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Abstract

Spam is a never-ending issue that constantly consumes resources to no useful end. In this paper, we envision spam

filtering as a pipeline consisting of DNS blacklists, filters based on SYN packet features, filters based on traffic char-

acteristics and filters based on message content. Each stage of the pipeline examines more information in the message

but is more computationally expensive. A message is rejected as spam once any layer is sufficiently confident. We

analyze this pipeline, focusing on the first three layers, from a single-enterprise perspective. To do this we use a large

email dataset collected over two years. We devise a novel ground truth determination system to allow us to label this

large dataset accurately. Using two machine learning algorithms, we study (i) how the different pipeline layers interact

with each other and the value added by each layer, (ii) the utility of individual features in each layer, (iii) stability of

the layers across time and network events and (iv) an operational use case investigating whether this architecture can

be practically useful. We find that (i) the pipeline architecture is generally useful in terms of accuracy as well as in an

operational setting, (ii) it generally ages gracefully across long time periods and (iii) in some cases, later layers can

compensate for poor performance in the earlier layers. Among the caveats we find are that (i) the utility of network

features is not as high in the single enterprise viewpoint as reported in other prior work, (ii) major network events can

sharply affect the detection rate, and (iii) the operational (computational) benefit of the pipeline may depend on the

efficiency of the final content filter.
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1. Introduction

Spam is clearly an ongoing challenge for both network operators and users. Spam imposes many costs ranging

from simple network capacity, computation and storage costs to user productivity issues that arise as people manually

filter spam that is not automatically caught or worse, lose legitimate messages in the maze of filters our messages now

must traverse. While in general, spam filtering in one form or another works reasonably well in terms of keeping spam

away from users without excessively dropping legitimate communication, the costs of this filtering are high behind the

scenes. For instance, computational complexity issues arise with parsing and tokenizing email, database lookups, etc.

Further, depending on the setup the storage requirements of retaining a “junk” folder for users to pick through if they

suspect a lost message is also high. For instance, one of the authors’ “junk” folders consists of 66 MB of messages over

the last 30 days. In addition, spam represents an arms race whereby spammers are constantly developing new ways to

circumvent filters (by adjusting their content, where they transmit spam from, etc.) while network administrators are

constantly updating their tools and databases to keep spam away from their users. Therefore, while a users’ viewpoint

might well be that spam appears to be a largely “solved” problem the reality is quite different for administrators and

operators.

A research direction recently emerged focusing on non-content features to build models that can disambiguate

spam and legitimate email (commonly referred to as “ham”) [35, 9, 20]. For instance, email that comes from bogus IP

addresses or does not follow the usual size distribution of ham might be more likely to be spam. The overall thrust of

these efforts is to try to reduce the cost of spam filtering by making some decisions without relying on computationally
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Figure 1: The conceptual spam filtering pipeline. Each layer looks at more information in the message and so is more computationally expensive to

use, but also potentially more accurate at filtering spam. We assume the fourth layer, content filters, will always be present. Our work explores the

accuracy and cost tradeoffs between the first three layers, and the value added in the presence of the fourth layer.

expensive content filters or by throwing away some spam (when it can be detected with high confidence) and thus not

burdening the storage infrastructure. Further motivation of not relying solely on content features is that content of

spam email could be manipulated relatively easily by spammers to blur the boundary between ham and spam and

confuse the content-based filters. For instance, Lowd and Meek describe a “good word attack”, which inserts words

indicative of legitimate email into spam and gets up to 50% of currently blocked spam through certain types of content

filters [22]. Conversely, Nelson et al. show that by inserting carefully selected words into spam, a content-based filter

can be subverted to block some ham messages [27].

Of course, using non-content features to filter email is itself not a new idea—the well established method of using

DNS blacklists filter email by simply looking at the IP address of the sender and comparing it to a list of addresses

“known” to be sending spam. Recent work has expanded upon this idea, however, by exploiting machine learning

methods to train classifiers using features derived from the first SYN packet and features derived from the network

characteristics (e.g., round-trip time, TCP advertised window sizes) of the email transfer1 [20, 9]. These “content-

blind” techniques are attractive because they leverage properties that are hard to manipulate and can help discard spam

quickly and at less computational cost. We find that each of these approaches and their respective feature sets have

some utility in separating ham from spam.

Though it was not presented this way, the prior work above motivates us to consider a conceptual “spam filter

pipeline” (Figure 1) at the entry point to an enterprise. In this pipeline, each email is processed first by the DNS

blacklist, followed by the information in the first SYN packet, followed by more complete network characteristics

(considering the first packet features in combination with other characteristics of the email transfer), and finally the

content. Each filter looks at more information in the email, and so is more computationally expensive than the previous,

but also potentially more accurate. Each filter discards what it concludes is “surely” spam (of course, with some error)

and sends any remaining messages to the next layer. Moreover, in this paper, we consider two separate classifiers in

each stage—one trained to detect and discard “sure spam” as above, and the other to detect (again with some error)

any “sure ham” messages, which are transferred to the user’s inbox, thereby reducing further the number of uncertain

messages passed to the next stage. We note that this pipeline is primarily a conceptual framework; in an operational

setting, the exact architecture may differ depending on the techniques used and other considerations such as operational

efficiency and storage costs. In particular, we consider a setup where the pipeline contains only one stage between the

DNS blacklist and the content filter, considering the performance of this stage when it is limited to only the first packet

features or utilizes richer network characteristics from the email transfer.

This paper analyzes this pipeline focusing on the stages before the content filter. We assume content filters will

always be present; it seems unrealistic to have a highly accurate spam filter that never looks at the content. Specifically,

we address the questions from a single enterprise perspective:

1. What is the added value in terms of accuracy by the second and third layers? 2

2. Does the added value depend on the machine learning algorithm used to process these features?

3. How do the layers interact with each other? Can a later layer “take over” if an earlier one becomes inaccurate?

4. Does the added value stay stable over time and across network events?

1These characteristics include both network-layer and TCP-layer features; we refer to them collectively as “network features” to emphasize that

they are lower-level features not derived from content.
2Other work has evaluated the accuracy of DNS blacklists [38] and content filters [8, 28].
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5. What features are primarily responsible for the value addition?

6. What is the computational load of such a pipelined architecture as opposed to just using the DNS blacklist and

a single content filter (a currently standard setup)?

To answer these questions, we use a very large dataset collected over a two-year period, from May 2009 to April

2011. Our dataset includes over 1.4 million messages received at the International Computer Science Institute (ICSI).

The size of our dataset allows us to not only re-appraise previous results in a new and larger context—which is valuable

in its own right given the heterogeneity of the Internet—but also to carefully address the questions above. However,

the size of our dataset also creates a problem in terms of determining ground truth, since it is impossible to hand-label

all of these messages, not only because of their numbers but also because of privacy concerns. To solve this, we use

a novel procedure we developed for automatic email labeling with high accuracy. This is also a contribution of our

work. We believe our methodology for ground truth development will be applicable beyond the scope of our current

work and become generally useful in evaluating spam classification techniques.

In the following sections, we first describe the data we collected and our novel ground truth determination pro-

cedure. Then we describe experiments designed to answer the questions above and discuss the results. Finally, we

discuss related work and conclude.

2. Data Collection and Feature Extraction

As part of our general monitoring activities we collect full content packet traces from the border of the International

Computer Science Institute (ICSI). Retaining all such traces permanently is prohibitive for a number of reasons and

therefore the ICSI traces are retained only temporarily—essentially until their operational relevance for forensics and

troubleshooting has diminished. For this study, we retained packets involving ICSI’s two main SMTP servers.3 The

dataset we use in this paper covers one week each month (the 11th through the 18th) from May 2009 through April

2011. We only consider mail to ICSI users and not outgoing mail from ICSI users as this latter would introduce

significant bias in the network characteristics because ICSI’s two SMTP servers and connectivity would be a strong

influence.

ICSI’s standard email setup involves using the Spamhaus SBL, XBL and PBL DNS blacklists [39] to help mitigate

the impact of spam. SMTP transactions with blacklisted hosts are terminated by the SMTP daemon with an SMTP

error delivered to the remote host. These transactions do not give us the message body to understand if the message

is actually spam nor a chance to observe a number of our flow-level features (described below). We do not include

these blacklisted transactions in most of our experiments, so that our setup resembles the typical operational setup at

many institutions that includes a DNS blacklist as a first step in the spam filtering process. When we do consider these

transactions (see Section 5.3), namely, in the experiments involving only features of the SYN packets4, we categorize

all blacklisted transactions as spam. As we will see, these experiments indicate that filtering emails with the blacklist

may make our job more difficult by removing some of the more egregious sources of spam, leaving the rest of the

pipeline to contend with more subtle spammers.

The characteristics of the data are given in Table 1. The middle columns denote messages which are excluded

because they are outgoing, or for which we do not have network characteristics or content for various reasons. The

“Various Bad” column includes the following: messages aimed at an invalid ICSI user—and therefore never delivered

to ICSI; SMTP sessions that sent malformed HELLO commands thus failed a BAD HELLO check; TLS encrypted

SMTP sessions whose content cannot be reconstructed from packet traces; and delivery attempts without any actual

message. For unknown reasons, some SMTP sessions did not end up with a whole email message; these are listed in

the “Unknown” category. The next two columns in Table 1 show the number of spam and ham email in each month.

The specifics of how we derived these numbers is given in the next section.

From our corpus of packet traces we use Bro [31] to re-assemble email messages from each of the incoming SMTP

connections and spamflow [9], Bro and p0f [41] to generate the network characteristics of each connection. We use

the messages themselves to develop ground truth (as described in the next section). Table 2 lists the network- and

transport-layer features we distill from the packet traces. Here, “local” indicates one of the two ICSI mail servers

3We do record email not involving these two servers, but since in some cases our tools rely on the notion of a well-known mail server to form an

understanding of directionality, we exclude this traffic. The excluded traffic is a relatively small fraction of the SMTP traffic recorded. For instance,

we exclude 0.3% of the SMTP packets and 0.5% of the SMTP bytes on the first day of our data collection.
4SYN packets in the ICSI setup occur before the blacklist query and thus are available.
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Msgs Outbound DNSBL Various Bad Unknown Spam Ham

May/09 279K 41K 165K 20K 4K 30K 18K

Jun/09 302K 38K 185K 28K 6K 26K 18K

Jul/09 317K 49K 174K 39K 8K 30K 18K

Aug/09 292K 54K 165K 26K 5K 26K 15K

Sep/09 300K 46K 172K 31K 7K 27K 17K

Oct/09 223K 37K 116K 19K 8K 25K 17K

Nov/09 249K 43K 105K 17K 7K 55K 21K

Dec/09 335K 42K 168K 39K 5K 53K 25K

Jan/10 311K 40K 152K 35K 5K 51K 26K

Feb/10 235K 50K 116K 20K 6K 26K 17K

Mar/10 270K 49K 122K 23K 84K 53K 18K

Apr/10 270K 4K 118K 18K 10K 54K 22K

May/10 250K 49K 104K 14K 6K 47K 28K

Jun/10 215K 45K 91K 16K 4K 39K 21K

Jul/10 277K 56K 120K 21K 14K 29K 35K

Aug/10 255K 48K 102K 21K 15K 48K 23K

Sep/10 227K 30K 40K 81K 12K 46K 17K

Oct/10 229K 40K 39K 84K 10K 42K 14K

Nov/10 215K 44K 39K 77K 4K 38K 13K

Dec/10 214K 44K 43K 63K 4K 46K 15K

Jan/11 202K 40K 39K 59K 5K 45K 15K

Feb/11 209K 47K 37K 54K 10K 45K 16K

Mar/11 164K 42K 32K 34K 4K 38K 14K

Apr/11 175K 40K 40K 35K 3K 42K 15K

Table 1: Data overview: The second column shows the total number of email messages, the third column shows outbound messages, the fourth

column shows messages blocked by the DNS blacklist, columns 3–6 show messages removed from the analysis and the last two columns give the

number of spam and ham.

that are near the packet tracing vantage point, while “remote” indicates the non-ICSI host that is connecting to the

ICSI mail server. In other words, the “remote” host is sending mail to the “local” host. Features marked with a “∗”

were derived by Bro, those marked with a “¶” were derived by p0f and the remaining features were obtained via

spamflow.5 Finally, we place a B next to those features that are common between our study and prior work [9]. From

this data, we derived two sets of features: packet features from the SYN packet and flow features from the network

traffic characteristics of the whole SMTP session. These features are explained below.

Packet Features. The upper part of Table 2 lists the features we use that are derived just from the SYN packet of the

incoming SMTP connection. We call these “packet features.” The geoDistance, senderHour, AS-Spamminess, and

neighborDist features are used in prior work [20] although we derive the last three differently, as follows. We do not

translate sender’s hour into the ratio of ham to spam that were sent during that hour, because sender’s hour itself is a

numeric feature directly suitable for inclusion in our models. Prior work uses the AS number directly as a numeric

feature. However, AS numbers are individual labels which do not lend themselves to meaningful aggregation in models

(e.g., just because ASes 3 and 12 show some common behavior does not mean that ASes 4–11 share that behavior).

Further, if treated as discrete values, the number of distinct AS values may be problematic for some classification

methods. So we translate sender’s AS number into a numerical value that reflects the prevalence of spam originating

in the AS. The value for this feature is derived by using all messages in a training sample to develop a database of

the “spamminess” of an AS. If a test message came from an AS that did not occur in the training set, we assign the

average spamminess over all ASes as the value of this feature for that message.

To calculate the neighbor distance, neighborDist, Hao, et al. [20] first split their dataset into 24-hour bins. Neigh-

borDist is then the average distance to the 20 nearest IPs among preceding senders in the same bin, or among all

5We derived these few features outside spamflow purely as a convenience. We believe that all network and transport layer features could be

readily derived in a single place—likely the TCP implementation itself in an operational setting.
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Feature Description

geoDistanceH The geographical distance between the sender and ICSI, based

on the MaxMind GeoIP database [24].

senderHourH The hour of packet arrival in sender’s timezone.

AS-SpamminessH Number of spam from AS divided by total messages, from AS in the training set.

neighborDistH Average numerical distribution from sender’s IP to the nearest 20 IPs of other senders.

OS OS of remote host as determined by p0f tool from SYN packet.

ttl IP TTL field from SYN received from remote host.

ws Advertised window size from SYN received from remote host.

3whsB Time between the arrival of the SYN from the remote host and arrival

of ACK of the SYN/ACK sent by the local host.

fins localB Number of TCP segments with “FIN” bit set sent by the local mail server.

fins remoteB Number of TCP segments with “FIN” bit set received from the remote host.

idleB Maximum time between two successive packet arrivals from remote host.

jvarB The variance of the inter-packet arrival times from the remote host.

pkts sent / Ratio of the number of packets sent by the local host to the

pkts recvd number of packets received from the remote host

rsts localB Number of segments with “RST” bit set sent by the local mail server.

rsts remoteB Number of segments with “RST” bit set received from remote host.

rttv Variance of RTT from local mail server to remote host.

rxmt localB Number of retransmissions sent by the local mail server.

rxmt remoteB Approximate number of retransmissions sent by the remote host.

bytecount Number of non-retransmitted bytes received from the remote host.

throughput bytecount divided by the connection duration.

Table 2: Message features. Features marked with H and B are from [20] and [9], respectively.

the neighbors if there are fewer than 20 preceding senders [20, 19]. This procedure is not suitable for our enterprise

environment because a one-day bin does not provide enough email to accumulate enough history. Further, since the

database is smaller, boundary effects due to insufficient number of neighbors in the beginning of each bin influence

the results greatly. This is illustrative of our first contribution (discussed in more detail below): a single edge net-

work’s myopic view may thwart development of accurate models in some cases. To mitigate this effect, we build IP

databases using an entire training sample—consisting of 9/10 of the data for each month, given we use 10-fold cross

validation (described later). We then use this database to produce neighborDist values for the training and test data.

Note that because of our procedure, each fold of our experiments uses different databases for the AS-Spamminess and

neighborDist features. We refer to these two features as “database features” below.

Hao et al. also use a feature that requires port scanning the sending IP. This is operationally problematic as it is

time consuming and may trigger security alarms on remote hosts. Further, while we have historical packet trace data,

we do not have historical port scanning data and mixing current port scans with historical packet traces would be a

dubious experimental procedure. While we deleted or modified several single packet features we also added several

features: senders’ OS, IP’s residual TTL, and TCP’s advertised window.

Flow features. The lower part of Table 2 shows the set of flow features we use to describe messages. This list overlaps

with that used in prior work [9] (with common features tagged with a B)). We added several features we believe may

help discriminate ham from spam. In addition, we removed three features, as well: packets (in each direction), cwnd0

and cwndmin. The number of packets is closely related to the bytecount and pkts sent/pkts recvd features in our list.

The two cwnd features are actually not about the congestion window, but about the advertised window. The cwnd0

feature tries to capture the case when the remote host goes into a zero-window probing mode because the local host

has exhausted some buffer. Further, the cwndmin feature likewise assesses the occupancy of the local TCP buffer. We

excluded these because they did not depend on the state of the remote host or the network path. Further, [9] shows

these to be not particularly useful in detecting spam. In addition to changing the set of features note that some of the

names of the features have been changed to aid clarity.

3. Ground Truth Determination

Assessing any automatic classification technology requires the establishment of ground truth, which is our case

means pre-determination of which messages are spam and which are ham. Establishing ground truth presents a difficult

challenge in large datasets such as ours. Hand-labeling is the best way to establish ground truth as was done for the

18K messages used in [9]. However, using hand labeling to generate ground truth does not scale in terms of number
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of messages, due to the time consuming manual process, or across multiple users, due to ethical concerns relating to

reviewing others’ email. Therefore, hand labeling more than 1.4 million messages from across ICSI in our dataset is not

feasible. Further, using a single spam filter to automatically label messages [17] would potentially bias the detection

techniques we develop by making our detection mimic a known detection scheme and fall prey to any blind spots

present in the given tool. Note that [17] is not developing new detection methodology, but rather characterizing spam

traffic within the context of a working operational setup and therefore the use of a single strategy is less problematic

and logistically understandable.

Consequently, to produce approximate ground truth we developed an automatic labeling procedure that involves

combining the predictions of four open source spam filters, each with (largely) independent methodologies for clas-

sifying a message, followed by manual verification of a sample large enough to yield tight confidence intervals, but

significantly smaller than the full set, so manual checking of this sample was possible. This sample was collected from

January 2009, and the checked messages were not further used in our experiments. We employed the following tools:

SpamAssassin: We used SpamAssassin 3.1.7 (current when we started our investigation) [4, 37]. SpamAssassin

includes a series of tests and signatures that it uses to score a message—with a threshold then used to determine

if the message is spam or ham. We used the default threshold of 5.0. SpamAssassin can optionally use a

Bayesian learning algorithm and several non-local tests whereby remote databases are queried. We did not use

either of these features (in an attempt to stay independent of the other tools).

SpamProbe: We use SpamProbe v1.4b [10] which is a naı̈ve Bayesian analysis tool that works on both single and

two-word phrases in email. SpamProbe calculates the probability that the given message is spam and classifies

messages with a probability of at least 0.6 (the default) as spam.

SpamBayes: We use SpamBayes v0.3 [25] which is another naı̈ve Bayesian analysis tool. As with SpamProbe this

tool tokenizes the input and calculates the probability a message is spam. While we use two basic Bayesian

tools we note that the details of the implementation matter and these tools disagree for 30% of the messages in

our January 2009 dataset (as detailed below).

CRM-114: We use the Orthogonal Sparse Bigrams classifier in CRM-114 v20060704a-BlameRobert [1]. CRM-

114 is a Bayesian filter that calculates the probability a message is spam using features corresponding to

pairs of words and their inter-word distances. We run CRM-114 using the standard defaults except for the

“thick threshold”. CRM-114 classifies messages as spam, ham or unsure. While operationally useful, since

we are trying to determine ground truth, we force CRM-114 to eliminate the unsure classification and make a

decision by setting the thick threshold to zero.

The latter three tools above need to be trained before they can classify messages. That is, the tools have no built-in

notions of ham and spam, but must be given labeled samples of these two classes to learn their characteristics. In

our study we used the TREC email corpus from 2007 [12] (the latest available when we started this project). The

corpus includes 25K ham messages and 50K spam messages. The messages that comprise the corpus arrived at one

particular mail server over the course of three months. A hybrid of automated techniques and hand labeling was used

to categorize the messages. This corpus is far from ideal in that the TREC corpus is dated relative to the data we

collected for our study. This is problematic because spam is a constant arms race between spammers developing new

techniques to evade filters and filters becoming increasingly savvy about spamming techniques. Further, we train each

tool one time, whereas in a more realistic setting the tools could be regularly trained on new types of emails (either

automatically or by being corrected by users, depending on the tool). That said, as illustrated below a manual check

of our labels indicates that our overall procedure for obtaining approximate ground truth is accurate despite the less

than ideal starting point.

An additional note is that the tools chosen do in fact offer differing views on our email corpus. Table 3 shows

the pair-wise disagreement between tools used in our study on messages collected from January 2009. Even the best

aligned tools (SpamBayes and CRM-114) differ in 19% of the cases. This illustrates that we have chosen heteroge-

neous tools—which we believe is a key to the following procedure for generating ground truth because the tools can

effectively check each other.

Our strategy begins with each tool making a judgment on a given message and then we combine these judgments

to derive the overall conclusion. How to use results from multiple classifiers has been the subject of previous work

(e.g., [23]), and our initial inclination was to use one of the existing methods, namely, the “majority voting” scheme
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Tool 1 Tool 2 Disagreement

SpamAssassin CRM-114 37%

SpamAssassin SpamBayes 39%

SpamAssassin SpamProbe 23%

SpamBayes CRM-114 19%

SpamBayes SpamProbe 30%

CRM-114 SpamProbe 31%

Table 3: Pair-wise percentage of disagreement between spam detection tools used in developing ground truth in January 2009.

whereby a message was classified as spam in the ground truth if three or four of the tools judged it as spam (breaking

the ties in favor of spam since there is more spam in the corpus). Otherwise, we considered the message ham.

To determine whether our ground truth is sound we manually spot checked a set of messages from January 2009.

Ideally, we would simply have picked a random subset of all messages and verified the classification in our ground

truth. However, since we are working with real email the content could be sensitive and therefore we were not able to

use the ideal procedure. In particular, we did not manually examine messages that the spam filters universally agreed

were ham (with an exception being sketched below) due to concerns over looking through users’ email. However, we

determined that if at least one tool indicated that a message was spam then the message was likely to not be sensitive

and therefore manually looking at a random sample from across the institute was reasonable. Therefore, we chose

two kinds of messages for manual checking: (i) those messages that could be—in an automated fashion—clearly

determined to involve the third author of this paper (the only author with access to the raw messages) and were marked

as ham by all spam filtering tools (this yields 646 of the 35K such “clearly ham” messages in the corpus) and (ii) a

uniformly random sample of 2% of the messages6) where at least one tool classified the messages as spam (this yields

920 of the 47K messages marked as spam by at least one tool in our corpus). We found that 5 of the 646 “ham”

messages to actually be spam. Of the 920 spam-suspected messages selected, we found that 912 were indeed spam.

Thus, our spot-check set contains 646− 5 + 8 = 649 ham and 920 + 5− 8 = 917 spam messages.

Using this spot-checking procedure, we found that ground truth generation based on majority voting is inadequate.

Of the 917 spam messages in our spot-check set, 5 were not classified as such by any tool, 218 were classified as spam

by only one tool, 362 were classified as spam by only two tools, 250 that were classified as spam by three tools and the

rest were classified as spam by all four tools. Thus, majority voting, even after breaking ties in favor of spam, would

result in unacceptably high false negative rates (about (218 + 5)/917 = 24.3%).

On the other hand, consider the following strategy: label an email as spam if at least one tool judges it as spam,

and label it as ham otherwise (i.e., if all tools agree it is ham). This strategy has an 5/917 = 0.55% estimated false

negative rate (FNR; spam classified as ham), and a 8/(646 − 5 + 8) = 1.23% estimated false positive rate (FPR;

ham classified as spam), with the standard deviation of the estimates being 0.07% for FNR and 0.11% for FPR. The

overall estimated error rate is then 13/(917 + 649) = 0.83% with standard deviation 0.09%. To verify that this is not

an artifact of the samples being chosen from January 2009, we carried out similar verification using messages from

September and May and obtained comparable results: 0.3% FNR, 2.39% FPR in September and 0.28% FNR, 1.56%
FPR in May. Therefore, based on our samples, our labeling strategy is accurate (well within 3%).

In retrospect the any-one approach is intuitive in that off-the-shelf spam filters are conservative in classifying a

message as spam because the consequence of a false positive (blocking a legitimate mail) is more severe than that of

false negative (allowing a spam to reach the user). This causes the errors to go in the direction of identifying less spam.

The manual checking shows that being more aggressive in combining the filters’ judgments can mitigate this effect

and reduce the error significantly, which is important since the cost of inaccuracy is symmetrical when determining

ground truth (as opposed to an operational setting).

We note that we do not use the results of the manual inspection from January 2009 to train our classifiers. In

fact, the messages chosen for manual inspection were removed from the remainder of the analysis in our experiments.

Further, note that we are developing ground truth by observing content features. Our experiments in the following

sections involve classifying messages based on network features. We believe that even if there is a small error in our

ground truth that error does not bias our results because the content and network features are largely independent.

It is interesting to speculate whether this procedure could be used more generally. That is, could using existing

6Using 2% as our sampling rate is somewhat arbitrary and is based on both trying to keep the potential exposure of sensitive messages low while

also choosing a feasible number of messages for manual processing.
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tools with limited manual verification allow for large scale automatic labeling of email? This has implications for

retraining spam classifiers as well, which has to be done periodically. We defer a systematic study of the general

utility of this procedure, considering other tools and other methods of combining predictions, to future work.

4. Methodology

In this section, we describe the algorithms and empirical methodology we use to answer the questions of interest.

4.1. Learning Algorithms

We use two algorithms in our experiments: decision trees [34] (from Weka [40]) and Rulefit [15].

We use decision trees [26] as our primary algorithm. These are commonly used in machine learning. They work

using the idea of recursive partitioning: to build a decision tree, the learning algorithm iteratively chooses a feature (for

us, this is a network characteristic) based on some metric and uses the feature to partition the training examples. The

metric we use is a common metric called information gain, which chooses the feature that gives the most information

about the class label, as measured by the reduction in the entropy of the class label distribution. This is repeated until

a partition only has examples from one category (for us, until we get a partition consisting only of ham or spam),

which becomes a leaf node annotated with that category. To classify an example, it is “threaded” down the tree by

checking each test until it reaches a leaf. At this point it is assigned the category associated with this leaf. Decision

trees have several advantages for our purposes. First, they are computationally efficient: learning a tree takes on

average O(mn logm), where m is the number of examples and n is the number of features, and classification is just

O(d), where d is the depth of the tree. This is important for us because we are working with large data sets. Second,

decision trees are easy for people to understand and reason about. Once constructed, we are able to inspect the trees

and derive insights applicable to our problem. Third, it is easy to modify the tree construction procedure to incorporate

differential misclassification costs, that is, to produce trees that take into account that mistaking ham for spam is in

general a worse error than mistaking spam for ham (we leverage such models in constructing an operationally useful

system in Section 6). Finally, preliminary inspection of our data revealed that some of our features have “threshold

effects.” Suppose for a feature f , if f ≤ x, a message is more likely to be spam; if x ≤ f ≤ y a message is more

likely to be ham, if f ≥ y, a message is more likely to be spam. In such a case, a decision tree with successive tests

for f ≤ x and f ≥ y will easily lead to the desired classification.

To build decision trees from our data, we used the implementation of decision trees in the machine learning toolkit

Weka [40]. This implementation is called “J48.” We ran this with the default parameter settings of “-C 0.25 -M 2” in

all cases. The parameter C denotes a confidence threshold used for pruning the decision tree after construction and

the parameter M denotes the minimum number of examples in any leaf of the tree (i.e., once the number of examples

reaches this value, the partitioning process stops). These parameters have not been tuned to our application. It is

possible that improved results might be obtained if these parameters were tuned further. A part of a decision tree

learned on data from May 2009 is shown in Figure 3(a) (we discuss this tree in more detail in Section 5.1).

Rulefit (also used in prior work [20]) constructs a linear classifier that uses the primitive features as well as Boolean

tests on feature values as predictors. These tests are similar to the ones used in the internal nodes of decision trees and

evaluate to +1 or −1 for each example, depending on whether the corresponding test is true or false. To build Rulefit

models from our data, we used a previous implementation in R with default parameters [3].

4.2. Empirical Methodology and Metrics

To evaluate the performance of our tree models, we measure several metrics using stratified 10-fold cross validation

(implemented in Weka [40]). This procedure is standard machine learning methodology and partitions the data into

10 disjoint “folds” that are stratified based on the class label, i.e. the proportion of ham to spam in each fold is the

same as the overall proportion. In each of the ten iterations, we build a classifier on nine folds, then evaluate the tree

on the held out fold (the “test set”). We report the average value of several metrics on the 10 folds. First, we report

predictive accuracy on the test set. This is a general measure of agreement between the learned trees and the ground

truth (as established in Section 2). Further, we report the true positive rate (TPR), which is the fraction of spam that

was correctly identified as such by our models, and the false positive rate (FPR), which is the fraction of ham that

was erroneously classified as spam. Note that we treat spam as the positive class. Finally, we construct Receiver

Operating Characteristic (ROC) graphs by thresholding a probability measure reported by the learning algorithm. This

probability indicates, for each prediction, the “confidence” of the classifier in the prediction. To plot an ROC graph,
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Packet Features (with AS-Spamminess) Packet Features (without AS-Spamminess)

Month Acc TPR AROC Acc TPR AROC

May/09 0.663 0.464 0.783 0.594 0.348 0.768

Jun/09 0.564 0.266 0.785 0.454 0.072 0.652

Jul/09 0.563 0.312 0.805 0.438 0.108 0.666

Aug/09 0.543 0.280 0.773 0.479 0.172 0.660

Sep/09 0.586 0.322 0.783 0.497 0.169 0.663

Oct/09 0.640 0.406 0.779 0.488 0.145 0.683

Nov/09 0.507 0.319 0.660 0.436 0.218 0.826

Table 4: Results for packet features with and without AS-spamminess. The TPR is reported at 1% FPR for the “with AS-spamminess” case and at

0.2% FPR for the “without AS-spamminess” case. Results include months from May/09 to Nov/09.

we threshold this confidence measure and plot the TPR against the FPR at each threshold value. This graph gives us

a detailed view of the behavior of the classifier and allows us to choose a suitable operating point that trades off an

acceptable false positive rate against the true positive rate. Following prior work [20], we select operating points so

that FPR would not exceed 0.2%: since misclassifying ham as spam is likely to be much more expensive than the

reverse, a low FPR is required for an effective spam filter. As a summary statistic for the ROC graph, we report the

area under ROC (AROC), which has been shown to correct several weaknesses of accuracy as a quality metric [32].

5. Utility of Packet and Flow Features

In this section, we empirically answer the questions we posed in the introduction, repeated here for convenience:

1. What is the added value in terms of accuracy by classifiers based on packet features and network features?

2. Does the added value depend on the machine learning algorithm used to process these features?

3. How do the layers interact with each other? Can a later layer “take over” if an earlier one becomes inaccurate?

4. Does the added value stay stable over time and across network events?

5. What features are primarily responsible for the value addition?

The last question we posed, that of computational cost of the pipeline vis-a-vis the state of the art, is addressed in the

next section.

5.1. Value Added by Packet Features at the Enterprise

Our first question is whether the second layer in our spam pipeline adds value, i.e. is effective at identifying spam

accurately in a stand-alone enterprise mail service using only its own vantage point. To study this, we run cost-sensitive

decision trees on each month’s data from May 2009 to April 2011, using only the single packet features (in the upper

part of Table 2) to describe each message that passed through the DNS blacklist.

The choice of cost sensitive trees is because when running these experiments, we observed that the unmodified,

cost-insensitive trees had an average FPR of 18.74% across the months from May/2009 to Nov/2009, and our attempts

to reduce it by thresholding the confidence drastically degraded the TPR. This is clearly not operationally usable. To

remedy this, we produce cost sensitive trees that penalize FP errors more than FN errors. Cost sensitive trees need a

cost ratio as input. We fix a ratio of 175:1 in our experiments, which allowed us to reduce FPR to below 1% while

maintaining significant TPR. In principle, it is possible to search for the best cost ratio when retraining the classifier

instead of using a fixed cost ratio value, and the performance figures we report here could possibly be improved further

if such a search was performed. We chose not do this in the current study since we compare many classifiers over

multiple months; if each classifier had a different cost ratio, this would complicate the comparison of results across

different classifiers and across time.

Once a tree has been produced with this cost ratio, we classify new messages as follows. We use the ROC graph of

the learned classifier on the training data to pick an operating point, where the FPR is at the desired value. Effectively,

this determines a confidence threshold, so that messages classified as spam with probability above this threshold are

highly likely to be spam. In this case, messages classified as spam with probability below this threshold are effectively

treated as ham; they cannot be discarded since that might raise the FPR beyond the desired rate, so they will be sent to

the user’s inbox (or the next step in our pipeline).

A partial set of the results we obtain are shown in the first three columns of Table 4. While the FPR drops

significantly compared to the non-cost-sensitive case, it does not reach 0.2% —even when increasing the cost ratio
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Packet Features Flow Features All Features

Month Acc TPR AROC Acc TPR AROC Acc TPR AROC

May/09 0.594 0.348 0.768 0.583 0.330 0.709 0.632 0.410 0.759

Jun/09 0.454 0.072 0.652 0.555 0.244 0.689 0.546 0.230 0.686

Jul/09 0.438 0.108 0.666 0.547 0.281 0.701 0.564 0.308 0.748

Aug/09 0.479 0.172 0.660 0.538 0.266 0.691 0.576 0.327 0.754

Sep/09 0.497 0.169 0.663 0.558 0.270 0.681 0.582 0.309 0.711

Oct/09 0.488 0.145 0.683 0.488 0.145 0.633 0.529 0.215 0.675

Nov/09 0.436 0.218 0.826 0.417 0.191 0.823 0.449 0.236 0.788

Dec/09 0.443 0.180 0.687 0.431 0.162 0.593 0.468 0.217 0.702

Jan/10 0.467 0.197 0.713 0.442 0.158 0.625 0.475 0.208 0.617

Feb/10 0.608 0.358 0.806 0.549 0.261 0.675 0.623 0.382 0.806

Mar/10 0.346 0.126 0.843 0.371 0.159 0.840 0.385 0.178 0.881

Apr/10 0.405 0.163 0.837 0.388 0.138 0.799 0.444 0.218 0.858

May/10 0.376 0.003 0.501 0.448 0.119 0.599 0.452 0.125 0.595

Jun/10 0.488 0.210 0.786 0.445 0.143 0.755 0.496 0.223 0.787

Jul/10 0.579 0.070 0.564 0.649 0.226 0.652 0.668 0.267 0.712

Aug/10 0.336 0.021 0.520 0.407 0.127 0.638 0.424 0.152 0.616

Sep/10 0.797 0.725 0.882 0.794 0.721 0.861 0.806 0.737 0.871

Oct/10 0.779 0.706 0.880 0.774 0.700 0.851 0.802 0.736 0.892

Nov/10 0.818 0.757 0.896 0.804 0.739 0.870 0.806 0.741 0.878

Dec/10 0.801 0.738 0.888 0.791 0.725 0.863 0.798 0.734 0.881

Jan/11 0.392 0.191 0.889 0.773 0.698 0.866 0.791 0.722 0.901

Feb/11 0.785 0.708 0.894 0.800 0.729 0.871 0.804 0.734 0.894

Mar/11 0.803 0.732 0.886 0.790 0.715 0.856 0.795 0.722 0.866

Apr/11 0.834 0.775 0.904 0.805 0.735 0.867 0.832 0.773 0.904

Table 5: Results for decision trees using packet features (left), flow features (middle), all features (right). Packet features exclude AS-spamminess

in all cases. TPR is reported at 0.2% FPR.

significantly. Analysis of the classifiers reveals that the AS-spamminess feature—from the training data—is chosen as

highly predictive in each case. However, it appears to be less predictive on the test data, probably because even using

90% of our data from a month does not result in a comprehensive database. Thus, even though our results confirm

previous findings (e.g., [35]) that AS origin differs for spam and ham, we find the predictive of this feature in an

enterprise environment limited.

Next, we remove AS-spamminess from the analysis, forcing our classifiers to use other features. These results are

shown in the last three columns of Table 4 and the whole set of results from May/09 to Apr/11 is shown in the Table 5.

In this case, we are able to obtain an FPR of 0.2%. We then observe that though the classifiers produced achieve a low

FPR, their TPR varies significantly over time—occasionally less than 1% and reaching to over 70% in some months.

A lot of the TPR results, though, are not high, between 10% to 40%.

We investigate the months with exceptionally high detection rate later in Section 5.3. With respect to the months

with exceptionally low detection rate, one possibility is that the chosen cost ratio of 175:1 is too high in some months

and it is preventing messages from being classified as spam. We tested this hypothesis on May, July and August 2010,

three months where performance was exceptionally poor. Indeed, lowering the cost ratio from 175:1 to 100:1 resulted

in the significant TPR improvements in some cases at the same target 0.2% FPR. For July 2010, TPR improved to 26%

from 7%, bringing it generally in line with prevailing results for other months. In the cases of May and August 2010,

adjusting the cost ratio increased the TPR from 0.3% to 8% in May and from 2.1% to 9.8% in August. Decreasing the

cost ratio further to 75:1 brought no additional overall improvements: July’s detection rate slightly improved to 27.4%

but May’s and August’s detection rate degraded to, respectively, 7.6% and 8.2%. In other cases, such as January 2011,

increasing the cost ratio further to 225:1 improves TPR to 34.5% at 0.2% FPR, while decreasing it to 100:1 reduces

TPR even further to 12.3%.

The above result provides support to the idea mentioned earlier of searching for the optimal cost ratio during model

retraining. However, even though the TPR increases, it is still not high. These results indicate that, even if cost ratio is

varied, on their own, single-packet features may not be very good detectors of spam in the single enterprise context.

While this finding may appear to contradict the previous study by Hao et al. [20], that study was performed from the

perspective of a large aggregation point and without DNS blacklist pre-filtering.

While TPR for packet features is generally low, for the period from September 2010 to April 2011, it reaches

above 70% (except January 2011). The results for these months seem to agree with prior work [20], where a TPR of

10



Packet Features

Month Acc TPR AROC

May/09 0.600 0.359 0.909

Jun/09 0.492 0.139 0.882

Jul/09 0.478 0.171 0.906

Aug/09 0.506 0.216 0.905

Sep/09 0.509 0.189 0.892

Oct/09 0.515 0.191 0.901

Nov/09 0.421 0.197 0.884

Table 6: Results for packet features without AS-spamminess using Rulefit algorithm, The TPR is reported at 0.2% FPR.

70% was achieved at FPR=0.44% (without a blacklist). 7 In Section 5.3 we investigate the “good” months (with TPR

of 70% or more) to understand why those months appear to be outliers in our data.

In Figure 3(a), we show a fragment of a decision tree of packet features, obtained using the data from May 2009.

This is not the full tree; in this fragment, each leaf is labeled with “majority class”, i.e., the category associated with

the majority of messages in that leaf.

• The most important discriminant in this tree is geoDistance, the roughly measures the geographical location of

the message’s origin. Utility experiments (presented in section 5.6) also indicate the importance of this feature.

This feature remains in the top of the tree for other months also, although the exact threshold value changes with

the change of the geographical origin of spam over time.

• The next feature in the tree is the ttl feature, which is derived from both the operating system of the remote host

and how many router hops a message has gone through. This may seem like a counter-intuitive feature to use

near the root of the tree. However, note that the starting IP TTL value, maxTTL, varies across operating systems:

Windows XP and related operating systems use an initial TTL of 128, while Linux uses 64. Accordingly, in

our data, the ttl feature is strongly correlated with the operating system. The actual number of hops traversed

by the traffic is seemingly dominated by the difference in initial TTL values. Therefore, the test for ttl < 98
is effectively a determination between Windows or Unix-based remote hosts. If this test is False, then the

originating machine was likely a Windows-based machine and the message is likely spam 8.

• The neighborDist feature calculates the average network distance (in IP address space) from the remote sending

host to its closest 20 neighbors. Legitimate SMTP servers usually do not have other 20 SMTP servers nearby,

thus a large value of neighbor distance suggests a legitimate remote host.

5.2. Effect of the Learning Algorithm

We next address the question: what if we used a different learning algorithm? Perhaps the low detection rate

achieved by packet features in some months is not due to the features themselves, but merely to the inability of the

algorithm to exploit the information in those features. To understand this, we used a second algorithm, Rulefit [15], to

learn a classifier from our data. Rulefit produces a linear classifier that is augmented by Boolean threshold features.

The results with Rulefit are shown in Table 6. From these results, we observe that both decision trees and Rulefit

exhibit quite similar results in our experiments. Thus the lack of utility of the single packet features in certain months

appears to be not a function of the learning algorithm they are used with, but purely a consequence of the limited

information they convey about the message in this setting.

To get a better understanding of why changing the algorithm might not make a significant difference, notice that it

is intuitively plausible that looking at a single packet reveals limited information about the message, and one can only

construct few features from this information (we use seven). This set of features generally describes the characteristics

of a group of hosts sending email. But unless the granularity is extremely fine, such a group will sometimes send

ham and sometimes spam. We therefore found many instances where messages were described by identical packet

features but had opposing labels, i.e., some were labeled as spam and some as ham. For example, in May 2009, from

47,653 messages in that month, we identified 21,638 patterns of packet features. Of these, 485 patterns have both

7In later sections we present results without the blacklist and also using the Rulefit algorithm that was used in [20].
8It is important to remember that the presented tree is just a part of the full tree, which contains over 100 nodes. The full tree does not judge all

email messages with ttl > 98 to be spam, although the majority of such messages are spam.
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Packet Features(Pre-Blacklist)

Month Acc TPR AROC

May/09 0.824 0.808 0.967

Jun/09 0.346 0.290 0.964

Jul/09 0.467 0.421 0.962

Aug/09 0.714 0.691 0.969

Sep/09 0.644 0.612 0.967

Oct/09 0.520 0.462 0.957

Nov/09 0.709 0.670 0.943

Table 7: Results for packet features without AS-spamminess using Rulefit. The TPR is reported at 0.44% for this experiment for a direct comparison

with prior work [20].

spam and ham messages and the ratio of ham over spam+ham in each of these 485 pattern varies between 0.25 and

0.75, suggesting ham or spam is not just few outliers. Moreover, these 485 feature patterns appear in 7,385 (15% of

47,653) messages. Similarly, this phenomenon seems to be at least partly responsible for the sudden dip in TPR for

January 2011, because the fraction of such confusing patterns in that month was 16.1%, whereas in December 2010 it

was 9% and in February 2011 it was 13.9%. This clearly is problematic for any classifier and may increase the FPR

and lower the TPR. On the other hand, if finer feature granularity is used (e.g., imagine using the IP address—with a

range of 4 billion values—as a feature), then significantly more data will need to be collected to train a useful classifier.

This appears to be a fundamental limit of single packet features for spam detection at the enterprise, that cannot be

overcome by simply changing the machine learning algorithm being used.

5.3. Interaction between Packet Features and the DNS Blacklist

We next turn to the question: how do the DNS blacklist and the classifier based on packet features interact? One

issue here is that it is possible that the DNS blacklist is somehow filtering the “easy” cases for the packet features.

In this case, using the DNS blacklist as the first layer may be masking the true discriminatory power of the packet

features. Further, if this is the case, it may suggest that the packet features may be able to “take over” if the DNS

blacklist somehow stops working. Partial evidence for such a scenario is found in prior work [20], which evaluated

packet features without a blacklist and reported a TPR of 70% at FPR of 0.44% 9, which according to the authors is

similar accuracy to DNS blacklists. Finally, if this is true, might it in part explain the accuracy jump we see from

September 2010 to April 2011 (Table 5)?

To understand this interaction better, we first train a (cost-sensitive) Rulefit classifier and evaluate it on all mes-

sages, including those blocked by ICSI’s operational DNS blacklist setup (“DNSBL”+“Ham”+“Spam” in Table 1). We

can do this since the first SYN packet is still available for analysis even for the DNS-blacklist-blocked messages. Of

course, the message bodies are not available in this case, so our method for determining ground truth does not apply.

Instead we trust the DNS blacklist to be accurate and label all messages filtered by it as spam. We use Rulefit in this

experiment, rather than trees, in order to directly compare our results to that of prior work [20], which also used this

algorithm. We further pick an operating point with the same FPR of 0.44% reported in [20]. The results are shown in

Table 7.

From these results, we observe that as before, there is significant variation across months. However, the TPR of

packet features increases significantly in all months in this case over the post-blacklist data. For some months, our

results are comparable to, or even exceed, the 70% TPR reported by Hao et al. , though for other months, we find the

TPR is far lower (e.g., 29% in June). One possible reason for this variability is that it is due to the enterprise’s vantage

point. Another possibility is that it is a fundamental property of packet features, and was not observed by Hao et al.

since their data was collected over a period of only 14 days.

These results suggest that at least in some cases, the absence of the DNS blacklist may lead to high detection rates

for packet features. Could this in any way explain the period from September 2010 to April 2011, where we found

packet features to have high detection rates? To understand this, we analyze the period July to October 2010, during

which packet features first show poor performance followed by a sudden sharp jump in TPR. Table 8 shows, for this

period, the total spam received at ICSI, the spam blocked by the blacklists, the spam blocked by the combined blacklist

and packet feature pipeline, followed by the predicted performance if the packet features had been used on their own

without the blacklist.

9This was not done for a single enterprise as in our study, but in an aggregate setting where data was collected from thousands of organizations.
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Month Total Spam DNSBL Packet Features(Post-Blacklist) DNSBL + Packet Features Packet Features(Pre-Blacklist)

Jul/10 149K 120K(80%) 7.0% 81.9% 41.5%

Aug/10 146K 102K(67%) 2.0% 67.9% 15.9%

Sep/10 86K 40K(47%) 72.5% 85.3% 37.1%

Oct/10 81K 39K(48%) 70.6% 84.8% 27.2%

Table 8: The detection rate of DNS-Blacklist and Packet Features, and their combined effect, presented as TPR which are reported at 0.2% FPR.

Month Top Countries Sending Spam

Jul/10 US (41.2%), Germany (15.8%), China (7.1%), Vietnam (3.8%)

Aug/10 Germany (54.4%), US (20.9%), China (3.9%), Vietnam (2.7%)

Sep/10 Germany (74.3%), US (18%), China (1.1%), France (0.8%)

Oct/10 Germany (72.0%) ,US (18.9%), China (1.4%), Canada (0.6%)

Table 9: Top-4 countries that sent spam to ICSI SMTP servers and their respective spam percentage

This table reveals that there is less spam received in each month beginning from September 2010. From that period

on, the amount of spam is usually on the order of 100K or less, as compared to around 150K before this period. Further,

while pre-September, the blacklist is able to block around 75% of the incoming spam, from September onwards this

drops to 50%. A possible explanation for these observations is that around this time, law enforcement activities

resulted in the shutdown of various botnets in the US. In an article [2] published by the Kaspersky lab, it is noted:

The events that took place during the last six months of 2010 included the shutdown of the command

centers for the Pushdo, Cutwail and Bredolab botnets and criminal proceedings started against partnership

programs that operated mass mailings of pharmaceutical-themed spam. These developments led to the

amount of unwanted correspondence being halved if the average volume of global spam in the last week

of October is compared with those levels recorded in mid-August, 2010.
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Figure 2: CDF plots for values of geoDistance of ham and spam. Left: Ham in May/09, Oct/09, Sep/10 and Apr/11. Distributions of the four are

similar. Right: Spam messages from the same four months. Distributions of last two months are very different from the previous two.

As we see, however, this activity not only reduced the volume of spam (which is good), but also reduced the

effectiveness of the DNS blacklists (which is bad). Our data indicates that at this point, there is a change in the

distribution of the geoDistance feature for spam messages (Figure 2 right), while the distribution of the geoDistance

feature for ham messages remains stable across months (Figure 2 left). This indicates that when these botnets were

“shut down,” some major sources of spam shifted away from USA to Europe and Asia. Table 9 shows the distribution

of countries of origin of the spam messages (estimated using GeoIP database [24] snapshots in corresponding months)

during this period that passed through the DNS blacklist. As a result of this shift, the DNS blacklists are no longer

as effective. However, geoDistance is a packet feature in our classifiers. By analyzing the learned trees, we observe

that after September 2010, the top feature in the trees is geoDistance, and more than 70% percent of spam originates

from a distance of 5730 to 5880 miles to the ICSI servers (this correlates well with Germany), while only a small

percentage of ham messages are from that distance region (this pattern does not hold before this point in time, and
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(a) Fragment of a tree using packet features. (b) Fragment of a tree using flow features.

(c) Fragment of a tree using packet + flow features.

Figure 3: Three decision trees learned from the May 2009 data. The leaves in the figure are not the actual leaves in the full tree, and thus their labels

reflect the majority class among all messages at that point.

geoDistance is not as effective then). Thus in this case the packet features are able to “take up the slack” when the

DNS blacklist becomes less effective. To further support this point, the combined TPR of the blacklist together with

the packet feature based classifier remains fairly stable and high across this period, though each by itself is fluctuating

rather sharply (“DNSBL + Packet Features” column, Table 8).

As a final interesting point, we note that a weak blacklist is still better than no blacklist in this pipeline. When

we produce packet-level classifiers using all messages in this period, we observe that their accuracy (last column

of Table 8) is always significantly lower than the accuracy of the combined DNS blacklist/packet feature pipeline.

Thus, unlike the conclusion made in [20] for a large aggregation point, in a single enterprise environment, it seems

unlikely that a packet feature based classifier can simply replace a DNS blacklist. Each has something to contribute

and supplements the other, so that the combined system is more accurate than either on its own, and the accuracy

remains roughly stable over time.
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5.4. Value Added by Flow Features at the Enterprise

We next turn our attention to flow features of messages. These features are computed from the entire packet trace

comprising the message. 10 This is obviously more computationally expensive than computing features just from one

packet. Prior work [9] indicates that such features could be useful in detecting spam. We reappraise this result with our

much larger dataset, and further ask the question: what added utility do such features offer beyond the DNS blacklist

and packet features?

To answer these questions, we consider two experimental scenarios. We first produce decision trees from only

the flow features in the lower half of Table 2 and use these to classify messages that have passed through the DNS

blacklist. Then we add the packet features (without AS-spamminess) to this list and use the full set in the same way.

Thus, rather than two separate layers producing two classifiers, this produces a single classifier using both sets of

features. This allows us to directly compare the informativeness of the different feature sets, since the tree will pick

the more informative features to use. For these experiments, we use decision trees as the learning algorithm. Again this

is because our prior results show that any patterns we see generalize to Rulefit as well, yet Rulefit is more expensive to

run while trees are easier to interpret. The results are shown in Table 5, and fragments of trees found using only flow

features and using all features are shown in Figures 3(b) and 3(c).

Comparing results for packet features and flow features in Table 5, we first observe that in most months, the flow

features by themselves are at least as accurate as packet features. This is intuitively plausible because looking at the

complete packet trace should yield at least as much information as just the first packet. However, we also see that

large, significant differences between packet and flow feature accuracies are rare. This may indicate that while there

is extra information, that information may not generally provide significant additional detection power, but may serve

to “correct” packet features when those features are not accurate (e.g. January 2011), just as packet features serve to

correct the DNS blacklist when that performs poorly. To further support this, we note that when using all features

together to produce a single tree, the resulting performance is generally better than using either the packet or flow

features by themselves, though generally not by much. The combined feature set is effective at removing between

20% to 77% spam in absolute terms. A question is whether an effective pre-filter can be constructed using such a

classifier, so that only messages that cannot be classified with high probability are sent to computationally expensive

content filters. We consider this question in more detail section 6.

In Figure 3(b), we show a fragment of a decision tree of flow features, obtained using the data from May 2009.

• The top feature used in this tree is number of fin packets sent by local monitored server. The absence of a fin

packet in the trace likely means the connection was ended abruptly.

• Another important discriminant in this tree is the length of the initial 3-way handshake, importance of this

feature has also been noted previously [9]. We have also observed that for connections with a fin, threshold

values near 0.198 seconds associated with this test, as shown in the right subtree, seems quite stable across time

in our dataset. This may indicate a correlation with the geographical origin of spam relative to the monitored

servers—observe that this test is “replaced” by a geoDistance test in the tree that uses both flow and packet

features (Figure 3(c)).

• For connections without a fin, a very small 3whs means the messages are likely to be ham. This again shows

correlation between the email label (spam/ham) and the geographical origin of the message and/or congestion

on the path. For the higher 3whs values on the left subtree, the next test is to check the reset feature. If there

was a reset from the remote host to terminate the connection we find it likely this message is spam; if not, it is

more likely to be ham.

• The next test on the right subtree following the 3-way handshake is the ratio of outgoing to incoming pack-

ets. The expected case is for this to be around 0.5 due to delayed acknowledgments [7] which calls for one

ACK to be sent for every second data segment received (unless a second data segment does not arrive within a

small amount of time). However, additional factors can move this ratio towards 1, including (i) some operating

systems’ acknowledgment strategies that transmit more ACKs early in the connection to help open TCP’s con-

gestion window, (ii) the delayed ACK algorithm that sends ACKs without waiting for second data packet when

this packet does not arrive within certain time (commonly 200ms), and (iii) because smaller transfers do not

10An interesting possibility we do not pursue in this work is to compute these features from partial traces. In this way network features form a

continuum between single packet features and “full” flow features computed from the entire trace.
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have many opportunities to aggregate ACKs. Indeed, delayed ACKs are generally not used in the connection

management phase, hence the corresponding traffic has the ratio of 1. The SMTP control traffic is symmetric

(with requests and responses) and therefore also has the ratio of 1. When the message is small there are generally

few data packets and therefore coalescing ACKs is either non-existent or done in small enough numbers that the

overall ratio is still closer to 1 than to 0.5. In our January 2009 data we find that when the ratio is closer to 1,

85% of the messages are below 6K in size and all but 1 are less than 11K in size. On the other hand, if the ratio

is closer to 0.5, there is a wide distribution of message sizes, with several messages over 100KB. Therefore, the

ratio turns out to be largely a proxy for message size. The tree considers “small” messages more likely to be

spam given all the preceding tests of other features.

• When the ratio tends more towards 0.5, the tree checks the rttv feature, which is the variance of round trip time,

A small rttv indicates the message has gone through a stable route with low variance, it is more likely to be ham,

otherwise it is more likely to be spam.

In Figure 3(c), we show a fragment of a decision tree using both packet and flow features, obtained from May 2009.

This tree uses both flow and packet features, indicating that neither set completely supplants the other. The number

of fin packets from local SMTP server, a flow feature, is chosen as the top feature. The left subtree only uses flow

features. The right subtree starts with geoDistance, a packet feature, instead of the flow feature 3whs. This suggests

that in this case, the length of the handshake was used as a proxy for location in the flow-features tree. geoDistance is

however a more appropriate test in this case, so it is used here. Notice that geoDistance does not completely supplant

3whs, which is used in the left subtree. Following two more packet feature tests, this tree uses the ratio of out/in

packets. This feature is thus revealed to have less discriminating ability than the packet features preceding it. Finally,

we observe that the tree using both packet and flow features does not use any other features (near the root) than the

trees using the individual feature sets—this has implications for feature utility, as we describe in Section 5.6.

5.5. Stability of Packet and Flow Features

Next, we address the question: does the accuracy of these classifiers stay stable over periods of time? We test this

by training classifiers and then evaluating them with data from a later month. Stability over time has implications for

the frequency of retraining spam classifiers: a stable set of characteristics might result in a lower retraining burden.

Further, these experiments shed some light on the behavior of network characteristics when there is a major network

event.

For this longitudinal study, we build a classifier on one month’s data and evaluate it on subsequent months. In this

case, we only need a single classifier, so we use all the data for that month to train a classifier, and all the data for each

subsequent month to test it, instead of 10-fold cross-validation as used in the earlier results.

As mentioned before, beginning from September 2010, the observed network characteristics changed, possibly due

to law enforcement activities that shut down botnets sending spam in the USA. To prevent this event from confounding

our analysis, we separate our data into three groups: (i) the “pre-change” set when the training and testing were both

conducted before this event (May 2009–August 2010), (ii) the “post-change” set when the training and testing were

both conducted after the event (September 2010–April 2011) and (iii) the “across-change” set when training happens

before change and testing happens after. We then analyze the stability of network characteristics in each part by

producing a decision tree using all of each month’s data for that part. We evaluate these trees on each successive

month, for example, the tree produced for May 2009 is evaluated on each month from June 2009 through August 2010

for the pre-change experiment and from June 2009 though April 2011 for the across-change experiment. In each case,

we plot a graph where the x-axis represents the difference in months between when the tree was constructed and when

it was used. For each x, the y-axis then shows the average performance over all month pairs that differ by x. Thus

for an x value of 2, we average the performance for the trees built in May and tested in July, built in June and tested

in August, and so forth. The results presented at x = 0 represent the average cross-validated performance over all

months.

Three graphs in the left column of figure 4 shows the results of our experiments using packet features from all

three subsets of the data. We first observe that before the change occurred (“pre-Sep/10”), the overall accuracy and

true positive rates of the models are quite stable and do not degrade very much. The relative stability of our models

is important as it means that the re-training process that will inevitably be needed will likely not be required to run

constantly but could instead be performed periodically during off hours. However, we also observe that the FPR

degrades rather rapidly, reaching 1.4% after only a month. This indicates that, while the model may not need to be
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Figure 4: Change in accuracy (top row), TPR (middle row) and FPR (bottom row) over the course of our study as a function of the number of

months between training and testing. 3 Figures on left column consist of results from packet features, the other 3 figures on right column are from

experiment using (packet + flow) features

rebuilt frequently, the confidence threshold may not carry over from one month to another, but will need to be re-

tuned using some data from the new month. There is more variability in TPR after the event (“post-Sep/10”), and

classifiers trained at this time, though they have high detection rates, are not as stable as before. This seems intuitively

plausible; after a significant shake-up of the Internet underworld, the system may require some time to re-stabilize.

Further it is likely that the DNS blacklist is also changing at this point, creating another source of difference in message

characteristics being classified by the models. Finally, applying the pre-change classifiers to post-change data produces

very poor results. Analyzing the trees indicates that this is mainly because of the important geoDistance feature that

has changed. The trees before the change also use geoDistance, but with the wrong threshold, so that once the source

of spam shifted, these trees became inaccurate. On the whole, accuracy and TPR degrade slowly over time, as may be

expected due to simple feature drift, though the fine structure of the degradation is complicated in this case due to the

network event in the middle.

Finally, as shown in the three graphs in the right column of Figure 4 , using all features shows a similar pattern as

the packet features: gradual decline in TPR overall, with stable TPR before the change and variable TPRs after, with

FPR varying more significantly.
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Use one feature Use all but one feature

Feature Accuracy TPR AROC Accuracy TPR AROC

All single-packet 0.594 0.348 0.768 0.594 0.348 0.768

geoDistance 0.473 0.153 0.667 0.546 0.271 0.746

senderHour 0.378 0(FPR=0) 0.500 0.595 0.35 0.769

neighborDist 0.378 0(FPR=0) 0.519 0.522 0.233 0.704

OS 0.378 0(FPR=0) 0.500 0.597 0.353 0.770

ws 0.38 0.004 0.622 0.596 0.352 0.768

ttl 0.378 0(FPR=0) 0.500 0.564 0.30 0.721

Table 10: Left: Average accuracy, TPR at 0.2% FPR and AROC when only one single-packet feature is used. Right: Average accuracy, TPR and

FPR when one single-packet feature is left out.

Feature Accuracy TPR AROC Accuracy TPR AROC

All single-packet features 0.594 0.348 0.768 0.594 0.348 0.768

All packet and flow features 0.632 0.410 0.759 0.632 0.410 0.759

Add one flow feature Add all but one flow features

3whs 0.586 0.336 0.720 0.643 0.427 0.784

fins local 0.611 0.376 0.772 0.615 0.382 0.729

fins remote 0.598 0.354 0.770 0.628 0.403 0.759

idle 0.597 0.353 0.770 0.633 0.411 0.759

jvar 0.594 0.348 0.771 0.632 0.410 0.759

pkts sent/pkts received 0.599 0.356 0.770 0.618 0.386 0.759

rsts local 0.595 0.349 0.768 0.632 0.410 0.759

rsts remote 0.595 0.349 0.770 0.623 0.395 0.788

rttv 0.606 0.367 0.770 0.618 0.386 0.751

rxmt local 0.596 0.351 0.768 0.629 0.404 0.759

rxmt remote 0.595 0.350 0.769 0.624 0.396 0.751

bytecount 0.598 0.354 0.768 0.632 0.409 0.759

throughput 0.607 0.369 0.793 0.625 0.398 0.729

Table 11: Left: Average accuracy, TPR at 0.2% FPR and AROC when all single-packet features and only one flow feature are used. Right: Results

when one flow feature is left out, and all other flow and single-packet features are used.

5.6. Utility of Individual Packet and Flow Features

Next, we consider the question: which packet and flow features are most useful in discriminating between ham

and spam? For all the utility experiments, we use all the messages from May 2009. We consider three situations. First,

we look at the accuracy of our classifiers when only a single packet feature is used, and when we leave a single packet

feature out from all the packet features (results in Table 10). Next, we start with the full set of packet features and add

flow features one at a time to determine the value added by each flow feature. Finally, we look at what happens if we

start with the full feature set and leave one flow feature out (results in Table 11).

Table 10 shows geoDistance to be the most useful packet feature. The other packet features, when used in isolation,

result in zero or near zero TPR. This is because they produce an empty (or nearly empty in the case of ws) tree that

always predicts “ham” in order to minimize the cost with a high FP cost. Further, only geoDistance and neighborDist

result in large drops in TPR when they are left out of the feature set. This indicates that though neighborDist is not

useful by itself, it has some discriminating power when used in conjunction with other packet features. For the other

packet features, the TPR stays the same or increases slightly when they are dropped, indicating that they do not provide

much added value beyond the remaining features. In particular, our results do not show senderHour to be useful for

spam detection despite previous findings that spammers and non-spammers display different timing properties [17].

From the results in Table 11, we observe that adding any one flow feature to the set of single packet features

improves the performance of the classifier, though by a small margin. In particular, fins local, rttv and throughput

provide the greatest additional discriminating power beyond the single packet features. Further, fins local, rttv and

pkts local/pkts remote result in the largest drops in performance when they are dropped, indicating that they are also

useful in conjunction with the other features (i.e. no other feature captures their information). Some flow features such

as rsts local and 3whs either do not change the TPR or increase it when they are dropped, indicating that they do not

provide much added value beyond the remaining features. Prior results [9, 29] found that 3whs was the most useful in

discriminating ham from spam, if only flow features were used. However, it appears in our data that the information

in 3whs is subsumed by the other features, perhaps by packet features such as geoDistance.
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6. Operational Use

As a final experiment we turn to assessing the methodology developed in this paper in an operational setting. We

have not actually implemented and deployed the following strategy, but roughly assess the components to illustrate

that the approach may be promising in real-world terms.

Given the results in the previous sections, a filter based on network characteristics is not accurate enough to use

as the sole arbiter of email messages. However, we can use a filter based on our developed model as a first pass at

winnowing the stream of email by removing messages classified with high confidence (as spam or ham). Our overall

goal is to reduce the number of messages that must be analyzed by computationally expensive content filters and

hence reduce the overall cost of the process. In this experiment, we evaluate the magnitude of savings obtained by this

approach. In other words, referring back to Figure 1, we consider the computational benefits of adding a network-level

classifier between the DNS blacklists and content filters in the processing pipeline.

We employ a two-stage filtering process at the network-level processing step. We train two decision tree models

with differential misclassification costs. The “FP model” is trained with a high FP:FN cost ratio, while the “FN model”

is trained with a high FN:FP cost ratio. Therefore, when the FP model classifies a message as spam, it is likely to be

spam, because of the high false positive (ham predicted as spam) cost used during training. Similarly, when the FN

model predicts a message to be ham, it is likely to be ham, because of the high false negative (spam predicted as ham)

cost used during training. Notice that just setting both FP and FN costs high for the same model would not achieve our

desired effect as it would simply remove the bias from the model and be equivalent to the standard cost setting. Each

arriving message is assessed using our FP model and if it is judged as spam we discard the message with no further

processing (e.g., to the user’s “Junk” folder). All messages not removed by the FP filter are assessed using the FN

model. Messages that are judged ham by the FN model are placed in the user’s “Inbox” with no further processing.

All remaining messages are sent to a content filter. It is possible to reverse the order of the FP and FN models in the

filtering process, however our experiments showed this to be roughly equivalent in terms of computational cost.

We explore two configurations, with the target error rate of the either stage of the network-layer decisions at 0.2%.

One configuration uses packet features only, and the other uses both packet and flow features. For each configuration,

we generate the FP and FN models using the following procedure. We use the July 2009 data with ten-fold cross

validation to train our models and generate their ROC graphs. We use the FP:FN cost ratio of 175:1 (this cost ratio is

also used for the previous experiments) and it produces a model whose ROC graph includes an operating point with

the predicted FP rate not exceeding the target error rate. We then use this model with the confidence level producing

that operating point as our FP model. Similarly, we generate a model with FN:FP cost ratio of 30:1; its ROC graph

includes an operating point with the predicted FN not exceeding the target error rate, and we use this model with the

corresponding confidence level as our FN model.

For the packet features configuration, the above procedure produced an FP model using the FP:FN cost ratio of

175:1, with the predicted FPR of 0.2% and predicted TPR is 10.8% (as we have seen already in Table 5). The resulting

FN model used FN:FP cost ratio of 30:1, with the predicted false negative rate (FNR) of 0.2% and true negative rate

(TNR) of 25.1%. For the packet and flow features configuration, the FP model was trained with the FP:FN cost ratio of

175:1 (predicted FPR=0.2%, TPR=30.8%) and the FN model was obtained with FN:FP cost ratio of 30:1 (FNR=0.2%,

TNR=30.7%).

We use these July 2009 models to classify messages from August 2009. On this data, the packet-features FP model

had an actual FP rate of 0.10% with a TPR of 9.8%, while the packet-features FN model had an actual FNR of 0.22%

with a TNR of 24.9%. On the other hand, the packet+flow features FP model had an actual FPR of 0.30% with a

TPR of 28.67% and the packet+flow features FN model had an actual FNR of 0.36% with a TNR of 20.44%. In

all cases, the rates of erroneous decisions validate our choice of operating point. Both stages of the packet-features

pipeline station identified 6.3K of the 41K messages as not needing further processing (2.5K spam, 3.8K ham), while

the packet+flow features pipeline station identified 10.5K of 41K messages as such (7.4K spam, 3.1K ham).

For all the time cost evaluation experiments described below, we run each experiment 30 times and take the median

as the final time result for that experiment and report here.

Network Feature-Based Classification: The process of classifying messages based on network characteristics

has two components that we consider in turn: (i) deriving the network features and (ii) evaluating those features

within a particular model. To determine the effort required to calculate network features we consider the length of

time spamflow and p0f requires to process our packet traces. 11 This process requires 94 seconds for spamflow and

11All the times given in this section were computed on the same machine. The absolute magnitude of the numbers is not important and would be
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Spam Filter Content-Only Packet + Content Packet + Flow + Content

(sec) (sec) (sec)

SpamAssassin 4,216 3,830(10.9%) 3,434 (18.5%)

SpamProbe 1,215 1,321 (-9.1%) 1,244 (-2.4%)

SpamBayes 10,430 9,112 (12.7%) 8,067, (22.8%)

CRM 5,630 4,988 (11.4%) 4,489 (20.4%)

Table 12: Real-world simulation results on August 2009 data.

11 seconds for p0f, in all 105 seconds, for the August 2009 dataset. These numbers are calculated by subtracting time

to read in the trace from disk as structured data from the running time of spamflow and from p0f. In our envisioned

pipeline, the network features could be supplied from TCP stack directly, so no disk-reading would be involved. A

TCP implementation could likely provide network features at much less cost (e.g., using a getsockopt() call). TCP

already has to do much of the work involved in deriving these features (e.g., de-multiplex the packet stream into

connections, track RTTs, understand the advertised window, etc.).

In addition, we use one python script to generate GeoIP related network features, that is, geoDistance and sender-

Hour, This script needs to perform lookups in GeoIP database for IP address to geo-location mappings. Another

python script is used to calculate the neighborDist feature. The total running time of these two python scripts is

19 seconds. Overall, to produce all of packet and flow features costs (105 + 19), 124 seconds.

Next we assess the cost of executing the decision tree model across each of the messages in our corpus. We

translated the decision tree produced by Weka into a Python function. We then built (i) a small XML-RPC-based

server around the decision function and (ii) a client that invokes the server’s decision function for each of the 41K

messages in our corpus (using the network features as arguments). As discussed above, the decision function is

actually a pair of trees for determining sure ham and sure spam. We run the sure spam tree first and then sure ham tree

for both configurations: Trees using packet features take 151 seconds to process messages, Trees using packet+flow

features take 164 seconds. While we believe that our prototype XML-RPC implementation is likely easy to improve

for added performance in a production-ready system, we do not have an estimate of how much additional performance

we could expect from such a system. Our expectation is that a working system with kernel-level tracking of network

characteristics and more efficient communication to the network feature assessment engine would be less expensive.

Content-Based Classification: Next, we consider the time required to process the messages with the four content

classifiers previously used to develop ground truth. We assess both the time required to process the entire 41K message

corpus with a particular tool as an estimate of the current spam filtering cost. In addition, we assess the time required

to analyze only the 34.7K and 30.5K messages the network classifiers could not judge using packet features and

packet+flow features respectively.

Table 12 shows the results of our analysis. The second column gives the total amount of time required to use

each of the content filters to process all 41K messages in our corpus. The third and fourth columns show the time

required by using network characteristics to filter out sure ham and sure spam and then using the given content filter

on the remainder of the messages (with the relative improvement over the content-only classification also given). The

third column is the results for packet features, the fourth column is for packet+flow features. With the exception of

SpamProbe we find at least a 10.9% improvement when using the packet features and at least 18.5% improvement

when using both packet and flow features except compared to SpamProbe (SpamProbe wins a small margin by 2.3%).

Note that we purposefully selected a mediocre, “pre-change” (Section 5.3), month for our assessment. A post-change

month – with high DNS blacklist pass-through – would see higher savings as the network-level classifier would remove

many of the messages missed by the blacklists before these messages hit the content filters.

We used the SpamAssassin daemon in measuring the processing time of SpamAssassin filter. The running time

without the daemon is approximately an order of magnitude longer. In addition, as when using SpamAssassin to

produce ground truth, we did not employ non-local nor statistical tests. Therefore, SpamAssassin’s running time

should be taken as a lower bound. SpamProbe is the most efficient filter, by far. We find that removing messages for

SpamProbe to consider largely trades costs rather than reducing the overall cost (i.e., the costs associated with filtering

based on network features are largely similar to those of using this content filter).12

different on another host. Our goal is to explore the relationships between different processing techniques.
12Note, if generating the network features within a TCP implementation can save a significant fraction of the cost then we could realize additional

savings over using SpamProbe alone. E.g., if the cost of generating network features were reduced by an order of magnitude then the overall system

would see an 8–13% performance improvement. This is, however, small enough that the engineering logistics of dealing with multiple filters might
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We add a possible additional small error rate to the process with the inclusion of our two pre-filters. Therefore, the

overall accuracy could be degraded by the chosen error rates used to develop the models when compared to content

filtering. On the other hand, mistakes made by the network feature filters could overlap with those already being made

by the content filters. Choosing an error rate that is operationally comfortable for any given situation is of course a

matter of policy.

Our evaluation only considers the system performance in the one month after the model has been developed. In

reality, while we observe that the network feature model ages slowly, it still needs to be either continuously updated

or periodically retrained. This can be done based on the user-identified information about misclassified messages that

is already commonly used for updating content-based filter models, along with the network features of each message,

which could be retained, e.g., in optional email header fields. Because retraining itself can be efficient (e.g., our

decision trees take less than a second to be trained over a set of four weeks of messages in our trace, after feature

extraction) it should not appreciably affect the processing overhead of the overall operation reported above. We also

note that based on our development of ground truth there may be opportunities to further automate the process of

re-training without relying as heavily on user labels. We leave this for future work.

Using the network-feature model to discard messages from further processing is not the only way to effectively

utilize network-feature classification. The classification is cheap enough that it could be used to prioritize messages,

i.e., messages the network characterization identifies as spam could be run through content filters during slow times

when the server has plenty of spare capacity, whereas non-spam could be further checked as soon as possible. Another

possibility is that network-feature judgments could be used to “backup” a content-based judgment and if both identify

a message as spam then it could be discarded completely, whereas if only one classified a message as spam the message

could be retained in the users’ “junk” folders so that users can catch mistakes. Additional possibilities no doubt exist,

as well.

7. Related Work

Spam detection and mitigation has attracted significant attention within the industrial, operational, open source,

and research communities. Spam filtering plays an important role in these efforts. There have been a vast range of

filtering techniques proposed and implemented including (with examples cited rather than an exhaustive list): DNS

blacklists [39]; email address whitelists based on a user’s address book in many popular email clients including GMail,

Thunderbird and Outlook [5]; domain signed messages [6], analyzing transport [9] and network layer [35, 20] char-

acteristics and signature [4, 37] and statistical [18] analyses of a message’s content.

Content filters are quite popular—both within an institution’s mail processing apparatus and in users’ client

software—and classify a message using the information in the message itself. Content filters have been shown to

be effective in combating spam, but are computationally expensive and require constant re-training as spam content

adapts in an attempt to evade detection [11, 13]. Content filters are also less effective with non-textual spam, although

efforts have recently emerged to address this limitation [16].

Given the high cost of content-based filtering (as illustrated in Section 6), several efforts have attempted to use

network-layer information to detect spam flows. Schatzmann et al. propose a collaborative content-blind approach

that an ISP can deploy to facilitate spam blocking, based on size distribution of the incoming SMTP flows [36]. The

idea is that SMTP servers that perform pre-filtering terminate spam flows quickly after processing the envelope; hence

flow size from these servers can be used to rate client MTAs for the benefit other SMTP servers that might not use pre-

filtering. The idea of using transport features was originated by Beverly and Sollins [9], follow-on work explored using

lightweight single passive operating system signatures for the router-level spam filtering [14]. Ramachandran and

Feamster analyze network-level characteristics of spamming hosts [35], and Hao et. al. exploit network-level features,

such as the sender’s geographical distance from the receiver, autonomous system (AS), etc. for spam detection [20].

While Hao et al. target the environment that aggregates data from thousands of institutions and focuses on a possibility

of replacing a DNS blacklist, we concentrate on a stand-alone organization environment and evaluate network-level

features when used in a pipeline between the DNS blacklists and content filters. We contrast our findings with those

of Hao et el. throughout this paper.

This paper incorporates our preliminary work [30], but expands it significantly by using a 2-year long dataset

for evaluation, quantifying the computational benefits from adding network-level stage to the pipeline and a much

not make augmenting an existing SpamProbe setup worthwhile.
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deeper analysis. Several new observations are discussed, one of them is the interactions of different filtering layers.

We further present longitudinal experiment results to shed light on feature stability that concerns a real-world system

using network-level features.

Pujara et. al present a method to learn a policy to combine a series of base classifiers given trade-off between cost

and accuracy [33], this technique for dynamic composition of multiple filters into a system could also be used in our

proposed filtering pipeline. Kakavelakis et. al. [21] develop a real-time, online system that integrates transport layer

characteristics, which were previously proposed in [9], into the existing SpamAssassin tool for spam detection. In

this system, a spamminess score is produced by transport-characteristic classifier and combined with scores from other

methods, e.g., content filters, static rules, etc., to produce a final spamminess score that is used to decide whether a

message is spam or not. Our pipeline differs in that the network-feature filter checks whether a message is spam or not

independently from the content filter, allowing us to realize potential computational savings.

8. Conclusions and Future Work

In this work, we have conducted a large scale empirical study into the effectiveness of using packet and flow

features to detect email spam at an enterprise. Though the idea has been presented in prior work, to the best of our

knowledge, our work is the first thorough exploration of the various issues involved. We conduct our study using

data collected over the course of two years. Because hand labeling such a large corpus is impractical, we develop

a methodology for constructing sound ground truth of large email corpus that is both too huge and too sensitive to

hand-label. Our method depends on four spam tools that use different assessment strategies. Using manual validation

of a sample of email we find the error in the ground truth to be roughly 2%. Using this labeled data, we explore sev-

eral hypotheses. First, we validate prior results on our corpus and find that packet features, computed from the SYN

packet, are limited in a stand-alone enterprise, while adding flow features, computed from entire flow, into packet fea-

tures generally improves the accuracy of the classifier. We found that both packet and flow features aged slowly alone

time however a major network event could cause big impact on their accuracy. We observed that when experiencing a

major network event, e.g, botnet shutdown or migration, DNS-blacklists and network-feature filter combined together

provide a fairly stable high detection rate through the network event. Finally, we evaluate a prototype of the pipeline

filtering system that places network level-based filter as a layer in the middle of the pipeline to claim a fraction of the

messages as confirmed spam or ham and doing so eliminates the need to pass them to a more computationally expen-

sive content filter, therefore saves computational time: For all content filters we use except SpamProbe, interposing

our network-features classifier into the processing pipeline resulted in significant reduction in overall processing time,

by 18.5–22.8%, compared to using the corresponding content filter alone. While there are certainly additional ways to

leverage network layer features for classification, our initial use-case shows the efficacy of the additional information

when used in conjunction with several popular content filters.

There are a number of directions we intend to investigate in future. As mentioned in the previous section, un-

derstanding how our development of ground truth might be used to largely automate re-training of network-feature

models is intriguing.13 In addition, we intend to investigate the degree to which we can more tightly integrate network

layer and content layer filtering. That is, rather than considering these as two distinct steps in a process we hope

to leverage key features in both dimensions, possibly adding network-level features, to produce stronger and more

efficient email classifiers, one possible way to do that is using naive Bayes method. Finally, we plan to implement the

developed approach and deploy it in a real setting.

A final aspect of future work is that we may be able to leverage the work in this paper to identify additional forms

of “badness” from malicious hosts. Since spamming is often only one aspect of generally dubious behavior from

compromised hosts the models of network characteristics may in fact hold more generally across connections made

by bots since non-spam connections will be sharing host and network resources with spam connections. In this case,

an intrusion detection system may be able to better understand questionable behavior without directly observing spam

from a particular host.

13While our results are suggestive that it may be possible to largely automate re-training it seems unlikely that a system will ever get away from

manual classification or at least spot checking to ensure accuracy of the process.
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