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Abstract

The Distributed Computing Column covers the theory of systems that are composed of a
number of interacting computing elements. These include problems of communication and net-
working, databases, distributed shared memory, multiprocessor architectures, operating systems,
verification, internet, and the web.

This issue consists of the paper “Incentives and Internet Computation” by Joan Feigenbaum
and Scott Shenker. Many thanks to them for contributing to this issue.

Request for Collaborations: Please send me any suggestions for material I should be including
in this column, including news and communications, open problems, and authors willing to write
a guest column or to review an event related to theory of distributed computing.
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1 Introduction

The emergence of the Internet as a standard platform for distributed computing has led to diver-
sification of the research agenda in distributed algorithms, and that agenda now consists of much
more than traditional, core PODC concerns. If distributed algorithms are to be designed, analyzed,
implemented, and deployed for the full range of applications that are now plausible, the research
community will need to develop new computational models, new failure models, new measures of
computational complexity, and new analysis techniques. This column is intended as an introduction
to one theme that has grown steadily in popularity and importance during the past few years: the
recognition that participants in an Internet algorithm are economic actors as well as computational
processes.
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Multi-agent systems have been extensively studied in both economics and computer science, but
the two communities have approached the topic very differently. In traditional theoretical computer
science (TCS), computational agents are typically assumed either to be obedient (i.e., to follow the
prescribed algorithm) or to be adversaries who “play against” each other. On the other hand, the
strategic agents in game theory are neither obedient nor adversarial. Although one cannot assume
that they will follow the prescribed algorithm, one can assume that they will respond to incentives.
Thus, the economics literature traditionally stressed incentives and downplayed computational
complexity, and the TCS literature traditionally did the opposite. The opportunity to design,
implement, and deploy algorithms on a widely used distributed-computing platform provides strong
motivation to develop a unified approach to incentive compatibility and computational tractability:
Ownership, operation, and use by many self-interested, independent parties give the Internet the
characteristics of an economy as well as those of a computer.

Although many subdisciplines of computer science have a long history of using game theory
— such as networking (e.g., [11, 18]), distributed artificial intelligence (e.g., [24, 26]), and market-
based computation (e.g., [29]) — the first work in TCS that explicitly addressed incentives and
computational complexity simultaneously was Nisan and Ronen’s seminal paper [23] on algorithmic
mechanism design (AMD). That paper put forth a formal model of centralized computation that
combined incentive compatibility (the “mechanism design” part) with computational tractability
(the “algorithmic” part). Feigenbaum, Papadimitriou, and Shenker [8] extended this to distributed
algorithmic mechanism design (DAMD), in which the same goals of incentive compatibility and
computational tractability are present, but, in addition, the agents, the relevant information, and
the computational model are all inherently distributed.

The Internet is an arena in which incentive compatibility, distributed computation, and com-
putational complexity are all highly relevant. Thus, we believe that DAMD, with its simultaneous
attention to these issues, will be important for understanding our Internet-centric future. This col-
umn provides a basic overview of DAMD and identifies several promising areas for future research.
We start, in Section 2, by providing some necessary background on mechanism design (MD), algo-
rithmic and otherwise. In Sections 3 and 4, we review previous DAMD results on multicast cost
sharing and interdomain routing, respectively. In Section 5, we present some general open questions
about the meaning of “hardness” and “easiness” of Internet computation. In Section 6, we present
our case for the importance to computer science of indirect mechanisms, which are not a central
part of the Economics research agenda in AMD. For a more in-depth survey of the AMD research
agenda, please see [9] and the papers referred to therein.

2 MD to AMD to DAMD

In essence, game theory is the study of what happens when independent agents act selfishly. Mech-
anism design asks how one can design systems so that agents’ selfish behavior results in the desired
system-wide goals. The “mechanisms” in this field are output specifications and payments to agents
that incentivize them to behave in ways that lead to the desired system-wide result. For example,
consider the problem of routing. Agents may be individual routers within a network or entire
autonomous domains. Each agent incurs a cost when it transports a packet, and this cost is known
only to the agent, not to the mechanism designer or to the routing protocol. Each agent is required
by the protocol to declare a cost. The system-wide goal is to have the routing protocol choose the
true lowest-cost path between any two agents in the network. The mechanism specifies, for each
network topology, each sender-receiver pair, and each set of agents’ declared costs, a path from
sender to receiver and a payment to each agent; the mechanism designer’s task is to find a formula
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for the payments that causes agents to be no worse off by revealing their true costs than they would
be by lying about their costs. Such truthful revelation would allow the routing protocol to achieve
the system-wide goal of having all the traffic follow lowest-cost paths.

More formally, consider a distributed system in which there is a set of possible outcomes O.
Each of the n autonomous strategic agents has a utility function u; : © — R, where u; € U, that
expresses its preferences over these outcomes. The desired system-wide goals are specified by a
social choice function (SCF) F : U™ — O that maps each particular instantiation of agents (who
are completely described by their utility functions) into a particular outcome.! The problem is
that these utilities are known only to the agents, not to the system designer or to any other central
administrative entity; thus, one cannot just implement the desired outcome by fiat.

An SCF is strategyproof if u;(F(u)) > w;(F(u|'v)), for all i and all v € U, where we use the
notation (ul*v); = v and (u|'v); = uy, for all j # i. If F is strategyproof, then no agent has an
incentive to lie, and the desired social goals can be achieved by asking agents to reveal their utility
functions. Mechanisms in which agents are asked to directly reveal their utility functions are call
direct mechanisms.

An SCF is group-strategyproof if the following holds for all S, u, and u’ (where S = {i | u; # u}}
is the defecting group): Either u;(F(u)) = u;(F(u')), Vi € S, or 3i € S for which u;(F(v')) <
u;(F(u)). That is, if any agent in the group benefits from the group’s colluding and lying to the
mechanism, then at least one agent in the group suffers.

An important class of problems are those in which the utilities are quasilinear, and the outcome
space O factors into a set of system states © and a set of payment states P C R" that represent
a vector of payoffs (or charges). At a particular outcome o = (6,p), agent i’s utility factors into
u;(0) = v;(6) + p;, where v; : O — R represents his valuations of each of the system states, and p;
is his payment. For such problems, there is a class of strategyproof mechanisms, called Vickrey-
Clarke-Groves (VCG) mechanisms [3, 15, 28], that result in the system state that optimizes ), v;(0).

Direct strategyproof mechanisms provide a conceptually simple, if not always ideal (see Section
6), way to achieve strategyproof SCFs. However, there are many cases in which the desired result,
i.e., the desired social choice function F', is not strategyproof. To describe how to realize such
nonstrategyproof SCFs, we now introduce indirect mechanisms. Here, one designs a mechanism
< M, S >, where S is a strategy space, and M : S — O maps vectors of strategies into outcomes.?
These are called indirect mechanisms, because the agents no longer directly reveal their utilities
but instead choose strategies from the space S. This strategy choice is done selfishly, with each
agent attempting to maximize its own utility. For a given mechanism M and a given utility vector
u, we let the set Cps(u) C S™ represent all possible strategy vectors that could reasonably result
from selfish behavior. This set is called the solution concept. Traditional game theory often uses
the Nash-equilibrium solution concept, i.e., selfish play is assumed to result in strategy vectors in
which no agent can unilaterally increase his utility. Other solution concepts include rationalizable
strategies (agents use strategies that are best responses to rational beliefs about the other agents’
strategy choices [2, 25]), evolutionarily stable strategies (agents imitate the successful strategies
used by others in previous rounds of the game [27]), and dominant strategies (agents only choose
strategies that, regardless of how other agents play, never result in lower payoffs than any other
strategy). To date, most of the AMD and DAMD literature uses the dominant-strategy solution

"More generally, we can consider social choice correspondences (SCCs), H : U™ — 29 which map utility vectors
into sets of outcomes. For notational simplicity, we discuss only SCFs in this section. In addition, we restrict ourselves
to equivalent agents; in general, each agent could have a different set of possible utilities ;.

20ur assumption that all agents are equivalent, made for notational simplicity, renders all strategy spaces the
same; in general, we could have different strategy spaces S;.
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concept.

The goal of mechanism design is to define a mechanism M that implements the SCF, i.e.,
M(Chp(u)) = F(u), for all u e U™.

When this condition holds, then selfish behavior by the agents will result in the desired system-
wide outcome. In short, the system will be incentive-compatible. There is a large game-theory
literature on which SCFs can be achieved for different notions of “incentive compatibility,” e.g., for
different solution concepts; see Jackson [17] for an overview. With the Nash-equilibrium solution
concept, one can design mechanisms to achieve a very wide range of non-strategyproof social choice
functions [19].

When M = F and S = U, we reduce to the direct-mechanism case, and so our preceding dis-
cussion applies to direct mechanisms as well. That is, one can achieve nonstrategyproof SCFs with
direct mechanisms by invoking different solution concepts. For example, one can achieve efficiency
and budget balance using the Bayesian-Nash-equilibrium solution concept [1, 4] — something that
is impossible using the dominant-strategy solution concept [13].

It is important to note that, although the mechanism is chosen by the system designer, the
solution concept is supposed to reflect reality. The solution concept thus depends greatly on the
context (e.g., is it a repeated game or a single-shot game, do agents collude, do they know about the
other agents, do they know about the other agents’ strategic choices, etc.). Because the Internet is
somewhat different from traditional game-theoretic contexts, the traditional solution concepts may
not be sufficient; this issue is discussed in Section 8 of [9].

The game-theory literature on mechanism design does not consider computational and commu-
nication complexity, and many of the existence proofs rely on extremely impractical mechanisms.
For the mechanism-design approach to have any practical relevance for Internet computation, one
must focus on scalable algorithms. That is, the function M must be computable with reasonable
computational and communication resources.

Nisan and Ronen [23] initiated the study of AMD by adding computational tractability to the set
of concerns that must be addressed in the design of incentive-compatible mechanisms. Succinctly
stated, Nisan and Ronen’s contribution to the mechanism-design framework is the notion of a
(centralized) polynomial-time mechanism, i.e., one in which M(-) is polynomial-time computable.
They also provide strategyproof, polynomial-time VCG mechanisms for some concrete problems,
including lowest-cost paths and task allocation.

The centralized computational model of [23] is not adequate for the study of Internet compu-
tation, where not only are the agents distributed, but so are the resources (e.g., link bandwidth
and cache storage) and the computational nodes. Internet-based mechanisms involve distributed
algorithms and any measure of their computational feasibility must reflect their distributed na-
ture. In one attempt to address this issue, Feigenbaum, Papadimitriou, and Shenker [8] put forth
a general concept of network complexity that requires a distributed algorithm executed over an
interconnection network 7" to be modest in four respects: the total number of messages sent over T’
(ideally, this should be linear in |T|), the maximum number of messages sent over any one link in 7'
(ideally, this should be constant, to avoid “hot spots” altogether), the maximum size of a message,
and the local computational burden on agents.

The network-complexity criterion in [8] evaluates the mechanism in isolation based on its abso-
lute computation and communication requirements. A relative notion of complexity, which we call
protocol compatibility, is adopted in the work of Feigenbaum, Papadimitriou, Sami, and Shenker
[7] on interdomain-routing mechanism design. This measure of complexity does not place absolute
limits on what is considered feasible; instead, it requires the mechanism to be a simple extension
of a widely deployed, standard Internet protocol. The relevant standardized protocol in [7] is the
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Border Gateway Protocol (BGP). For a distributed algorithm that computes a mechanism to be
considered a simple extension of a standard protocol, it must have the same general algorithmic
structure as the standard and must not require substantially more computation, communication,
local storage, or any other resource expenditure than the standard, regardless of whether the stan-
dard has high or low absolute network complexity. Protocol compatibility addresses two aspects of
practical feasibility — computational tractability and deployability® — and we expect it to become
an increasingly important aspect of DAMD in particular and Internet algorithms in general. In
this column, we use the term network complexity generically, encompassing the absolute notion of
network complexity used in [8], the relative notion of protocol compatibility used in [7], and other
related notions of complexity of Internet computation that will arise in the analysis of future dis-
tributed algorithmic mechanisms. Clearly, “network complexity” is not (yet) a well defined term,
and we return to this point in Section 5 below. We expect the development of more prima facie
good (and bad) distributed algorithmic mechanisms to lead to a satisfactory formalization.

3 Multicast Cost Sharing

The multicast cost-sharing mechanism-design problem involves an agent population P residing at
a set of network nodes N that are connected by bidirectional network links L. The multicast flow
emanates from a source node ag € N; given any set of receivers R C P, the transmission flows
through a multicast tree T(R) C L rooted at as and spanning the nodes at which agents in R
reside. It is assumed that there is a wuniversal tree T'(P) and that, for each subset R C P, the
multicast tree T(R) is merely the smallest subtree of T'(P) required to reach the elements in R.
Each link [ € L has an associated (finite) cost ¢({) > 0 that is known by the nodes on each end, and
each agent ¢ assigns a value u; to receiving the transmission. A cost-sharing mechanism determines
which agents receive the multicast transmission and how much each receiver is charged. We let
x; > 0 denote how much agent 7 is charged and o; denote whether agent ¢ receives the transmission;
o; = 1 if the agent receives the multicast transmission, and o; = 0 otherwise. We use u to denote
the vector (uq,us, ... Ul p|), and the vector v to denote the set of values “declared” by the agents
to the mechanism; these need not, in general, be the same as their true values. The notation
u_; is used for the vector of all values except u;. The mechanism M is then a pair of functions
M(v) = (z(v),0(v)). The receiver set for a given input vector is R(v) = {i | o; = 1}. An agent’s
individual welfare is therefore given by the quasilinear form w; = u;0; — x;. The cost of the smallest
subtree T'(R) of T(P) needed to reach a set of receivers R = R(v) is ¢(T(R)), and the overall
welfare, also known as efficiency or net worth, is NW (R) = vg —c(T'(R)), where vg = ) ;. v; and
o(T(R)) = > jerr) c(l). The overall welfare measures the total benefit of providing the multicast
transmission (the sum of the valuations minus the total transmission cost).

In order to ensure that the values declared by the agents are truthful, the mechanism should
be strategyproof. However, there are other goals besides strategyproofness that the mechanism
designer must consider in this cost-sharing context. One natural goal is to maximize the net worth;
an efficient mechanism is one in which o(v) maximizes NW for all v. As shown by Green and
Laffont [13], all strategyproof and efficient mechanisms take on the special Vickrey-Clarke-Groves
(VCG) form:

Theorem 1 Consider a mechanism M (v) = (x(v),o(v)) such that

e o(v) mazimizes net worth NW

3In practice, straightforward extensions of existing protocols are easier to deploy than de novo designs.
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o 2;(v) = hi(v—;) — 32,400 (v) + C(o(v)), for some set of functions hj(v—;).

This mechanism is strategyproof. Conversely, any strategyproof and efficient mechanism is of this
form.

Sketch of Proof: To show that such a mechanism is strategyproof, focus on a particular agent
i. Fix v_;, the reported utilities of all agents except i. Let u; be agent i’s true utility and v; her
reported utility. The welfare of agent i is

wi(v) = w03 (v) — 2i(v) = [wios(v) + Y v;oj(v) = Clo(v))] = hi(v_s) (1)
J#i

Let ;1 = o(v) be the chosen membership vector. Note that, for any given u, the expression
within brackets [] is identical to the expression for NW ((u;,v—;), ), i.e., the net worth if all the
agents’ true utilities were (u;, v_;), and the membership function chosen was p. Also note that the
dependence of Equation (1) on v; is limited to the dependence of u on v;.

Consider a function f(p) = NW((u;,v—;),p) defined over all possible membership vectors p.
The mechanism we are given is efficient at all utility profiles, and so f(p) is maximized by setting
p = o(uj,v_;). If i sets v; = u;, then the membership vector chosen by the mechanism will be
p = o(uj,v—;). This makes the expression within brackets [| in Equation (1) reach its maximum
over all possible membership vectors; a fortiori, it must also be the maximum over all possible
choices of v;. Thus, setting v; = u; maximizes Equation (1), and the mechanism is strategyproof.

Now consider a strategyproof and efficient mechanism (z(v), o(v)). Define k;(v) = 3, ,; vjo;(v)—
C(o(v)) — x;(v). If we can show that k; does not depend on v;, then we are done. For the rest
of the argument, we hold v_; fixed; for convenience, we will not explicitly note the dependence
on v_; and instead denote functions as depending only on v;. In addition, define a cost function
C(0) = X ier(r) c(l). Our proof proceeds in four steps.

First, because o(v;) is chosen to maximize net worth, there is some value (perhaps infinite,
perhaps negative), call it v, such that o;(v;) = 1, for all v; > v, and o;(v;) = 0, for all v; < v.

Second, consider the function z;(v;). By strategyproofness, this function takes on two values, one
when v; < v and another when v; > v. Moreover, the difference in these two values must be exactly
v, or else the individual welfare w;(v;) above and below v would differ, violating strategyproofness.

Third, consider the function l;(v;) = >_,_; ujo;(v;) —C(o(v;)). This is essentially the net worth
minus the contribution from agent i. Because o(v;) is chosen to maximize net worth, this function
takes on one value for v; < v and another when v; > v. Again, the differences in these two quantities
must be exactly v, because the net worth at the transition point must be continuous.

Fourth, note that k;(v;) = l;(v;) — x;(v;). Because each term in this function takes on only two
values, which differ by v, and the transition occurs at the same place v; = v, the function itself
must be constant. O

This theorem describes a class of strategyproof and efficient mechanisms. As shown in [20],
there is only one such mechanism that has the following two properties:

NPT No Positive Transfers: x;(v) > 0, or, in other words, the mechanism cannot pay receivers to
receive the transmission.

VP Voluntary Participation: w;(v) > 0; this implies that x; = 0 whenever o; = 0 and that agents
are always free to not receive the transmission and not be charged (by setting v; = 0).

That mechanism, called the marginal-cost mechanism (MC), can be defined as follows. For each
v, the mechanism chooses the o(v) (or, equivalently, the receiver set R) to maximize NW. Let W
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be the net worth of this efficiency-maximizing R. For each i € R, let W~ be the net worth of
the receiver set that the MC mechanism would have computed if ¢ had not participated (i.e., if
v; had been set to 0). Then W — W =% measures the gain in overall welfare that results from i’s
participation. The cost share that MC assigns to i is z; = v; — (W — W),

Another goal that is important in some contexts is budget balance; a mechanism is budget-
balanced if ) x;(v) = C(o(v)) for all v. Although one would naturally like to achieve both
budget balance and efficiency, a classical result of game theory (also due to Green and Laffont [13])
precludes this possibility.

Theorem 2 There is no strategyproof, efficient, and budget-balanced mechanism.

The proof of this result, which we omit here, consists of demonstrating that mechanisms of the
VCG form cannot be budget-balanced.

There are many strategyproof and budget-balanced mechanisms; in [20], it is shown that, among
these, the Shapley (SH) mechanism minimizes the worst-case efficiency loss. SH assigns cost shares
x; by dividing the cost ¢(l) of each link [ in T(R) equally among all members of i € R that are
downstream of [. The SH receiver set is the largest R C P such that u; > x;, for all 1 € R.

Although the SH mechanism combines the desirable economic properties of budget balance and
strategyproofness, it is hard to compute. More specifically, it is shown in [6] that SH has inherently
high network complexity:

Theorem 3 Any algorithm, deterministic or randomized, that computes SH must, in the worst
case, send Q(|P|) bits over linearly many links.

The proof that SH has bad network complexity uses standard lower-bound techniques from com-
munication complexity, and so we will not give it here.

In constrast, as is shown in [8], the MC mechanism has good network complexity. Because
the algorithm used in the proof of this result exemplifies many properties that are desirable in the
DAMD context, we give the proof here.

Theorem 4 MC cost sharing requires exactly two messages per link. There is an algorithm that
computes the cost shares by performing one bottom-up traversal of T(P), followed by one top-down
traversal, and this algorithm is optimal with respect to number of messages sent.

Proof: In order to describe the algorithm?, we need the following notation. Let u® denote the
sum of the valuations of the users located at node «, ¢ the cost of the link from « to its parent
p(a) in the tree T(P), Ch(«) all the child nodes of « in the tree T'(P), V(P) all nodes in the tree
T(P), res(a) the set of users at node a, and T%(P) the union of the subtree rooted at o and the
link from « to p(«). With this, we can compute W (u), which is the welfare (i.e., sum of valuations
minus cost) of T%(P), as follows:

W (u) = u® + > Wh) | - .
BECh(a)|WB(u)=0

4Note that all of the formulas in this algorithm and proof are stated in terms of the true valuations « instead of
the declared valuations v. This choice of notation is made to emphasize the fact that MC is strategyproof, and hence
one may assume that u = v.
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Note that these values can be computed by the bottom-up traversal given in Figure 1 below.
Naturally, o(7) = 1 (that is, user ¢ is included in the multicast) if W(u) > 0 for all nodes « in the
path from user ¢ to the root.

Once the W%(u)’s have been computed, the values of the o;(u)’s — that is, the bits that indicate
whether a user i is a member of the efficient set R*(u) — can be propagated in a top-down traversal.

The cost share z;(u) for user i € R*(u) does not require a from-scratch recomputation of
W—% = W (u|’0). For each node a and user i € R*(u) at a, let y;(u) be the smallest W5 (u) of any
node 3 in the path from « to the root. (This minimum welfare value might occur at «.) Then
there are two cases:

o If u; < y;(u), then, without user i, the efficient set is the same as it is with user i. That
is, R*(u) = R*(u|'0), and the difference W (u) — W (u|0) is u;. Therefore, user i must pay
zi(u) = u; — (W(u) — W(u['0)) = 0.

e If, however, u; > y;(u), then dropping user i results in the elimination from R*(u) of a subtree
of total welfare y;(u), and thus user ¢ must pay exactly z;(u) = u; — y;(u).

To see this, note that dropping user i decreases W%(u) by w;. If u; > y;(u), then there is
some lowest (furthest from the source) ancestor o of a for which dropping user i causes W (u) to
become negative and T (P) to be dropped from R*(u). Dropping T (P) may in turn result in a
negative welfare value for some ancestor o’ of o/, which would cause T (P) to be dropped, and
so forth. This “chain reaction” stops after the removal of a minimum-welfare subtree 77%(P). On
the other hand, if u; < y;(u), then the tree structure of R*(u|’0) is the same as that of R*(u).

Observe that this propagation of y;(u) can be combined with the propagation of o;(u), as shown
in Figure 2 below.

In the top-down traversal given in Figure 2, we assume that each node « has the “state” from
the (earlier) execution of the bottom-up traversal; this consists of the messages that it received
from its children, the message that it sent to its parent, and the values o; for users ¢ at « (some of
which were erroneously, but temporarily, set to 1 and will be corrected in the top-down traversal).
The top-down traversal has to convey enough information to allow nodes to compute cost shares
and to correct erroneous o; values.

Finally, note that two messages must in fact travel over each link in T'(P) if cost shares are to
be computed correctly. There are instances in which, for all « € V(P), cost shares at « depend on
valuations at every descendant of o and on valuations and/or link costs between « and the root as
of T(P). In our model, & can only compute such a share after receiving some information from its
parent and each of its children (although perhaps not as many bits of information as our algorithm
sends). Examples of such instances include those in which R*(u) = P but setting u; = 0 for any
i would cause all users in a subtree rooted at some € Ch(as) not to receive the transmission
(because each link joining a;s to one of its children has a very high cost). O

Before turning to our next representative DAMD problem, i.e., interdomain routing, we say a
few words about why efficiency and budget balance are natural mechanism-design goals. Efficiency
arises naturally as a design goal in the scenario in which the network is owned and operated by
society at large, and multicast delivery may be subsidized, e.g., via taxation, if the cost-sharing
mechanism runs a deficit; here, the MC mechanism is a natural one to use, because it maximizes
the overall welfare of the society as a whole and ensures (because it’s strategyproof) that, once
the collective choice has been made to charge for multicast delivery in this fashion, no single agent
can cheat the group. Budget balance arises naturally as a design goal if the prices charged for
multicast delivery must be set by competition among service providers. Competing providers could
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Figure 1: Bottom-Up Traversal: Computing Welfare Values

At node oo € V(P)
After receiving a message A” from each child 8 € Ch(a)
Wa «— UCX -+ (ZBECh(a) Aﬁ) — Ca
If W > 0 then
{
o; < 1 for all i € res(a)
Send W to parent p(«)

}
Else

{
o; < 0 for all i € res(«)
Send 0 to parent p(c)

not charge more than their real costs, because they would be undercut, nor could they charge less
than their real costs, because they would go out of business. These are the two scenarios considered
in the work of Moulin and Shenker [20], which provides the economic foundation for [8] and most
of the subsequent work on computational aspects of multicast cost sharing. By contrast, in the
scenario in which the multicast delivery is done by a monopoly content owner, profit maximization
is the natural mechanism-design goal. Fiat et al. [10] provide several novel cost-sharing mechanisms
for this scenario.

Finally, we note that, in the problem as we have stated it here, the potential receivers are
strategic, but the network (i.e., the universal multicast tree T'(P)) is obedient. In particular, the
network nodes are neither in cahoots with nor conspiring against their resident agents, and the
various subnetworks are not competing with each other or with the network as a whole. This is an
accurate model of the real-world multicasting scenarios discussed above, in which T'(P) is operated
by society at large, by a service provider with competitors, or by a monopoly content owner. Even
in this simplest possible strategic model, determining the inherent network complexity of natural
mechanisms is nontrivial. There may be other multicasting scenarios in which more complex
strategic models are needed.

Although the multicast cost-sharing problem has been quite useful in establishing the basic
conceptual foundations of DAMD, it is neither realistically formulated nor of pressing importance.
Interdomain routing, our next example, is both more realistic and more important.

4 Interdomain Routing

The Internet is comprised of many separate administrative domains or Autonomous Systems (ASes).
Routing between these domains — i.e., interdomain routing — is currently handled by the Bor-
der Gateway Protocol (BGP). There has been much research on routing in general and BGP in
particular, but most of it takes a traditional protocol-design approach. Recently, Feigenbaum,
Papadimitriou, Sami, and Shenker [7] focused on DAMD issues inherent in interdomain routing.
The basic incentive problem involves transit traffic, i.e., traffic neither originating from nor
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Figure 2: Top-Down Traversal: Computing Membership Bits and Cost Shares

Initialize: Root ay sends W% to each of its children.
For each a € V(P) — {as}
After receiving message A from parent p(«)
//Case 1: T*(P)NT(R*(u)) = 0.
//Set o;’s properly at a and propagate non-membership downward.
If 0, =0, for all i € res(a), or A <0 then
{
z; < 0 and o; « 0 for all i € res(«)
send —1 to § for all 5 € Ch(«a)
¥
//Case 2: T(P)NT(R*(u)) # 0.
//Compute cost shares and propagate minimum welfare value downward.
Else
{
A — min(A, W)
For each i € res(«)
If u; < A, then x; + 0, else z; «— u; — A
For each § € Ch(«a)
Send A to

destined to the AS that is currently carrying the packets. For the overall efficiency of the network,
packets should travel along shortest or, more generally, lowest-cost paths (LCPs). These optimal
paths would typically, in general networks, cut across several ASes. However, carrying transit traffic
is a burden that ASes would prefer to avoid. The basic problem is simple: Overall system efficiency
is maximized when ASe accept transit traffic, but individual domains are happiest when they carry
no transit traffic at all.

In the model used in [7], which is an extension of an earlier (centralized) LCP-mechanism model
proposed by Nisan and Ronen [23] and studied further by Hershberger and Suri [16], each AS incurs
a per-packet cost for carrying traffic, where the cost represents the additional load imposed on the
internal AS network by this traffic. Furthermore, the model also assumes that, to compensate for
these incurred costs, each AS is paid a price for carrying transit traffic. The goal is to maximize
network efficiency by routing packets along the LCPs. Standard routing protocols (such as BGP)
can compute LCPs given a set of AS costs.> However, under many pricing schemes, an AS would
be better off lying about its costs; such lying would cause traffic to take non-optimal routes and
thereby interfere with overall network efficiency.

To prevent this, one needs the pricing scheme to be strategyproof, so that ASes have no incentive
to lie about their costs. The pricing scheme should also have the reasonable property that ASes
that carry no transit traffic at all receive no payment. It is shown in [7] that there is only one

SBGP does not currently consider general path costs; it simply computes shortest AS paths in terms of number
of AS hops. However, BGP could be trivially modified so that it computes LCPs; in what follows, we assume that
this modification has been made.
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strategyproof pricing scheme with this property; it is a member of the VCG family. Moreover, a
BGP-compatible distributed algorithm is given that computes these prices. This algorithm requires
only minor and straightforward modifications of the BGP computational model given by Griffin
and Wilfong [14]. Specifically, the algorithm in [7] requires a small constant-factor increase in both
the table sizes and the message sizes of BGP, but it does not require any new messages or any
new infrastructural or computational capability; in particular, all messages are still sent between
neighbors in the AS graph.® Similarly, the local computation done by a node in each stage (i.e.,
between receiving an updated table from a neighbor and, if necessary, sending an update to each
of its neighbors) is the same order of magnitude as the BGP local-computation time.

We include the price-computation algorithm here, because it illustrates the principle of protocol
compatibility, which we believe will be an extremely important part of DAMD in particular and
Internet algorithms generally.

The network has a set of nodes N, n = ||N||, where each node is an AS. There is a set L of
(bidirectional) links between nodes in N. We assume that this network, called the AS graph, is
biconnected; this is not a severe restriction, because the route-selection problem only arises when a
node has multiple potential routes to a destination. For any two nodes i, j € N, T}; is the intensity
of traffic (number of packets) originating from i destined for j.

Recall that a node k incurs a transit cost ¢ for each transit packet it carries. For simplicity, we
assume that this cost is independent of which neighbor k received the packet from and which neigh-
bor k sends the packet to, but our approach could be extended to handle a more general case. We
write ¢ for the vector (ci, ..., c,) of all transit costs and ¢* for the vector (c1, ..., Ch—1, Cha1,---Cn)
of all costs except c¢y.

Each node k is given a payment p* to compensate it for carrying transit traffic. In general, this
payment can depend on the costs ¢, the traffic matrix [T;;], and the network topology. Our only
assumption is that nodes that carry no transit traffic whatsoever receive no payment.

Our goal is to send each packet along the LCP, according to the true cost vector c. We assume
the presence of a routing protocol like BGP that, given a set of node costs ¢, routes packets
along LCPs. Furthermore, we assume that, if there are two LCPs between a particular source
and destination, the routing protocol has an appropriate way to break ties. Let Iy(c;4,j) be the
indicator function for the LCP from i to j; i.e., Ix(c;i,7) = 1, if node k is an intermediate node
on the LCP from i to j, and Ij(c;14,j) = 0 otherwise. Note that I;(c;4,j) = I;(c;4,5) = 0; only the
transit node costs are counted. The objective function we want to minimize is the total cost V (c)

of routing all packets:
Vie)= > Ty Y Iilcii,j)ex
ijEN  keN

Minimizing V is equivalent to minimizing, for every ¢,j € IN, the cost of the path between ¢ and j.
Theorem 5 When routing picks lowest-cost paths, and the network is biconnected, there is a unique

strategyproof pricing mechanism that gives no payment to nodes that carry no transit traffic. The
payments to transit nodes are of the form p* = Zi,jeN Tijpfj, where

pk Cka CaZa] ZI C’ 00727] ZI C,Za.]
reN reN

The proof of this theorem is a fairly straightforward application of the Green and Laffont [13]
characterization of VCG mechanisms and can be found in [7].

5The tables in [7] contain both LCPs (as do BGP tables) and costs and prices.
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Let P(c;i,7) denote the LCP from i to j for the vector of declared costs ¢, and let ¢(i, j) denote
the cost of this path. Define P~*(c;i,7) to be the lowest-cost k-avoiding path from i to j. Recall
that, if there are multiple LCPs between two nodes, the routing mechanism selects one of them
in a loop-free manner. Loop-free means that the routes are chosen so that the overall set of LCPs
from every other node to j forms a tree. In other words, for each destination j, we assume that
the LCPs selected form a tree rooted at j; call this tree T'(j).

Consider each destination j separately. The BGP table at ¢ contains the LCP to j:

P(Cala]) = VsyVUs—1,""", V0 :ja

and the cost of this path, ¢(i, j), where vs,vs_1,- -+ ,vp are the nodes on the LCP to j and ¢(i,j) =
2 vt Co,-

At the beginning of the computation, all the entries of pf; are set to co. Whenever any entry
of this price array changes, the array and the path P(c;4,j) are sent to all neighbors of i. As long
as the network is static, the entries decrease monotonically as the computation progresses. If the
network is dynamic, price and route computation start over whenever there is a change.

Note that each node can infer from the routing tables it receives from its neighbors whether a is
its parent, child, or neither in the tree T'(j), for each neighbor a. When node i receives an updated
price from a neighbor a, it performs the following updates to its internal state.

e If a is i’s parent in T'(j), then i scans the incoming array and updates its own values if
necessary:
pij = min(pjf,py;) Vr<s-—1

e If a is a child of 7 in T'(j), ¢ updates its payment values using
pif = min(p;7,pys + ¢ +cq) Vr<s

e If @ is neither a parent nor a child, ¢ first scans a’s updated path to find the nearest common
ancestor v;. Then ¢ performs the following updates:

Vr <t pjf = min(p;}, pyi + ca + c(a, j) — (i, j))
Vr >t pf‘; = mln(p;)]?a Ck + Cq + C(a‘vj) - 6(7‘7]))

As explained above, the overall algorithm is “BGP-compatible,” because it has the same basic
structure as the existing BGP. All of the communication among ASes takes place via routing-table
exchanges between neighbors in the AS graph, and these exchanges are triggered by table updates.
The local-computation step performed by an AS after it receives a table update is a form of dynamic
programming, the running time of which is comparable to that of the local computation done by
the existing BGP. Let d be the maximum, over all ¢ and j, of the number of hops in the lowest-cost
path P(c;i,7) and d' be the maximum, over all i, j, k, of the number of hops in the lowest-cost
k-avoiding path P~%(c;4,j). Then we have the following:

Theorem 6 This algorithm computes the VCG prices correctly, uses routing tables of size O(nd)
(i.e., imposes only a constant-factor penalty on the BGP routing-table size), and converges in
at most max(d, d’) stages (i.e., imposes only a small additive penalty on the worst-case BGP
convergence time).

48



The intuition behind the proof of Theorem 6 is as follows: The critical information that ¢ needs
to compute the correct price p,’fj is the cost of P(c;i,7) and the cost of P k(¢ i,7). (Recall that
the cost ¢, is distributed with LCPs to k, and so it will be known to ¢ before or at the same time
as the cost of P(c;i,7).) After these costs have been discovered, the price pi-‘“'j will not change.
The key observation is that, for both P(c;i,j) and P~*(c;i,j), all suffixes of the path are also
LCPs or minimum-cost k-avoiding paths; moreover, this is true even at intermediate stages of the
computation. This observation is used to prove the correctness of the price-update formulas that
appear in the algorithm. Furthermore, it is used to show that the costs along these paths are
propagated further in each stage and hence that the total number of stages that they need to reach
i is at most the maximum number of hops in any of the paths P(c;i,j) or P*k(c; i,7). A complete
proof can be found in the full version of [7].

5 Hard and Easy DAMD Problems

The central mission of TCS is to determine which problems are easy and which are hard in relevant
computational models. In the Turing-machine model of centralized computation, the (crude) dis-
tinction is between polynomial-time solvable problems and those that are NP-hard. In the PRAM
model of parallel computation, it is between those problems that are in NC and those that are
P-hard. One of the major goals of this study of DAMD foundations is to develop the tools needed
to classify relevant problems as easy or hard “to compute incentive-compatibly on the Internet”
and to find more natural examples of both hard and easy DAMD problems.

Informally, a DAMD problem can be considered “easy” if it can be solved in a manner that
is both incentive-compatible and computationally tractable. The technical definitions of incentive
compatibility and computational tractability will depend on the particular problem under consid-
eration.

The discussion in Section 3 shows that welfare-maximizing multicast cost sharing is easy when
strategyproofness is the incentive-compatibility requirement, and low absolute network complexity
is the computational-tractability requirement. The first open problem is to determine how general
this result is. Recall that the MC mechanism is the only strategyproof and efficient mechanism that
satisfies NPT and VP. If we remove the NPT and VP requirements, then we have the entire family
of VCG mechanisms at our disposal. How many of these have reasonable network complexity?

Open Problem 1 Fully characterize the set of easy welfare-mazximizing multicast cost sharing
problems.

Of course, we are interested in far more than just multicast cost sharing, and one of the central
DAMD challenges is the search for additional examples.

Open Problem 2 Design good distributed algorithmic mechanisms to show that natural problems
of interest are easy.

Four particularly promising application areas for the design of distributed algorithmic mechanisms
are web caching, overlay networks, peer-to-peer systems, and distributed task allocation. These are
discussed in Section 9 of [9].

While easy problems are a field’s “successes,” hard problems often lead to a deeper understand-
ing of an approach’s fundamental limitations. Thus, we are interested in how to define hardness in
the DAMD context. Superficially, a problem is hard if it cannot be solved in a manner that satisfies
both the incentive-compatibility and the computational-tractability requirements. There will be
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many problems for which this cannot be done; NP-hard problems, for example, cannot be solved
in a computationally tractable manner (unless P=NP), and there are no efficient, strategyproof,
and budget-balanced solutions to general cost-sharing problems. However, we are not interested in
hardness per se but rather in hardness that results from the interplay of incentive compatibility and
computational complexity. Thus, a more useful distinction is made by defining a DAMD problem
to be canonically hard if each of these two requirements can be satisfied individually, but they can-
not be satisfied simultaneously. Canonical hard problems will help us understand the fundamental
nature of hardness in DAMD, as opposed to hardness that results solely from computational issues
or solely from incentive issues.

Budget-balanced multicast cost sharing, under a few natural incentive-compatibility restrictions,
is canonically hard. Here, the computational-tractability requirement is low absolute network
complexity, as it is for welfare-maximizing multicast cost sharing. The incentive-compatibility
conditions include the aforementioned group strategyproofness, NPT, and VP and the following
two additional requirements:

CS Consumer Sovereignty: For given T(P)” and link costs c(-), there exists some & such that
o;(v) =1 if v; > k; this condition ensures that the network cannot exclude any agent who is
willing to pay a sufficiently large amount, regardless of other agents’ valuations.

SYM Symmetry: If i and j are at the same node or are at different nodes separated by a zero-cost
path, and v; = v;, then z; = z;.

The SH mechanism defined in Section 3 is the natural group-strategyproof, budget-balanced mech-
anism to consider, for reasons discussed at length by Moulin and Shenker [20], but it is only one
of several group-strategyproof, budget-balanced mechanisms in the literature that have properties
NPT, VP, CS, and SYM It is shown in [6] that no group-strategyproof, budget-balanced multicast
cost-sharing mechanism that satisfies conditions NPT, VP, CS, and SYM can have low absolute
network complexity.

Thus, for this problem, one cannot simultaneously meet the computational-tractability require-
ment and the incentive-compatibility requirement. However, one can meet each requirement in-
dependently. The SH mechanism satisfies the incentive-compatibility requirement, and one can
easily obtain budget-balanced cost-sharing “mechanisms” with low absolute network complexity
if incentive issues are ignored. For instance, in one bottom-up pass of T'(P), one can compute
V=>cpviand C =}, c(l). If C >V, no one receives the transmission, and the mechanism
does one top-down pass to inform all members of P that this is the outcome; if C' < V, everyone
receives the transmission, and the mechanism does one top-down pass to communicate the cost
share (C - v;)/V to agent i, for all i € P.

Group-strategyproof, budget-balanced multicast cost sharing with the additional restrictions of
NPT, VP, CS, and SYM is the only canonically hard DAMD problem that has been identified so
far. To gain a greater understanding of DAMD, we need many more examples.

Open Problem 3 Find more DAMD problems that are canonically hard.

These informal descriptions of what we mean by “easy” and “hard” suffice for the analysis of
some examples, but a formal framework is needed if we are to go beyond examples and develop a
full-fledged “complexity theory of Internet computation.”

"For brevity, we often use T(P) to denote four components of a multicast cost-sharing problem instance: the
node-set N, the link-set L, the locations of the agents, and the multicast-source location as.
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Open Problem 4 Define the computational models and computational resources needed to for-
malize “network complexity,” both absolute and relative, and other relevant measures of DAMD
complezity. Develop the appropriate notions of “reduction” to show that certain problems are hard
or complete for the relevant complexity classes.

The preceding discussion considered hardness of DAMD problems. One can also consider hard-
ness of AMD problems by using notions of computational tractability that are appropriate in a cen-
tralized computational model. However, we are not aware of a canonically hard AMD problem.? All
unsuccessful attempts to devise computationally tractable, centralized algorithmic mechanisms that
we are aware of fail either because incentive compatibility is unattainable (e.g., budget-balanced
and welfare-maximizing cost sharing) or because computational tractability is unattainable (e.g.,
NP-hard welfare maximization in combinatorial auctions) but not because of the interplay of the
two. An interesting open question is whether such canonically hard AMD problems exist.

6 Indirect Mechanisms

Most of the work to date on algorithmic mechanisms in the TCS community has focused on strate-
gyproof, direct mechanisms. The underlying premise of this approach is that agents will voluntarily
reveal their private information if it can be proven that lying does them no good in the situation
addressed by this particular mechanism-design exercise. We question this premise. Indeed, the
TCS community generally questions this premise, which it did not invent but rather inherited from
the economics community. Revelation of private information may be in an agent’s best interest in
the particular game at hand, but it may be unacceptable in the broader context.

For example, in the interdomain-routing mechanism of [7] discussed in Section 4 above, ASes
are expected to reveal their internal per-packet transit costs, and conventional economic wisdom
would have it that they’d be willing to do so, because the mechanism is strategyproof. However,
this seems unrealistic: Revealing its true transit costs may reveal details about an AS’s internal
network that it wants to keep private for reasons that have nothing to do with near-term transit-
traffic revenues.

More fundamentally, the real mechanism-design goal is not to convince agents to reveal their
private inputs but rather to compute the desired result that depends on these inputs. The economics
literature does not emphasize the fact that these are distinct goals, but the distinction a major focus
of the TCS literature. The theory of secure, multiparty function evaluation (SMFE), developed by
the cryptographic-research community, shows that functions can often be computed in such a way
that nothing about agent i’s private input need be revealed to agent j (except what is logically
implied by the outcome and agent j’s private input). In economic terms, the SMFE approach would
lead to indirect mechanisms, because agents would not be revealing their utilities but instead would
be using strategies drawn from some other strategy space. For an overview of SMFE, see Goldreich
[12].

One cannot always apply SMFE techniques “off the shelf” to DAMD. In particular, one often
cannot “compose” a direct distributed algorithmic mechanism with a standard SMFE protocol, for
several fundamental reasons:

e The strategic models may be different. Some standard SMFE techniques apply to networks
in which at least a constant fraction of the agents are obedient; the other agents are often as-
sumed to be Byzantine adversaries. Although one usually does not have to design distributed

8The question of whether there are any such problems was brought to our attention by Eric Friedman.
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mechanisms for Byzantine adversarial agents, one often has to assume that all of the agents
will act strategically — none can be assumed to be obedient.

e Standard SMFE techniques for transforming an arbitrary multi-agent protocol into one that
keeps agents’ inputs private and computes the same output produce protocols with unac-
ceptably high network complexity. In particular, the required total number of messages may
grow quadratically (or worse) as a function of the total number of agents. Sometimes special-
purpose, SMFE protocols with low network complexity are obtainable, but, if these are to be
found for DAMD problems of interest, they will have to be designed on a case-by-case basis;
no general SMFE results guarantee their existence.

e Some of the standard building blocks of protocols in the SMFE literature (notably secret
sharing) assume that each agent knows the set of all agents participating in the protocol
and can refer to each of them using a unique ID. Clearly this is not the case in all DAMD
problems; in particular, it is not the case in the multicast cost-sharing problem, where two
agents resident at different nodes of the multicast tree must be assumed to be ignorant of
each other’s existence.

Open Problem 5 Ezplore agent privacy in specific DAMD problems of interest. More generally,
devise new building blocks for SMFFE protocols that are applicable in the DAMD context, where
all agents can be strategic (i.e., none need be obedient or adversarial), low network complexity is
crucial, and the set of participating agents is unknown to each individual agent.

In addition to the standard SMFE literature [12], work that might be relevant to Open Problem 5
includes but is not limited to the papers of Naor and Nissim [21], Naor, Pinkas, and Sumner [22],
and Dodis, Halevi, and Rabin [5].

Thus far, our motivation for considering indirect mechanisms has been the desire to preserve
agents’ privacy, and we have observed that low network complexity and agent privacy may be hard
to achieve simultaneously. It is important to note, however, that indirect mechanisms have not
been shown to have inherently higher network complexity than direct mechanisms.

Open Problem 6 Are there DAMD problems for which all direct mechanisms have bad network
complexity but at least one indirect mechanism has good network complexity?

Indirect mechanisms might have other advantages as well, such as enabling one to trade off
between agent computation and mechanism computation or to avoid worst-case running times on
many instances [24]. They might also enable approzimation of mechanism-design problems that are
canonically hard.? These benefits have been demonstrated in the context of combinatorial auctions
and should be explored in other contexts as well.
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