in the last hour and has become elongated,., Such queries
can be evaluated in a straightforward manner using simple

can be disseminated to generate ranked results for top-k
queries. A user might be interested, for example, in large high
temperature regions, but heat might be more important than
c:*p

region, the radiation flux density in the area of a sunfleck,
the variance in direction of a gust of wind, and the speed
at which an animal target is moving. Searches for sensor

the distribution. Sensor values are typically represented
as integers or floating point numbers. . Timing parameters. Often it is not enough to know a
particular value for a region, but it is integral to know

values may either be Over a designated range or section of comparators, complex evaluation functions

l.*b_
how this value varies over time. For example, one might
care about a hot region that has been hot for some period
of time, or that has increased in temperature over time,
Or that has moved above a minimum 'peed for a period

C. The Big Picture
Before delving into the details of our index protocol, we

describe where such an index fits into the bieeer oicture of a
of time,
Spatial dimensions (including shape and size). This
refers to the physical shape and location of an event.
Some examples of queries over spatial dimensions in-
clude hot regions larger than a given m a , elongated
beyond a certain ratio, with a primary hot ridge greater
than a certain length, or with some defined curvature.
Regions can he described as enclosing circles, ellipses,
or polygons. Their centers or other points of interest can
be represented in integer or floating p i n t coordinates [7]. . Relationships between events. Finally, there are rela-
tionships between events. In the spatial domain, this
translates to proximity or intersection. Is, for example,
an area of high CO2 concentration also an area of bright
sunlight? Is the event of an animal detection near other
events of animal detection? In the temporal domain, this
translates to succession and temporal separation. Did an
area of high CO2 concentration come about immediately
after bright sunlight? Is the hottest region in the sensing

-- .
storage and search architecture for sensor networks.

Sensor nodes typically generate time series data. This data is
locally processed by statistical and pattern recognition engines
to generate high-level events. These events, in turn, are stored
locally where they are created, and information about their
various attributes is inserted into indices. A human user or
interested automaton (a sensor node or actuator) poses queries
to these indices. Query results then are found in the indices
themselves, at the storage nodes, and possibly, when high-
level event descriptions are not complete, even at the nodes
that generate time series data.

Figure I describes the high-level relationships among the
components of the storage and search architecture for sensor
networks that is briefly described above.

In terms of event generation and search, nodes serve two
functions. First, all nodes in the network may be used to store
raw time series data and events. Second, a subset of nodes
serve as index nodes to facilitate search.

environment at the same time also the driest? 111. APPROACH
This classification serves as a logical base for potential

queries of high-level events. Of course, there are often cases
in which these classes are used in combination as in, "Did
the hot region change shape over time?" and "Did the peak
temperature of the region move location?" or composed,

Since DIFS builds on top of GHT, we hegin with a brief
description of GHT in Section 111-A explaining its limitations
when used for range queries. In Section 111-B, we use a quad
tree as an example of how range queries might be achieved
using a traditional hierarchical search structure. The limitations

165

IoP ; o

0 : o ; * 10
0, 0 ; o : o o , o 10

10.01 lIWP, . mo,po*,: ,,>I

0 Irallnamrpbts ,i33,,,,53,153.53)

Imd 2 aimrpooln 12831 13.281 lX21 ~31153381 OBZBl
r3.70,28531 (28,781 m.531 w.18m,a,

Fig. 2
EXAMPLE OF STRUCTURED REPLICATION WITH A 2-LEVEL

OECOMPOSLTION.

of GHT and the quad tree motivate the design of DIFS. We
end this section with a quick overview of the DIFS search
structure in Section 111-C.

A. GHT: A Geographic Hash Table
GHT provides a key/value-based distributed index. Events

are named with keys. Both the storage of an event and its
retrieval are performed using these keys. In GHT, a key is
hashed to a geographic position: geographic routing is used
to locate the node closest to this position, which then stores
the data associated with that key and, in general, acts as the
rendezvous node for that key.

By hashing keys, GHT spreads the load due 10 different
keys evenly throughout the sensomet. When many events with
the same key are stored, GHT avoids creating a hotspot of
communication and storage at their shared rendezvous node
by employing structured replication. whereby data for a single
event is divided among multiple mirrors. Structured replication
uses a hierarchical decomposition of the geographic space
similar to that used in GLS [ZO]. Let us say that an event
name hashes to a geographic location T , which acts as the
root for that name. Given T and a hierarchy of depth d, one
can compute 4d ~ 1 mirror images of T. For example, Figure 2
shows a d = 2 decomposition, and the mirror images of the
root point (3,3) at every level.

Now, an event is stored at the associated mirror that is
closest to the detecting node. Queries, however, must now be
routed to all mirror nodes3, thus trading off lower communi-
cation costs for the storage of events versus more expensive
querying.

In GHT, keys are event names and hence range queries
over the values associated with an event are not efficiently
supported though only a small fraction of event occurrences

3Geographically rcaped queries need only be disseminated to the subat of
nodes h a t e d within the spatial extent specified in the search milcia.

might actually fall within the specified range, such queries
would still have to visit every mirror node. While it might
seem like an obvious fix would be to propagate summary
information towards the root node while aggregating at mirror
nodes along the way, this results in a hotspot at the root node
since all range queries must traverse through the root. (This
problem of overloading root nodes in tree-based hierarchies is
discussed in greater detail in the following section.)

B. Simple Quad Tree Appmach
Perhaps the simplest approach to indexing values in a

sensor network is to build a spatially distributed quad tree
of histograms. A root index node maintains four histograms
describing the distribution of data in each of four equally sized
quadrants of the network. Each quadrant, in tum, maintains
histograms for each of four subquadrants. In such a manner,
an index tree is formed in which a parent node covers exactly
four times the network area of each of its children. In this
approach, data events are assumed to be stored locally at or
near the node(s) that created them.

The simple quad tree approach differs from the hierarchical
decomposition of structured replication in three aspects. First,
a quad tree forms a search tree over events. Branches of
the tree may be pruned during search if descending them
would not add to the result set. Structured replication does
not propagate information about event detections to the root.
Therefore branches of the search tree can never be pruned
and therefore all searches must descend to all leaf nodes.
Second, the leaf and internal nodes in structured replication
are derived from the event key and hence parent nodes need
not explicitly point (i.e., know the precise node address 00
to its children. This makes a structured replication hierarchy
more robust and easier to maintain. Finally, each parent in
a quad tree has four children, one for each quadrant of the
area the parent covers. Each parent in structured replications
has three children. The parent itself serves to cover the
fourth quadrant. Like structured replication, DIFS uses hashing
to define its hierarchical structure; like a quad tree. DIFS
maintains histograms at each internal node in the hierarchy,
describing the values found for an event attribute in the region
an index node covers.

Quad trees allow for efficient searching since the histograms
can direct queries to only the relevant nodes. However, two
problems arise when applying hierarchical search trees, such
as a quad tree. to a distributed and energy-constrained setting.
First, every time data to be indexed is generated anywhere in
the network, that information must be propagated to the root.
Since all data must be propagated to the root and all queries
originate from it, the root handles significantly more traffic
than any other node. This problem can be partially alleviated
by caching data changes in intermediate level nodes and only
propagating such information toward the root periodically.
Note that this problem does not apply to structured replication
since in that scheme, event detections are not propagated to the
root. Second, every query over the entire spatial domain must
originate with the root. If only a few queries are to be posed,

166

this might not be a problem. Imagine, however, a network
of thousands of actuators each capable of inserting multiple
queries. The one-root approach clearly is not scalable to such
a situation.

As outlined in the following section, DIFS achieves ef-
ficiency by using histograms but avoids the load balance
problem by avoiding the use of a single tree-based hierarchy.

C. DIFS overview
DIFS extends GHT to support efficient range queries while

maintaining balanced load across nodes. DIFS achieves this by
constructing a multiply rooted hierarchical index that differs
from traditional binary and quatemary trees in that non-root
nodes can have multiple parents. Nodes store event informa-
tion for a particular range of values detected within a particular
geographic region. Higher-level nodes cover smaller value
ranges detected within large geographic regions while lower
level nodes cover a wider range of values from within a smaller
geographic region. The key idea behind the construction of this
hierarchy is to incorporate (in addition to the event name) the
value of an event, as well the location of the detecting node in
determining the storage node for that event occurrence. Using
this index, DIFS can efficiently support range queries, queries
related to the distributions of values in space and so forth.

We include the quad tree in our performance evaluation to
serve as an example of a conventional hierarchical approach.
Our evaluation also covers structured replication.

IV. DISTRIBUTED INDEXING OF HIGH-LEVEL EVENTS
DIFS was created with the following design goals in mind:

Even at the cost of a modest increase in overall traffic, a
sensor network search solution should he load balanced
both in terms of message traffic and storage. Hierarchical
approaches that drill down through search trees are useful
in general, but have limitations for sensor networks. The
root of any such tree becomes a communication bottle-
neck, receiving the full brunt of search communication.

s Searches for data by name, value range, and location
should be communication-efficient and fast.
The solution should also allow for efficient answers to
queries on the distribution of data, such as “Is my event’s
flux density in the top 10 percent of values seen?”
Transactions should be reliable.

A. DIFS Design
DIFS was designed to provide the search efficiency of

a quad tree in a manner that balances communication load
across the index. Like GHT, DIFS uses a geographical hash
within a hierarchically decomposed key space. Like a quad
tree, it constructs a search hierarchy of histograms. Unlike
the single-tree hierarchies of structured replication and quad
trees, in DIFS each child has bfact parents, where bfacr
= 2“,i 2 1. Moreover, the range of values a child maintains
in its histograms is bfacr times the range of values maintained
by its parents. That is, nodes in a DIFS hierarchy all have the
following defining property: The wider the spatial extent an

Fig. 3
A N ILLUSTRATION O F T H E DIFS HIERARCHY.

index node knows about, the more constrained the value range
it covers.

To make this idea more concrete, consider a high-level
event with an attribute called $U densify, which represents
the radiation flux density of an instance of this high-level
phenomenon. It is known perhaps that the flux density of
such a phenomenon has never been recorded above 255 and is
always at least zero. Suppose an event is detected and a flux
density of 57 is to be recorded in the index. In a DIFS, this
value would be stored in a local leaf node covering a value
range of 0 to 255. It would also be stored in a parent of the
leaf that covers a range of 0 to 63, in a grandparent covering
48 to 63, and in a great-grandparent with a value range of 56
to 59. The geographic area the parent covers is four times that
of the leaf. The area covered by the grandparent is four times
that of the parent and the area of the great-grandparent is four
times that of the grandparent, and perhaps covers the entire
spatial extent of the network.

To ensure a balance of communication load over the net-
work, the range of values that an index node knows about is
inversely related to the spatial extent the node coven. Rather
than having one query entry point, as in the root of a quad
tree (as will be shown in subsection IV-D), DIFS searches may
originate at any nodes in the tree, including those below the
root level. Query entry points are selected in accordance with
both the spatial extent, as well as the range of values requested
in the query.

To build this hierarchy, a node storing an event forwards
information first to the local index node with the narrowest
spatial coverage but covering the widest value range. This
index node then forwards a histogram describing the values
it has seen to a node with wider spatial coverage but narrower
value range, and so on and so forth. The convention by which
index nodes are selected is similar to that of GHT in that
a geographical hash function is used. However, rather than
hashing to any location in the network, the DIFS hash function
limits its output to the area that a node in the hierarchy is to
cover. Specifically, the DIFS hash takes a source location, a
string of characters to hash, and a bounding box, and produces

167

Fig. 4
A GEOGRAPHICALLY BOUNDED HASH FUNCTION.

a location. The smaller the hounding box, the more high-
order hits of the source location that are included in the
output location. The expected distance of an index node from
the event source node increases as one progresses up the
hierarchy. In particular, the expected distance from a node to
its parent is one half the expected distance from its parent to
its grandparent.

B. Geogi-aphically Bounded Hash

The DES indexing method requires the use of a geograph-
ically hounded hash function that takes as input a location, a
key, and a hounding box. and returns a location within that
box. Our geographical hash has the same functional form as
the geographical hash used in structured replication.

To simplify index construction and to provide a convention
for index node selection, the partitioning of the network must
be regular. The network is assumed to he rectangular and
is divided into four quadrants of equal size. Each quadrant,
in turn, is again divided into equal sized suhquadrants. This
process is repeated as many times as there are levels in the
index hierarchy.

As a consequence, the hounding box given as input to
the hash function must exactly describe a quadrant for some
desired level in the hierarchy. Assuming an origin of (0, 0) at
one comer of the network, the starting x and y coordinates of
the hounding box must he integer multiples of the box’s width
and height, respectively.

The output of the hash function is a pair of coordinates
somewhere within the hounding box that is supplied as input.
To achieve this, first a hash location (xh,yh) is generated that
falls somewhere within the network at large. Two separate hash
functions are used to generate the output x and y coordinates
respectively. Them high-order hits common to all points in the
input hounding box and enough low-order bits of (xint, yint)
to produce a valid pair of coordinates are concatenated. The
value of m is dependent on the level in the DIFS for which
an index node is sought.

For example, if the box is bounded by (0.0) and (15,151 and
coordinates are one byte each, the four leading zeros common
to all points in the bounding box are combined with the four
low-order bits of the hash results to produce a hash location
within the box.

C. lnsening a High-Lwel Event
Suppose potential query sinks are interested in the flux

density attribute of various events. Below, we describe how
an event containing this attribute will register itself with a
DIFS index.

The first step in registering this event is to compute a
geographically hounded hash on the concatenation of the
attribute name and the range of values held by a local leaf
index node. A character delimiter such as a colon is inserted
between the name and each value to avoid ambiguity. Recall
from Section IV-B that such a hash produces a location within
a specified hounding box. This first hounding box has the
dimensions of the system-specified minimum coverage region
of an index node. For example, if the network has a length
I and a width w and the DIFS is to have h levels. then the
width and height of the minimum bounding box are l/2h-1
and ~ / 2 ~ - ’ respectively.

As in the quad tree, the node storing the event sends a
message containing the location where the event is stored and
the value for flux density to the geographically closest leaf-
level index node, which in turn stores the flux density and a
pointer hack to the storage node. In practice, this leaf-level
node is the node geographically closest to the result of the
hounded geographical hash function.

Recall quad tree nodes each have one parent. DIFS nodes
have bfaci parents. Periodically (the interval is system-
defined), the leaf forwards information it maintains as a
histogram to bfact parents that each are responsible for main-
taining information for l lbfact the values of the leaf. While
these parents each hold information on l l b f a d of the values,
they cover four times the spatial extent of a leaf. Consequently
such parents each have four children.

Again periodically, parents forward information in the form
of histograms to grandparenu, and grandparents forward to
great-grandparents until nodes covering the entire spatial ex-
tent of the network are reached. Every node except the leaves
has exactly four children and every node except the roots has
exactly bfact parents. A parent covers four times the spatial
extent of each of its children. A child covers bfacr times the
value range of its bfact parents.

Suppose an event has been found in the vicinity of geo-
graphical coordinates (14, 37) and has a flux density of 57.
Also, for the time being, suppose nothing is known a priori
about the expected distribution of flux density other than that it
always falls in the range [0-255]. Let the minimum hounding
box have a width of 8 units. The hash will first he called
with the key “flux density:O255” and will return a location
somewhere in the bounding box defined by the corners (8,321
and (15, 39). A message containing the string “flux density”,
the coordinates (14, 37), and the value 57 will he sent to a
leaf-level (level 0) index node.

Suppose for the moment that this is the only instance of an
event in the system with a flux density attribute and that bfact
= 2. The level 0 leaf index node will forward a histogram
containing counts for values 0 to 127 to a level 1 index
covering the region (0, 32) to (16, 47). The level 1 nodes

168

will in turn forward a histogram containing counts for values
0 to 63 to a level 2 node covering the region (0, 32) to (32,
63). This process is continued until the value is forwarded to a
node covering the entire network. Each index node at levels I
and above stores four histograms, one pointing to each of the
composite lower-level index nodes. The level 0 indices point
directly to storage nodes.

D. Querying for a set of events
Queries over a DIFS may be described by value range or

by range in the distribution. Both types of queries may be
constrained geographically.
By value. A user might be interested, for example, in flux

densities ranging from 47 to 68. This query is decomposed
and forwarded to those nodes that can service.the query in the
following manner. <

As in the previous sections, let bfac: be the factor by which
the range of index values is decreased as one progresses up
the index hierarchy. That is, if a level 0 node has a range of
256 values and bfac: is 2, then a level 1 node will have a range
of 128 values. If bfac: is 4, then a level 1 node will have a
range of 64 values.

The decomposition of the query selects the smallest number
of nodes that exactly covers the query range. Suppose we have
a bfac: of 4 and a square network of width 128 with minimum
index coverage of width 8 and a range of values between 0 and
255. Each level 0 leaf node covers 256 values over a width of
8, each level 1 node covers 64 values over a width of 16, each
level 2 node covers 16 values over a width of 32, each level
3 node covers 4 values over a width of 64, and each level 4
node covers 1 value over a width of 128.

The minimum set of index nodes exactly covering this range
is: . One level 4 node for value 47 . One level 2 node for range [48-631

One level 3 node for range C64-671
One level 4 node for value 68

Using the same hash function as in storage, the query will
start at these index nodes and propagate down to any events
that satisfy this query.

Over space. In the previous subsection, the search was
conducted for a range of values over the full spatial extent
of the network. DIFS handles location criteria specified by
a bounding box as well. The straightforward approach to
geographically constraining a query is to parse the initial
search range as was done above, but to send the query only to
those index nodes that cover any pan of the geographical range
of interest. If any of these nodes covers no more of the region
of interest than one of its children, we use the child instead.
If we use the child, we make the same test recursively, to use
the grandchild, great-grandchild, etc.

By distribution. One of the added benefits of percolating
histograms up the index is that queries on the distribution of
data can effortlessly be executed so long as each histogram
passed contains a total count of values below the histogram
range and a total count of values above the histogram range.

An index node, for example, that maintains counts for values
5 , 6, 7, and 8, would also keep a count for less than 5 and
greater than 8. Given these two added bits of information, an
index node knows exactly where in the distribution its values
fall.

A question such as “What is the minimum value in the top
ten percent of values?” may be answered using a binary search
of root-level index nodes. A more intelligent strategy than a
binary search may be applied if an estimated distribution (e.g.,
normal) is provided. Alternatively, a special dis:ribu:ion node
may be tasked with collecting the distribution from root-level
nodes and with keeping that distribution current.

E. Removing a High-Level Event

Leaf-level index nodes control the insertion of data into the
index, as they are the only nodes that directly communicate
with storage elements. They also control storage-initiated dele-
tion from the index using two mechanisms: explicit deletion
and timeou:. On the one hand, since leaf-level nodes are
responsible for propagating histograms to their parents, an
explicit deletion requires only removing a pointer to the
storage location of the event to be deleted and decrenienting
the histogram bin associated with that event’s attribute value.
Timeout deletions, on the other hand, require that a time
stamp be maintained with each source pointer in a leaf index.
Periodically, these time stamps are checked and, if found to be
older than a system-defined age, are deleted. A second method
by which index values may be deleted is search-ini:ia:ed. That
is, a node may propagate a “delete” message for a range of
values in the same way a search propagates. As in explicit
delete and timeout, leaf nodes delete pointers associated with
the value range specified. Search-initiated deletion can also be
used to “un-task” the system from indexing mundane sections
of the distribution. For example, if searches always tend to
he for the top and bottom ten percent of values, there is little
utility in expending the energy to index the middle 80 percent.
A search-initiated deletion may contain a ‘hever again” flag to
prevent the system from ever again indexing a desired range.

V. SIMULATION AND ANALYSIS

In this section we compare DFS to the quad tree, Diffusion,
and shuctured replication using numerical simulations. All
simulations are performed over a 1024 meter wide square
topology. The communication costs of search and storage as
well as bottleneck analysis are presented for 2048 node scenar-
ios with a communication radius of 25m. Three distributions
are considered for the event values to be indexed: uniform,
gradient, and hotspot. For all three distributions, 2048 events
are generated over the time interval [0,10] at uniformly random
locations. For the uniform case, the value generated for each
event is also random. For the gradient case, the value generated
is proportional to the x coordinate of the event’s location. For
the hotspot case, five peak locations are chosen at random. An
event’s value is inversely proportional to the minimum distance
to any one of these peak locations.

169

...* I-

0 S I m I m m M 0 I) 7m lyl m 2% 0 I) Im
*P.VWin *-%.win *-%.-

(a) Uniform Dislribution (b) Gradient (c) HOU~OU

Fig. 5
THE COST OF SEARCH I N TERMS OFTHE NUMBER OF PER HOP RECEPTIONS OFTHE SEARCH MESSAGE AS A FUNCTIONOP THE WIDTH OF THE SEARCH

RANGE FOR 21148 NODES WITH A TRANSMISSION RADIUS OF 2 5 .

(a) Uniform Dislribution

se.w--.c-
I-

,-

................................ * *... . *

I" 1 2 3 1 I 6 I 8 il I O I 2 3 1 I I I I .) 10

P- n w -on-

(b) Graden1

Fig. 6
T H E COMMUNICATION COST O F STORING VALUES IN THE INDICES IN TERMS OF THE NUMBER OF RECEPTIONS OF MESSAGE AS A FUNCTION OF THE

INTERVAL BETWEEN PROPAGATIONS U P THE INDEX HIERARCHY FOR 2048 NODES WITH A TRANSMISSION RADIUS OF 2 5 .

(a) Uniform Dislribution (b) Gradienl (c) Howpots

Fig. I
THE CDF OF INDEX NODE INVOLVEMENT IN A SEARCH. 2048 NODES WITH A TRANSMISSION RADIUS OF 25 .

170

Our simulations have been devised to evaluate the perfor-
mance of our scheme for queries related to a possible range
or distribution of values for a particular attribute of a high-
level event. As our index was designed for range queries, we
do not investigate the performance of our index for binary
queries, but would expect performance results comparable to
GHT with structured replication.

We present the quad tree and structured replication as ex-
amples of techniques that rely on a hierarchical decomposition
of the sensing environment. The key difference between these
two techniques is that the hierarchy in the quad tree forms a
search tree in which branches may be pruned during search,
whereas the hierarchy in structured replication forms a dis-
semination tree whereby a query descends to all leaves. We do
not make comparisons to GHT without structured replication
because the single rendezvous p i n t of GHT without structured
replication is not suitable to range searches in networks with
dense event generation. Finally, in our presentation of search
costs, we also include Directed Diffusion, a technique that
searches by flooding, as a reference.

Diffusion's performance is directly related to the deploy-
ment density and hence the degree of connectivity of partici-
pating nodes. When connectivity is high, it performs rather
poorly when compared to the other techniques because of
its underlying nature of flooding queries, in which every
node broadcasts once, and every neighbor of every node
receives once for each broadcast. In our comparisons, we use
a network that is, on average, minimally connected. We set the
transmission radius to l j f i where p is the density in nodes
per square meter?

In our simulations, all queries were for a range of val-
ues. Queries were not constrained by geography. Search and
storage communication cost results are given in terms of the
aggregate number of communication hops traversed by all
messages as a function of the query range width.

In dense deployments, such as the ones presented in this
section, a uniform distribution of data values results in the
wont-case search costs for DIFS and quad tree searches
because most searches will result in all leaves being explored.
Figure 5(a) demonstrates that in this situation, DIFS and
the quad tree approaches only perform better than structured
replication for extremely narrow search ranges. DIFS, the quad
tree, and structured replication all perform roughly an order
of magnitude better than Diffusion.

In the gradient case, every leaf is not necessarily explored
by DIFS and the quad tree. Consequently, the search cost is
less for these two techniques than structured replication for
search ranges of less than about 20 values. In queries with
larger search ranges, the greater dissemination costs of DIFS

'Unicast vansmissions are assumed to require one umsmission and one
reception per hop. Broadcast transmissions, as are used in Rmding. require
one VansmiSsion and as many receptions as there are nodcs in me sender's
umrmission radius per hop. Routing is assumed to be on rhc smight line path
from sender to receiver and the number of hops fmm sender to receiver i s
assumed to be the told sourcc Io destination dislance divided by Ule e x p l e d
discmancc between a node and is neighbar closcsI 10 the destination. For an
infinitely dense nerwork, Us is just the -mission radius.

and the quad tree dominate the total cost of search, and hence
both are outperformed by structured replication.

Finally, in the hotspot case we see that search tree branch
pruning of DIFS and the quad tree lead to significant per-
formance improvements over the non-pruning technique of
structured replication.

There is an enhancement to DIFS that is not presented
in these simulations that should improve the search cost
somewhat. Suppose there are 256 leaf nodes each holding the
full range of values. In the current version of DIFS, a search
over the entire value range would result in 256 query messages
being sent, each with an average path length of approximately
nj2, where n is the width of the network, resulting in a total
message distance of 128n. If DIFS were to use the same
dissemination technique as in structured replication for these
cases, the cost could be reduced dramatically. For a trElof
depth d, the path length for the same scenario would he +.
Ford = 5 (as in the simulations), the message distance would
be En.

DIFS was designed for scenarios in which there are many
queries relative to stores. It incurs a greater storage-related
communication cost than non-indexing techniques because
event values propagate to interior nodes of the tree. The
communication cost of storing event data within indices is
presented in Figure 6. These plots show the effect of varying
the time between propagations of data up the hierarchy. In
these simulations, events are generated in the network roughly
every 0.004 seconds. These graphs show the communication
cost of storage for intervals ranging from one to ten seconds.
In general, both DIFS and the quad tree are outperformed
by GHT with structured replication. The incorporation of the
propagation delay into DIFS allows it to have storage costs
that are better than those of the quad tree.

One of the design goals of DIFS was to provide a load
balanced solution to range searching. Figure 7 describes the
cumulative distribution function of the involvement of nodes
in search. In the uniform case, some of the nodes of DIFS are
involved in every query. This is because most of the leaf nodes
are involved in every search. This is also the case for the quad
tree. The quad tree's root is also involved in every search. In
structured replication, every node in the tree is involved in
every search.

The results for the gradient case show that the bottleneck
nodes of DIFS are involved in a much smaller fraction of
searches than in the quad tree or in structured replication.
The hotspots case demonstrates this result in the extreme. The
bottleneck nodes are involved in only about one-fifth of the
searches.

In summary, structured replication performs best in terms of
communication for storage. This is because beyond the initial
registration of an event with its local leaf level mirror point, no
additional work needs to be done to form a search tree. DIFS
and the quad tree approach form search trees and pay for this
tree formation up front. Queries with sufficiently constrained
search criteria will lead to the pruning of branches in the search
trees of both DIFS and the quad tree and will consequently

171

lead to lower overall search costs. Queries requesting the
most of the entire range of data will result in no pruning
and will perform no better using DIFS or the quad tree than
using structured replication. In DIFS, when the query range
is sufficiently constrained, the average bottleneck utilization
is greatly reduced. In the quad tree, the bottleneck is always
the root and its utilization is 1. In structured replication, every
node in the tree is explored during every search.

VI. RELATED WORK

In the short time since sensor networks have emerged
as an academic area of widespread research, many query
dissemination and response architectures have been proposed
[I], 131, [41, [51, 161, [Il l , [16]. Directed Diffusion is one
publishlsubscrihe architecture for sensor networks. Standing
queries are disseminated into the network via controlled
flooding. Gradients are constructed for efficient reverse path
forwarding of data. This model works best when there are
very few queries relative to the amount of data produced by
the network that matches them.

Another approach is to leverage the strong spatial and tem-
poral correlation typical of time series data. If, for example, a
node senses warmth, then nearby nodes are likely to also sense
warmth. Likewise, if the node is warm right now, it follows
that it was likely warm just a moment ago. DIhlENSIONS uses
wavelet compression to reduce data redundancy due to spatial
and temporal correlation [6]. It produces a multiresolution
index (or view) of data. High-level events have attributes such
as size, shape, and lifetime that do not necessarily correlate
well in space or time. A more generic indexing mechanism is
therefore needed.

The authors of TAG [11 propose a method to consmct
a search tree to collect statistical aggregates from raw time
series data. An imponant contribution of this work is a list
of canonical search types for time series data with details
of their associated properties. Our work also proposes as
classification, but is different in that the classification is for
high-level events. Their queries are standing and continuous
and do not attempt to provide a mechanism for retrieving data
created before a query is instantiated. There is no storage
system in their scheme other than a buffering mechanism to
collect intermediate results at nodes while data is aggregating
and propagating toward a sink.

In GADT, a continuous probability distribution function is
proposed as a new object-relational abstract data type that
models physical data as Gaussian pdfs. The focus is on a data
representation, not on the indexing of such a representation
[31.

Bonnet et ai. describe the Cougar system. a distributed
database for sensor networks [4]. They summarize character-
istics they believe are common to all sensomet queries. The
queries are long-running. The desired result is a series of noti-
fications of system activity. Queries need to correlate data over
space and aggregate data over time and often are constrained
to a geographical region. In contrast, we address queries that

run above the aggregators and correlators that construct high-
level events. Consequently. their system operates on time series
data.

VII. FUTURE WORK

DIFS is work in progress. As such, there are many issues
identified for future work. Of highest priority is to implement
DES on an experimental platform, to collect and aggregate
real data into high-level events, and to evaluate DIFS’s per-
formance over such events. Below is a list of other areas for
future and continued work.

The distribution of values stored in histograms is implicitly
assumed to be uniform. If the distribution is known a priori,
then the width of the histogram bins in the system should be
adjusted to balance the storage and communication require-
ments of all index nodes. Dynamic repartitioning when the
distribution changes over time is a subject of future study.

The underlying mechanism for robustness to node failure
is that of GHT, in which data is cached along the minimum
routing perimeter surrounding a hash location. A structured
replication service caches data at remote locations in the
network (in case of regional outages), and is a subject of future
work.

All transactions are assumed to be reliable. This is not a
formal requirement of the system, hut is instead a starting
point. Applications that can tolerate some degree of loss of
data will be considered in future work.

We also plan to investigate the construction of an index
keyed on more than one attribute. Such a scheme might
create separate indices for each attribute or might collect the
various attributes into one DIFSikd-tree hybrid. Alternatively,
n-dimensional histograms might be used for n attributes and
would be propagated through one index. Finally, rather than
treating attributes separately, an evaluation function may be
disseminated to storage nodes and run over multiple attributes
to produce a ranking that would then be indexed.

Furthermore, it is a topic of future work to investigate how
indexing only part of the possible range of values affects
system performance.

Hierarchy construction uses hashing. The resulting hash
locations may serve directly as index storage nodes, or they
may be index rendezvous nodes that know the current optimal
locations of storage nodes. The latter, in effect, builds an
overlay over an overlay and is a subject for future work.

The search strategy presented in this paper breaks down a
search range into component ranges that each map directly
to an index node in the tree. For example, a query range of
16 to 28 (with a bfact of 4) is broken down into components
with ranges of 16-19, 20-23, 24-27, and 28-28. The query
components are sent directly to the associated index nodes
using independent unicasts, each with an average distance
traveled of roughly half the network width. In cases in which
the search range is small, and hence the covering nodes are
higher up in the tree, each node covers a wider spatial extent,
and consequently, fewer index nodes must be contacted to
disseminate the search to the entire spatial extent of the query.

172

In cases in which the range width is large, covering nodes
may live lower down in the tree and may consequently cover
smaller spatial extents; many more messages must be sent
to disseminate the search. At some range width, the cost of
disseminating the query to the covering set is greater than the
cost of dissemination using structured replication.

Two enhancements may be introduced to improve DIFS
search cost. The first is to route the query using hierarchical
dissemination, as in structured replication, rather than sending
unicast messages to each of the covering nodes. The second
is to route to nodes in the highest tree level that will cover the
entire query range, rather than decomposing the query range
into a minimal covering set.

The minimum cost of search (which is the cost of search
when no data matches the query) should be used as a heuristic
to determine which enhancement to use. It is a subject of future
work to evaluate these enhancements, as well as to determine
how the adjustment of bfacr and the number of free levels
affect overall performance.

VIII. CONCLUSION
We presented an index structure for sensornets that provides

for energy-efficient and load balanced range searches over
previously generated high-level events. This index is designed
to satisfy queries requesting data within a range of values or
falling within some section of the distribution. Queries may
be geographically constrained.

DIFS performs best when there are many queries posed
relative to the number of events generated, when each result set
is small, and when the result set is not likely to be distributed
over the network in such a manner as to be discovered by most
leaf level search nodes. Consequently, structured replication is
preferred when many more events are stored in the system
than searches are posed and when at least some of the result
set would he found via most of the leaf level mirrors.

The quad tree described in the paper outperforms DIFS both
in terms of the aggregate communication cost of storage and
of search, but is not scalable to a large number of searches or
stores. The root of a quad tree is involved in every search and
unless a technique such as progressive resolution degradation
or interval updating is employed, the root is involved in every
store as well. DIFS scales well to large-scale networks by
using a multiply rooted tree and a geographylvalue coverage
tradeoff that balances communication overhead over many
nodes.

The proposed event classification and the introduction and
analysis of the DlFS scheme, as well as the comparison of
DIFS to structured replication and the quad tree should serve
as an initial framework for further work in this area.

REFERENCES
[I1 Samuel R. Madden, Michael 1. Franklin, Joseph M. Hellerstein, and Wei

Hong. TAG: (I Rny AGgregation Service /or Ad-Hoc Sensor Nenuorks.
OSUI, 2002.

121 Joseph M. Hellenrein. Michael I. F d i n , Sirish Chandrasek-, Amol
Ueshpande, Kris W i l d " . Sam Madden, Vijayshankar Raman, Mehul
Shah. Adoprive Query Pmcersing: rechMlogy in Evolurion IEEE Dam
Engineekg Bulletin 23(2): 7-18, 2000.

131 Anlon Faradjian, I. E. Gehke, and Philippe Bonnet. GADP A Pmbobility
Space ADT For Keprescnring and Querying the Physical World To appar
in Roceedings of.the 18lh lnemationd Conference on Dam Engineering
(ICUE 2002). San Jose, California, February 2002.

(41 Philippe Bonnel, 1. E. Gehke, and Praveen Seshadn. Towardr Sensor
Database Systrms. In b e e d i n g s of the Second International Conference
on Mobile Dala Management Hong Kong. January 2001.

[5] Philippe Bonnet. I. E. Gehrke, and PPdveen Seshadn. Querykg the
Physicol World IEEE Personal Communications. Spsial Issue on Smm
Spa- and Envimnments. Vol. 7. No. 5. pp. 10-15. Oclober 2W.

(61 D q a k Ganesan, Deborah Esvin, John Heidemann, DIMENSIONS: Why
do we need (I new Doto Hondling archirectum for Sensor Networks? To
Appear in Firs1 Workshop on Hot Topics in Networks (Hotnets-I). October
2002.

171 Badn Nath and magm Nieulem. Routing on Y Curve To appear in First
Workshop on Hot Topics in Networks (Homets-I), October 2002.

[X I I. Kubiatowicr, U. Bindel, Y. Chen, P. Eaton, D. &Is, R. Gummadi, S.
Rhea, H. Weatherspoon, W. Weimer, C. Wells. and B. Zhao. Oceanstore:
An orchitccrure /or global-scale persistent Stomge. In R d n g s of
ACM ASPLOS. ACM. November 2000.

[9l A. Rowslon and P. h s c h e l . Sromgc mnnngemsnt and caching in past,
a large-scale, persisten! pear-to-peer stomge utility. In 18th ACM SOSP.
volume 1, Lake Louise, Canada, October 2001.

[IO] Shenker, S., Ramasmy, S., K q . B., Govindan, R.. and Esuin, U.. Dota-
Centric Storage in Sm$omem. To appear in the Firs1 ACM SIGCOMM
Workshop on Hot Topics in Networks (HolNee 2002). Princeton, NI,
October, 2002.

[I l l Ramasmy, S., Karp, B., Kn, L., Yu, F.. Esuiin. U., Govindan, R., and
Shsnker, S.. GHT A Geographic Hash Table /or Dota~Cenrtic Sroroge.
First ACM lnremationd Workshop on Wireless Sensor Networks and
Applications (WSNA 2002). Atlanlq CA. September. 2002.

1121 I. Hill. R. Snnvctyk, A Woo, S. Hollar, U. Culler. and K. Piser.
System orchilecture directions for neworked senron. In R d i n g s of
ASPLOS-IX, pp. 93 104. Cambridge. MA, USA, November 2000.

[I31 W. Adjie-Winoto, E. S c h w m . and H. Balakrishnan, 7he Dcrign Md
lmplemenrotion of an lnlentional Naming System. In b e e d i n g s of the
Symposium on Operating Systems Principles, pp. 186-201. Charleston.
SC, USA. Dec. 1999.

1141 A. Cerpr. I. Elson, D. Esuin, L. G d . M. Hamilton. andl. Zhao, Hobi-
fat monitoring: application driver for wireless communicorion techlogy
In 2001 ACM SIGCOMM Workshop on Uala Communications in Latin
America and the Cacibbean, Cos- Rica, Apr. 2001.

[IS]. J. Heidemann. F. Silva, C. Inmagonwiwal, R. Govindan. U. €shin.
and U. Gannesan. Building cflcimt wireless sensor nenuorh with low-
lwei naming. In Proceedings of he Symposium on Operating Systems
Principles, pp. 146-159, Banff, Albella, Canada Ocf. 2001.

(161 C. Intanagonwiwat, R. Govindan, and D. Esuiin, Direcred dt@sion: Y
scaloble and mburf commmicorion pomdigm for enso or unuorks. In
Praceedings of the SUlh Annual ACMnEEE lntmational Conference
on Mobile Computing and Networking (Mobicom 2OW). Boston, MA.
USA, Aug. 2 W .

[I71 J. M. Kahn. R. H. Katr and K. S. I. Pisrer. Mobile nerworkingforrman
dust. In ACMnEEE Intl. Conf. on Mobile Computing and Networking
(MobiCom 99). Seattle, WA, USA. Aug. 1999.

[I81 B. Karp and H.T. Kung. GPSK: greedy perimeter mtnreless mUIing/or
wireless nenuorh. In Roceedings of the Sixth Annual ACMnEEE Inter-
national Conf-ce on Mobile Computing and Networking (Mobicom
2000). Boston, MA, USA. Aug. 2W.

1191 S. Kumar, C. Alaeltinoglu. and U. Esuiin, Scaloble objccl-lmcking
thmugh unattended techniques (SCOOT). In Pmceedings of the 8th
lntemational Conference on Network Rolocols (ICNT), Osaka, Japan.
Nov. 2000.

[ZO] 1. Li, 1. Jannotti, D. M a u t a , D. K q e r , and R. Morris. A scnlnble
bcnrion service /or geographic adhoc muting. In Roceedings of the
Sixth Annual ACMmEE lnlemalional Conference on Mobile Computing
and Networking (MohiCom 2000) Boslon. MA, USA. Aug. 2000.

[Zll G. Pottie and W. Kaiser, wireless integrated nenuork smsor$. Commu-
nications of the ACM, 2000.

1221 T. Schoellhammer, Disftibured Portem Matching in Sensor Nenuorks.
Poser CENS Opening Ceremony, October 2002.

1231 U. Eru'in, R. Govindan. J. Heidemann, and S. Kumar, Nen Cenfury
Challenges: Scnloblc Coodinotion in Senror Nenuorh. In Proceedings
of the Fifth Annual lnlemafional Conference on Mobile Computing and
Nelworks (MobiCom 1999). Seattle, Washington. August 1999.

173

