
1724 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

The Optimal Control of Heterogeneous Queueing
Systems: A Paradigm for Load-Sharing

and Routing
SCOTT SHENKER AND ABEL WEINRIB

Abstmct- The essence of the basic control decisions implicit
in load sharing and routing algorithms is captured in a simple
model of heterogeneous queue control. We solve for the optimal
control policy and investigate the performance of previously
proposed policies in a tractable limit of this model. Using our
understanding of this solvable limit, we propose heuristic policies
for the general model. Simulation data on these policies suggest
that they perform well over a wide range of system parameters.

Index Terms- Control of queues, heterogeneous systems,
multiserver systems, routing problems, stochastic optimization,
stochastic scheduling.

I. INTRODUCTION

ISTFUBUTED computing systems composed of net- D worked workstations and servers are now commonplace.
Such systems are rapidly becoming larger, both in geographic
extent and also in the number of separate computing ele-
ments. Distributed systems routinely contain special purpose
machines (such as “cycle servers”) and, because of the rapid
pace of technological advance, they often include computing
elements from several different technology generations. All
of these factors make diversity, or heterogeneity, an increas-
ingly important issue in distributed systems. The goal of dis-
tributed system design is to effectively harness the collective
power of the constituent elements. Often, the underlying al-
gorithms have been designed with the assumption of homo-
geneity; naively applying these algorithms to a heterogeneous
system can result in surprisingly poor performance. It is a rel-
atively unexplored but crucial challenge to design distributed
systems that remain efficient in the presence of heterogeneity.

Many of the problems that arise in designing distributed
algorithms to operate in the presence of heterogeneity involve
controlling queues with servers of differing speeds. For ex-
ample, load balancing algorithms in heterogeneous distributed
computing environments, even with free and instantaneous
communication, require nontrivial decisions about when and
where to process jobs remotely [2], [5] , [28]. Another ex-
ample is routing in computer networks which often involves
selecting one of a number of possible nonequivalent routes
[9], [1 11, [121, [29]. Given a specific optimization criterion,

Manuscript received March 20, 1989; revised July 21, 1989.
S. Shenker is with the Xerox Palo Alto Research Center, Palo Alto, CA

A. Weinrib is with Bellcore, Momstown, NJ 07960.
IEEE Log Number 8931169.

94304.

such as minimizing waiting time, one would like to determine
the optimal decision policy. If optimal policies are unavailable,
then approximately optimal heuristic policies are desired. The
purpose of this paper is to provide some basic insight leading
to such heuristic policies. This work builds on two previous
papers [24], [28], and some of the results in Section I11 were
first reported in [24].

Instead of focusing on any specific application, we will
study the simple abstract model illustrated in Fig. l(a) of a
single queue feeding multiple servers (for other work on this
model, see [l], [14], [15], [18], [19], and [27]). The arrival
process is Poisson with strength X and the servers are expo-
nential with service rates p k . We are modeling server-rate
heterogeneity: in general p j # pk for j # k . A controller for
the queue chooses when and where to send jobs to be served.
Our goal is to find a decision policy that minimizes the average
delay (time spent in service plus time spent in the queue). The
controller can decide to send a job to an open server (choosing
the fastest open server), or to hold the job in the queue until
a faster server becomes available. For homogeneous systems,
where all of the servers are equivalent, there is no incentive
to retain jobs in the queue. In heterogeneous systems, queue-
ing jobs is often preferable when the only available servers
are relatively slow. There is a tradeoff between the extra time
spent in the queue waiting for a faster server versus the extra
time spent in service at the slower server.

Given values for the system parameters, there arc tech-
niques to compute the optimal policy (see [7]). For large sys-
tems, these methods are not tractable analytically and rapidly
become too cumbersome to implement numerically (since they
yield a set of self-consistent equations whose cardinality grows
exponentially in the number of servers). Even in the smallest
nontrivial case of just two nonidentical servers, solving for the
optimal control policy is difficult (but possible, see [15] and
[27]). While optimal solutions are desirable, they generally
appear beyond our present technical means.

In the absence of optimal solutions, we turn to devising
close-to-optimal heuristic policies. In Section 11, we introduce
several previously suggested heuristic control policies, and
describe how they apply to our particular model. Each of these
heuristics can be expressed as minimizing (or maximizing)
some quantity on a job-by-job basis. The choice of the job-
by-job optimization principle used in these heuristics is based
merely on intuition, and their evaluation has previously been
limited to some isolated simulation results.

OO18-9340/89/12OO-1724$01 .OO 0 1989 IEEE

SHENKER AND WEINRIB: CONTROL OF QUEUEING SYSTEMS 1725

tails of the calculation are relegated to the Appendix). We
calculate the exact cost in terms of delay to the system of
queueing or serving a job, and thus identify the job-by-job
optimization principle that produces the optimal policy.

The second goal of this paper, addressed in Section V, is
to use our understanding of the simple two-speed system to
generate new heuristic policies for the general model in a
principled fashion. The key step in this process involves map-
ping every scheduling decision in the general case to a corre-
sponding one in the two-speed model. The mapping from the
general-speed model to the two-speed model is approximate,
but the two-speed decision is correct. Thus, our heuristic pol-
icy can be viewed as an approximate calculation of the correct
job-by-job optimization principle; the other heuristics do an
exact calculation of a suboptimal optimization principle.

The final goal of this paper is to demonstrate, through
simulation studies, that there are model systems for which
the performance of the heuristic policies (ours and others)
can be distinguished; simulations of fairly small systems have
suggested that the performance of various policies are quite

x = 3

h ,""""
*...**.

similar (e.g., [19])1 We concentrate on fairly large systems,
with a large number of slow servers; these systems illustrate
the differences between the policies, and are also good mod-
els for many current networked systems where hundreds of
(slow) workstations are combined with various faster "cycle-
servers." In the simulation study discussed in Section VI, we
compare the heuristic policies on two different server con-
figurations, finding that our policies outperform all of the
previously suggested heuristic policies.

The insight generated in Sections I11 and IV would be of
limited utility if it were only applicable to our specific sin-
gle queue/multiple server model. In Section VII, we test the
robustness of this insight, as well as address another impor-
tant model of distributed systems, by considering the paral-
lel queue model illustrated in Fig. l(b). We generate a new
heuristic policy for this case and compare it to previously
suggested heuristics through simulation.

(b)
Fig. 1 . The heterogeneous queueing models; the scheduler executes policy

?r to place jobs so as to minimize the average delay. (a) The single queue
model with queue length x = 3 and servers of rate pa. (b) The parallel
queue model with queue lengths nk and servers of rate pk.

The first goal of this paper is to provide a more thorough
understanding of the performance of these currently available
heuristic policies. In Section 111, we analyze a simplified and
solvable special case of our general queue control model, one
in which there are only two server speeds with some number
of the fast servers and an infinite number of the slow servers.
We explore a variety of limiting extremes (an infinite number
of fast servers, a large but finite number of fast servers, and
only one fast server with a large ratio in service rates). In each
of these regimes, we solve for the optimal policy and com-
pare it to the heuristic policies. This allows us to rigorously
identify certain limits in which each of these policies perform
significantly suboptimally. In Section IV, we reanalyze this
two-speed model using the technique of policy iteration (de-

II . HEURISTIC POLICIES
We now define three heuristic queue control policies. Queue

control policies are decision rules that, given the set of busy
servers and the number of jobs in the queue, determine
whether or not to send a job to the fastest open server. Since
here we are only concerned with the average delay, and not
higher moments, it does not matter which queued job is sent
to the open server. However, we will find it useful to say that
a controller would send the job in queue position x to the open
server if, given a total queue length of x, the queue control
decision is to send some job to the server.

A natural candidate for an effective heuristic policy is the
shortest expected delay (SED) policy, where the controller
chooses the option that minimizes the expected delay for each
individual job [lo], [13]. This policy sends a job in position
x in the queue to the fastest open server if

(PLk - Popen)
f i k >popen

X > (2.1)
Popen

1726 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

where popen denotes the speed of the open server, and we use
the convention that x does not count those jobs presently in
service. The condition in (2.1) can be motivated as follows.
The expected delay of a job in position x in the queue that is
queued for a faster server depends on the scheduling decision
of the jobs ahead of it. If we assume that all jobs ahead of
position x use only those servers faster than popen, and that
these servers are never left open while there are jobs in the
queue, then this expected delay is

X S 1
P K >popen

(2.2) c pk
BC >@open

where the sum is over all of the servers that are faster than the
fastest open server. In contrast, the expected delay of a job
that is served immediately by the fastest open server is sim-
ply llpopen. The condition in (2.1) results if this delay llpopen
is compared to the delay of (2.2) for each job in the queue.
Note, however, that the delay calculated in (2.2) is not the ac-
tual expected delay since the preceding jobs, in following the
SED policy themselves, may not keep all of the servers faster
than popen occupied. Nonetheless, and for reasons explained
in [13], the policy defined by (2.1) does indeed minimize the
expected delay for each job.

Agrawala et al. [l] have shown that this SED policy min-
imizes the average delay of a given batch of jobs with no
subsequent arrivals. However, with an ongoing arrival pro-
cess the SED policy no longer always minimizes the aver-
age delay. Scheduling decisions affect not only the job be-
ing scheduled but also potentially affect subsequently arriving
jobs, which may be forced to wait in the queue longer or
to use a slower server as a result of previous scheduling de-
cisions. Nonetheless, one might expect that the heuristic of
minimizing the delay for each individual job would at least
provide close-to-optimal Performance. Simulation data from
Nelson and Towsley [19] on relatively small systems suggests
that SED performs almost as well as other available heuris-
tics. To the contrary, we will demonstrate that SED is signifi-
cantly suboptimal for large systems with large heterogeneity in
speeds; for these systems, the SED policy completely wastes
the lower delay available from the faster servers. The SED
policy has also been endorsed as close-to-optimal for systems
with multiple parallel queues [2], [6]; in Section VII, we shall
see that SED can perform poorly for this model as well.

Another possible heuristic is the never queue (NQ) policy,
where the controller always sends jobs to the fastest available
server. This policy might at first appear ill-advised, in that
jobs are scheduled in a manner that increases their individual
expected delays; however, the NQ policy minimizes the extra
delay caused to the subsequently arriving jobs, so that the
effect on the overall average delay may be reasonable. We
shall see that NQ is asymptotically optimal for large systems.
However, it does not perform well for smaller systems with
large heterogeneity.

The SED policy minimizes the expected delay of each ar-
riving job. Similarly, the NQ policy can be seen as maximiz-
ing the instantaneous throughput rate, i.e., the total service

rate of all occupied servers immediately following a schedul-
ing decision. Maximizing the throughput rate only at the in-
stant of scheduling is shortsighted. An alternative throughput
optimization criterion is to maximize the expected number
of job completions before the next job arrival. This policy
will be called the greedy throughput (GT) policy. Nelson
and Towsley have introduced such a policy [18], [19] (see
also [2 11); they present general formulas for its implementa-
tion which are too complicated to redisplay here. Chow and
Kohler [5] define a somewhat similar policy for the parallel
queue model. The GT policy outperforms both NQ and SED
for most of the systems we investigate, but is outperformed,
in turn, by the policies that we generate in Section V.

The job-by-job optimization principle guiding each of
these policies (individual delay, instantaneous throughput, and
throughput before next job arrival) have been justified only on
the basis of intuition. The resulting policies have been previ-
ously evaluated only through limited simulation. In the next
section, we calculated their performance in the context of a
simple model, giving us a more systematic evaluation of these
policies.

111. SIMPLIFIED TWO-SPEED MODEL

Consider a system with only two classes of servers, fast
and slow, with rn fast servers and an infinite number of slow
servers. The restriction to two classes of servers introduces
the simplest form of heterogeneity. An infinite number of
slow servers is equivalent to a large but finite number of slow
servers, except in the heavy traffic regime [20], [24]. With
these two simplifications, this model is now equivalent to the
problem of admission to an MIMIrn queue with rn fast servers
when one identifies the average time spent in service at the
slow servers as the penalty for rejecting a job, and assigns
a unit penalty per unit time for waiting in the queue. Much
is known about this admission problem (see [17], [25], and
[26]). In [161, it is shown that the optimal policy is of a thresh-
old type. A policy with threshold r will send a job to a slow
server whenever there are r or more jobs ahead of it in the
queue (this number does not include those jobs presently in
service). Otherwise, jobs are queued up until a fast server
becomes available. Our search for the optimal policy now re-
duces to the search for the optimal threshold 7.

A . Delay and Threshold Formulas

It is helpful to scale the arrival rate by the number of fast
se: is m, defining p = X/mpfast. The average delay D, in-
curred by a threshold policy with threshold 7 can be expressed
in terms of quantities calculated for an MIMImIK queue with
K = r n $ r :

where N, is the average number of jobs in the MIMImIK
system and Z, is the blocking probability (using notation that
does not explicitly show the dependence on p and m). Both
N, and Z , can be easily expressed in terms of the Erlang-B

SHENKER AND WEINRIB: CONTROL OF QUEUEING SYSTEMS

function, B(m, mp):

and

1 - p p '
1 +BO-

. 1 - P

(3.2b)

These formulas permit numerical determination of the optimal
7 for a given m and p. Let us define the discrete derivative
A(T) D, - D , - 1 . The full expression for this quantity is
complicated, and we merely note that the derivative is pro-
portional to the expression shown below, where we have in-
troduced the notation R = pfast/pslow:

A(T) 0: T + m(R - l)(p - 1)

The optimal threshold is the largest integral value of 7 such
that A(7) < 0. Alternatively, one can compute the real valued
solution to AQ) = 0 and set TOpt = [y J , where l y] denotes
the integer part of y . These solutions are monotonically de-
creasing in p and monotonically increasing in R . Furthermore,
one can show that the optimal threshold is always between two
bounds: 0 5 70pt 5 m(R - 1).

The heuristic policies discussed in Section I1 are thresh-
old policies. Applying formula (2.1) to the two-speed model
yields TSED = lm(R - 1)J. The NQ policy has a trivial thresh-
old, 7NQ = 0. The optimal threshold is always bounded be-
tween these two policies. In general, the computation of the
GT policy is rather involved [19], [21], but for our simple
two-speed model the threshold calculation is straightforward.
The increase in expected throughput derived from scheduling
an additional job is merely the probability that this job will
complete service before the next job arrives. When placing
the job at the end of the queue, in position x , this probability
is given by (1 + ~) - ~ (1 + mp)-'. Placing the job on a slow
server yields an increase of (1 +Rmp)-I. Thus, the resulting
threshold is

Note that the GT policy is equivalent to the SED policy in the
p -+ 0 limit and is equivalent to the NQ policy in the p 4 00

limit.
With the threshold expressions in hand, we now turn to

evaluating the delay performance of these three policies. We
will first analyze the performance in the limit of infinite m,
then study the performance for large but finite m, and finally

1727

(3.2a)

B. Infinite System Limit
The behavior of B(m, mp) with large m depends crucially

on p. For p < 1 , B ---f 0 exponentially fast, so the average
delay is just Upfast. The delay is independent of the threshold,
so all policies are identical in this limit. For p > 1 , the limiting
value of B is (p - l)/p. The asymptotic delay is then

Pfast

Note that the limiting delay depends only on the limit of 7/m
when m + 00.

Substituting the expression 7SED = [m(R - 1)J into (3 4 ,
the delay for the SED policy with p > 1 is D,,, = R/Pfast =
l/pslow. The SED policy makes every server appear as bad
as the slow servers, in that the controller keeps adding jobs to
the queue until the average delay for a job entering the queue
is as long as the expected service time on a slow server. In
this regime, SED completely wastes the lower service delay of
the fast servers and would perform just as well if given only
the slow servers. When m is large, fluctuations in the arrival
process are insignificant, so queueing up for the fast servers
just creates added delay without any compensating increase in
throughput. On the other hand, when m is small, queueing up
for the fast servers can increase their throughput by smoothing
out the fluctuations.

The minimum m = 00 delay is D = l/pfast{l + (R -
l)(p - l)/p}, and is obtained by any policy that has 7/m = 0
when m -+ 00. Note that (3.4) has the limiting form TGT =
[ln(R)/ln(l + p) J for m + 00. Thus, both the NQ and GT
policies achieve asymptotically optimal performance in large
systems. Fig. 2 shows a graph of the delays for the SED and
NQ policies. The discontinuity in the SED delay curve reflects
the fact that the SED policy builds up a large queue as soon
as it is forced to use any of the slow servers.

We can extend the infinite system results to the more gen-
eral many-speed case. Consider an arbitrary normalized dis-
tribution of server rates p(p) . Let the N-server version of
the system consist of N servers with speeds chosen randomly
from the distribution p (p) and an arrival rate of XN = N h . As
long as the distribution of server speeds is sufficiently smooth,
the limit of an infinite number of servers can be modeled by
a fluctuation-free system. The system will utilize just those
servers necessary to provide throughput equal to the arrival
rate, and the various policies will only affect the number of
jobs kept in the queue. In particular,

1 1
PoDen Pave

&ED = ~ and D N Q = - (3 -6)
compute the performance in the special case m = 1 .

1728 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

0.0 1 .o 2.0

P
Fig. 2. The m = DC, performance of the NQ and SED policies for the single

queue model with servers of two speeds, m of the fast ones, and an infinite
number of the slow ones. The scaled arrival rate p = A/mpe,. pfast = 1
and psiow = 1/4, so the ratio of speeds is R = 4. The delays are calculated
according to formula (3.5). Results for large but finite m are very similar
to these infinite m results, except that the discontinuity is replaced by a
smooth but steeply sloped curve.

where popen is the solution to

(3.7)

and pave is given by

(3.8)
x

Pave = y-.
dP P(P>

L o p e n

Thus, as in the two-speed case, the NQ policy (and any other
policy that keeps the queue finite in infinitely large systems),
always achieves optimal performance in this infinite limit. The
SED policy has performance equivalent to a system where
all of the servers have service delay l/popen. Fig. 3(a) and
(b) depicts the performance of the SED and NQ policies for
two distributions of server speeds. Fig. 3(a) is for a discrete
distribution, while Fig. 3(b) is for a continuous distribution.
In both cases, the NQ policy exhibits markedly lower delay
compared to the SED policy.

The above results indicate that the SED policy may be
significantly suboptimal for infinitely large systems. In this
regime, bounded threshold policies like NQ and GT are opti-
mal. In the next section, we examine the behavior for large but
finite m. By studying the rate of convergence to optimality,
we will see that SED is better than NQ for p < 1.

C. Large m
The properties of formula (3.3) for large m depend on the

asymptotic nature of B(m, mp) (see [8]), and there are three
cases that we discuss below.
Z) p < I: Here, B M (pe(1-P))m/m1/2 so that Topt(m) =

m(R - 1)(1 - p) for large m. The delay is given by

15

- 8 0" 10

P c
5

5

SED

V .

0 5 10 15

- E
0"
c
2 0
5

0.0 4
0 5 10 15

1
(b)

Fig. 3. The infinite system (N = m) performance of the NQ and SED poli-
cies. (a) The mean delay of a job for a system with a distribution of server
speeds given by @ (p) = (1/21)6(p - 1)+(4/21)6(p- 1/4)+(16/21)6(p-
1/16) where the 6 denotes the delta function. This is a discrete distribu-
tion with only three classes of servers, with (1/21)N fast servers having
a service rate of 1, (4/21)N medium servers having a service rate of 1/4,
and (16/21)N slow servers having a service rate of 1/16. The weights and
speeds were chosen so that each class has the same total processing power.
(b) A system with a continuous distribution of server speeds, @ (p) = l / p
for 0 5 p 5 15, chosen so that each class of server contributes the same
total processing power. For both distributions, NQ produces significantly
lower delays than SED.

The asymptotic deviations from optimality for the SED, NQ,
and GT delays when p < 1 are

(3. lob)
B

Pfast
D,Q - D,, M -(R - 1)

In (P) B D,, - D,, M -(R - l)R '"('+p).
Pfast

(3.10~)

SED has a faster exponential convergence rate than NQ or GT.
Even though all of these policies are equivalent to the optimal

SHENKER AND WEINRIB: CONTROL OF QUEUEING SYSTEMS 1729

policy in the limit of infinite m, the rate of convergence to
optimality can become very slow. For p = 1 - E for small E ,

the deviation of NQ from optimality goes as e-me2/2/m1/2.
For m < the convergence rate will be dominated by the
square root term.

2) p = I: Here, B M (2/7rm)'I2 -4/37rm OW^/^). For
large m, Topt 0: m1/2 and D, - l/pfast 0: m-'I2. The asymp-
totic delay of the SED policy is DTSED = (R + 1)/2~fast, which
is not asymptotically optimal. The NQ and GT policies are
asymptotically optimal, both having delays whose deviations
from the optimal delays decrease as m-'i2.

3) p > I: Here, B M (p - l)/p + l/mp(p - 1) + O(m-2).
For large m, the optimal 7 is given by

(3.1 1)

The deviation from optimality for the NQ and GT policies
decreases as m-I while the SED policy has deviations that
remain finite in the limit: D,,, x l/pslow.

While the NQ and GT policies achieve optimal performance
in the limit of infinite m, the rate of convergence to this limit
depends on p . For p < 1 , the convergence is exponentially
fast, while for p > 1 it converges as m-l . For p = 1 the
convergence slows to m-lI2. Thus, even for large systems,
it might be advantageous to use a policy more sophisticated
that NQ or GT in the crossover region of p M 1 , where one
first needs to utilize the slow servers. In the next section,
we investigate the single fast server m = 1 case, which re-
veals precisely how far from optimal these policies are in the
crossover region.

D . m = I
We can further explore the performance of the heuristic

policies in the limit of large R for the case m = 1 . The
expression (3.1) for the average delay becomes, with m = 1 ,

(1 - (7 + 21p7+l + (T + i)p7+2 + ~ (1 - p) 2 p 7 + 1) D, =
Pfast(1 - ~) (l - P ~ + ~)

(3.12)

The NQ policy yields a delay that always grows linearly with
R: D,, = (1 + Rp)/pfast(l + p) . When p < 1, the opti-
mal threshold grows linearly with R, 7opt M R(l - p) , and
the optimal delays as well as the SED delay converge to the
M/M/l result of D M l/pfast(l - p) . Thus, the NQ policy
is far from optimal for large R when m = 1 and p < 1.
The behavior of the GT policy is somewhat peculiar. Define
p c = (8 - 1)/2 = 0.618. For p < p c , the GT delay con-
verges to the optimal M/M/l result. When 1 > p > p c , the
delay increases as R l+ln (dl In (I+). Apparently in this regime
the GT policy does not queue up sufficiently to prevent the
delay from diverging.

comparison, 70pt = In (R)/ In (p) and D,, M R(p - l)/pfastp.
While all four delay expressions increase linearly with R,
the SED and NQ delays have a larger slope than the optimal
threshold and GT delays.

Forp > 1,DTsED =R/~fast andDTG, " R (~ - l) / ~ f a s t ~ . For

So far, for each limiting case we have considered, at least
one of the available heuristic policies has been asymptotically
optimal. This is no longer true when we consider the inter-
mediate case of p = 1. With p = 1 ,

r 1

1 R
D'Top = ~ (

Pfast 1/2 + (2R + 1/4)'/2

- 1/2(1/2 - (2R + 1/4)lI2)) . (3 .13~)

Thus, for p = 1 and m = 1 , while both the NQ and SED
delays increase linearly with R, and the GT delay increases
as R/ In (R), the optimal threshold policy yields a delay that
increases only as

The introduction of the simple two-speed model, and the
subsequent analysis of the three extreme cases, that of in-
finite systems, large but finite systems, and small systems
with extreme heterogeneity, have illuminated the performance
characteristics of the various heuristic policies. The bound
'TSED 2 Topt implies that the SED policy always overqueues
for fast servers, causing significant deviation from optimality
for large systems at high loads. The NQ policy always un-
derqueues, and while NQ is asymptotically optimal for large
systems, it performs poorly in lightly loaded small systems
with a large degree of heterogeneity. In contrast to the NQ
and SED policies, the GT policy is explicitly dependent on
the load A. Adjusting to the load aliows this policy to be
asymptotically optimal for large systems and also for both
heavily and lightly loaded small systems. However, its per-
formance is significantly suboptimal in, and slightly below,
the delicate crossover region p M 1 for small systems with
large heterogeneity.

IV. OPTIMAL COST FUNCTION
We have seen that the SED, GT, and NQ policies fail to per-

form optimally on our simple two-speed model. Before devis-
ing better policies, we want to understand why these policies
fail. The objective function we are trying to minimize is the
average delay experienced by all jobs entering the system; the
policy that achieves this objective is sometimes referred to as
the socially optimal policy [3]. In contrast, the SED policy is
an individually optimal policy, since it is equivalent to having
each job minimize its own individual delay without any con-
sideration of the additional delay experienced by subsequent
jobs. The fact that individually optimal queue control poli-
cies are not necessarily socially optimal was first discussed
by Naor [17].

Define a job's social delay to be the sum of both its indi-
vidual delay and also the delay its presence causes other jobs.
In this section, we exactly calculate this social delay for our

1730 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

two-speed model. The optimal job-by-job optimization princi-
ple can then be stated as minimizing the social delay for each
job. None of the heuristic policies of Section I1 calculate this
social delay, which is what renders them suboptimal on our
simple two-speed model.

For our two-speed model, we define two social delays. The
first, CP(x), is the cost in delay of queueing a job at position
x in the queue for a fast server when the control policy being
employed is a threshold policy with threshold 7 . This delay is
to be compared to the cost of immediately serving the job at a
slow server, which is merely the processing time at the slow
server and is independent of the threshold 7 : CSlow = 1 /pslOw.

To calculate Cy(x) , consider a system that at time 0 has a
queue of length x - 1 , and place a single test job at the end
of the queue. We want to compute the total additional delay
experienced by the system. Define T, (x , t) to be the total
delay accumulated up to time t . The eventual rate at which
delay accumulates is AD,, so for large t we can express the
accumulated delay in the form T,(x, t) N V , (x) +tAD, . The
term V , (x) reflects the influence of the starting position, and
Cp(x) V,(x) - V,(x - 1) is the cost, in terms of total
delay, of adding a job onto a queue of length x - 1 . The actual
computation of e (x) is relegated to the Appendix; we use
the results of that computation below.

The functional form of cat(.) depends on the value of x
relative to the threshold 7 . For x 2 T , we have the result

x + m
CS""'(x) = - mPfast + P (& - D,) . (4.1)

This expression for the cost function has an intuitive interpre-
tation. The first term represents the individual delay of the job;
the second term represents the additional delay caused to other
subsequently arriving jobs. This extra delay p(l/ps~ow - 0,)
is merely the expected number of extra jobs sent to the slow
servers times the excess delay of those jobs, i.e., the delay
l/pslow minus the average delay D, .

For x < 7 , we find a recursion relation

+ p(Cf""'(x + 1) - D,). (4.2)
x + m c y (x) == ___
mPfast

This expression has the same intuitive interpretation as before,
except that now the excess delay C y (x + 1) - D, is the
delay of accepting a subsequent job into the queue minus the
average delay D, . We can find a direct expression for e (x)
by applying (4.2) to the results from (4.1) for x = 7 . We
find that for x 5 7 , the cost function can be expressed in the
following form

1 D, -D,-1 C?(x) = ~ +
Pslow P fastZx - 1

(4.3)

How do these cost functions determine an optimal policy?
Howard, in [7], outlines a procedure to find optimal stochastic
control policies, called policy iteration. We will not present
this process in general, but will describe only how it applies
to our application here. Policy iteration is a two-step process.
The first step is to evaluate the cost function c"'(x) for a given
policy (which here is characterized by a threshold 7) . The
second stage of the process is to create a new policy in which,

for every x, the policy chooses the option that minimizes the
cost functions calculated in the previous step. This new policy
is again a threshold policy, where the new threshold 7' is
the largest integer that satisfies C?(T') 5 CSlow. Based on
general arguments in [7], this process is guaranteed to produce
a new threshold 7' that gives a lower average delay: D, 2
0:. The process is iterated until termination, resulting in the
optimal threshold 70pt, which is the largest integer satisfying
C + (T o p t) 5 CSlow. Note that this cost-based formulation of
the optimality criterion is equivalent to the directly computed
optimality condition of Section 111.

The canonical policy iteration process uses these cost func-
tions and iterates until termination. However, in this iteration
procedure one can equally well use a modified cost function
for all x ,

E x + m f P (A - D T) . (4*4)
mPfast

Note that this is the form of the cost function for x 2 7 merely
extended over the whole range of x. Since both the correct and
modified cost functions satisfy the same optimality condition,
iteration of this modified cost function will result in the same
optimal threshold.

We now rewrite (4.4) in terms of locally measurable aver-
ages; this new expression will be used in the next section as
the foundation for an adaptive policy that realizes the steps of
policy iteration dynamically. Define X, as the average value
of the queue length, and i, as the average fraction of idle time
of the fast servers. Then, the average occupancy N, takes the
form X, + m(l - i,). Also, the total throughput of the fast
servers is just mpfast(l - i,), so the blocking rate Z, can be
expressed as 2, = 1 -mpfast(l -;,)/A. The delay D, becomes

Pslow

X, + m(1 - i,)
h

D, =

(4.5)

Using this expression in (4.4) for the modified cost function,

1
mPfast

e y (x) = ~

(x - X,) + mpfast(l - . { Pslow

We now have a cost function that is expressed solely in terms
of system averages X, and i, , the instantaneous system pa-
rameter x, and the system configuration (i.e., m, Pfast, and
Pslow).

V. NEW POLICIES

The heuristic policies introduced in Section I1 are based
on job-by-job optimization principles that lend themselves to
exact calculation but are not guaranteed to produce optimal
behavior for any heterogeneous system. The two-speed model
introduced in Section I11 allows us to understand the optimal
policy of minimizing the social delay C on a job-by-job basis.
We cannot calculate the social delay in general-speed models,
but we can approximate it by mapping each general-speed

SHENKER AND WEINRIB: CONTROL OF QUEUEING SYSTEMS 1731

scheduling decision to an analogous two-speed scheduling de-
cision. While the mapping is approximate in systems with
more than two speeds, the underlying job-by-job optimization
principle is rigorously correct. We now turn to the problem
of approximating the general-speed model by the two-speed
model.

Note that there are nontrivial scheduling decisions to be
made only if there is at least one job in the queue and at least
one available server. Let the speed of the fastest available
server, popen, play the role of pslow in the two-speed case;
let the average speed of the servers faster than the fastest
open server, call it pave, play the role of pfast; and let the
number of such servers, call it Nfaster, play the role of m.
This transcription of the general problem to the two-speed
problem is basic to the generation of our heuristic policies.

To turn this transcription into an actual policy, we can then
follow two different courses. The first policy, the determin-
istic (D) policy, is found by just inserting the variables popen,
pave, and Nfaster into their proper places pslow, pfast, and m
in formulas (4.1) and (4.3), and then minimizing the social
cost for each job. This is exactly equivalent to using formula
(3.3) and directly solving for the optimal threshold. The D
policy determines a threshold for each server; i.e., whenever
the kth server is the fastest open server, the controller follows
a threshold policy with threshold 7 k . Note that the SED and
GT policies are also threshold policies since they depend only
on the length of the queue and the identity of the fastest open
server. A nonthreshold policy would also depend on which
slower servers were occupied.

The D policy requires detailed knowledge of the arrival
rate, and its “derivation” depends crucially on the memory-
less nature of the arrival and service processes. In real appli-
cations, servers are not typically exponential nor are arrival
processes Poisson. A policy that is perhaps more resilient to
these deviations from the ideal is an adaptive (A) policy. This
policy is generated from the form (4.6) for the cost function
which depends only on locally measured quantities. By mea-
suring windowed averages, such a policy can settle down to
the optimal policy for the two-speed model without a priori
knowledge of the arrival rate A. For each server k, we main-
tain the measured averages for ik, the average idle time, and
Xk , the average queue length measured when server k is idle.
Then, using the same transcription from the general-speed to
two-speed as above, we can rewrite the cost function (4.6) for
the general-speed case

Pk >Popen

The A policy uses this formula, along with CS1”(x) =
1 /popen, and always chooses the action with the minimal cost.
The measured statistics, ik and Xk, will define a policy that,
in turn, will determine the measured ik and x k , and so on. By

using running averages for the statistics, one should arrive at
a self-consistent solution analogously to the process of policy
iteration. We first suggested adaptive policies of this general
form in [24] and [28]. Bonomi and Kumar [4], and Krish-
nan [12] have also suggested adaptive policies, with Krishnan
making the connection to policy iteration explicit.

VI. SIMULATIONS
The simulation study of the various policies was carried out

with a simulation package written for this purpose. Each point
in the graphs comes from a run of 600000 jobs, with the first
1000o0 jobs discarded to remove any startup transients. Data
on the mean job delay are taken in 25 blocks of 20000 jobs
each; from the block statistics the standard error can be esti-
mated, and is always less than 1 percent of the measured delay.
Thus, the differences between policies seen on the graphs are
large compared to the errors of the simulation. The statistics
ik and Xk for the A policy are measured using exponentially
decaying window averages with a decay constant of 500 job
interarrival times.

To test the various policies, we present results on two ba-
sic system configurations. The first configuration models the
situation of relatively few classes of service rates with many
servers in each class; it consists of five fast servers with ser-
vice rate 16, 20 medium servers of speed 4, and an infinite
number of slow servers with service rate 1. Fig. 4(a) de-
picts the performance of the various policies on this system.
Note that outside of the very lightly loaded regime, where one
need only use the fast servers, the SED policy performs quite
poorly. The NQ policy performs significantly better than the
SED policy, except at light loads. The D policy and the A pol-
icy, which have virtually identical performance, match SED
for light loads and achieve significantly lower delays than NQ
throughout the entire range of A. The GT policy does sig-
nificantly better than NQ but not quite as well as A or D.
The difference between the A and D delay and the GT delay
is largest just before the two crossover points X = 80 and
X = 160.

One would like to compare these policies to a lower bound.
The average delay must be greater than the minimum average
service time. This minimum average service time, which is
the same as the delay for the infinite system NQ policy, is
plotted on Fig. 4(a). The lower bound results are significantly
below our best policy. To determine if this difference reflects
a poor bound or a poor policy, we searched, via simulation,
for the optimal set of thresholds 7medium and 7slow (7fast = 0
since one would always send a job to an idle fast server). We
find that the D policy is within 1/2 percent of the results from
the optimal thresholds, which is within the error bars of the
simulations. Note that the truly optimal policy may not be a
threshold policy (only for the two-speed model is it known
that the optimal policy takes this form).

The second system configuration reflects a more heteroge-
neous situation, consisting of one server at each of the rates
of 128, 64, 32, 16, 8, 4, 2, as well as an infinite number
of slow servers of rate 1. Fig. 4(b) exhibits the performance
of the various policies for this system. The A and D policies
again outperform all the other policies throughout the entire

1732

0.4 -

3 0.3- -
i?
2
c

I 0.2-

0.1 -

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

0 . 0 4 . 1 . I . I . I . I . , I
0 40 80 120 160 200 240

h
(a)

I I I

_-
0.04 . I . . . I . * ' I ' ' . I '

0 40 80 120 160 200 240 280

h
(b)

Fig. 4. The performance of the SED, NQ, GT, A , and D policies for the
single queue model. The job arrival rate is A. The curves are derived from
a computer simulation of the system. (a) A system with three classes of
servers: pfast = 16 mfasr = 5, pmed = 4 m m e d = 20, and j i s l O w = 1
mslow = CO. (b) A system with servers of speeds 128, 64, 32, 16, 8, 4, 2,
and an infinite number of servers of speed 1.

parameter range. In this extremely heterogeneous model, the
NQ policy performs poorly everywhere. The SED policy per-
forms quite well for X < 200, but degrades rapidly above that
point. The difference between the GT and the A and D poli-
cies is more pronounced here than it was in the first system
configuration.

We investigated the robustness of the D policy in three
ways. First, since not all systems have exponential servers
and Poisson arrivals, we ran the same policies on systems with
various combinations of bursty arrivals (Batched-Poisson) and
nonexponential servers (both deterministic and bimodal ser-
vice distributions were tried). While the delay values vary
considerably, the relative ranking of the policies remain es-
sentially unchanged, with the A and D policies outperforming
all of the other policies. Surprisingly, the D policy, which has
none of the adaptive features of the A policy, performs slightly
better than the A policy.

Second, we investigated the effect of errors in measurement
of the arrival rate X. The computation of the D policy explic-

itly uses A; since it is possible that the arrival rate will be
known only approximately, we would like the D policy to be
relatively insensitive to errors in A. Simulations indicate that
this is indeed the case. Inserting into the D policy a value for
X that differs by 10 percent from the true arrival rate results in
an increase in the system delay of less than 1 percent for most
values of h. The first system displays a maximal increase of
5 percent in the crossover regime h M 160, and the second
system has a maximal increase of 11 percent at high loads.

Third, we tested the effect of finite system sizes. Recall that
the D policy was motivated by comparison to systems with an
infinite number of slow servers. We performed simulations of
two systems identical to those studied above, except that they
had only a finite number of the slowest servers; rnslow = 80
in the first case and rnslow = 1 in the second. In both of
these systems, the D policy continues to display lower delays
than all of the other policies, indicating that the D policy also
performs well for finite systems.

In the examples simulated, the heuristic A and D policies
outperform all of the other heuristic policies that we are aware
of. Furthermore, for the first system where we obtained the
optimal thresholds through exhaustive search, the A and D
policies exhibit close to optimal performance. This validates
the central approach in Section V of modeling the general-
speed model by the simplified two-speed model, and then
using the two-speed optimal decision rule. We expected the
adaptive A policy to be more resilient against nonideal arrival
and service processes. Instead, the deterministic D policy ac-
tually outperforms, albeit only slightly, the A policy on these
nonideal systems. Consequently, we will not consider adaptive
policies in the next section.

VII. PARALLEL QUEUES
The single queue problem considered above reflects those

situations where scheduling decisions can be postponed until
the job is at the head of a central queue. However, there are
many systems where the scheduling decisions must be made
immediately and irrevocably upon the job's arrival. These sys-
tems are more accurately modeled by the many-queue model
of Fig. le). Each server has its own queue, and the scheduler
routes each arriving job to the queue selected by the policy.
We would like to evaluate several heuristic policies for this
system.

A . Policies
There are parallel queue versions of the SED, NQ, and

GT queue control policies. Let n; denote the total number of
jobs in the ith queue, including any jobs in service. The SED
policy selects the queue that has the minimal expected delay
(n; + l)/p;. The NQ policy chooses the fastest server that has
an empty queue; if there are no empty queues, the queue with
minimal n;/p; is selected. The GT policy selects the queue
that maximizes the quantity (p; /(A + p;)) l+n ' .

Previous work has suggested that the SED policy is an ad-
equate policy for these multiqueue systems. Banawan and Za-
horjan [2] compute the optimal policy for several models us-
ing numerical policy iteration and find that over 90 percent of
the scheduling decisions are consistent with the SED policy.

SHENKER AND WEINRIB: CONTROL OF QUEUEING SYSTEMS 1733

0.0 ~ I ' ~ ~ ~ ' ~ . ~ ~ ~

0 40 80 120 160 200 240

h
(a)

0.3

- P

I
0.2

I

0.1

x'
0 40 80 120 160 200 240 280

h
(3)

Fig. 5 . The performance of the SED, NQ, GT, and D policies for the
parallel queue model. The job arrival rate is A. The curves are derived
from a computer simulation of the system. (a) A system with three classes
of servers: pfasr = 16 rnfasf = 5, pmd = 4 rnmd = 20, and pslOw = 1
rnslow = 00. (b) A system with servers of speeds 128, 64, 32, 16, 8,4, 2 ,
and an infinite number of servers of speed 1 .

Simulations by Rosberg and Kermani [22], [23] demonstrated
that the SED policy was superior to the two other heuristic
policies they considered. Furthermore, simulation studies by
Houck [6] on a similar model (where each queue was served
by a team of identical servers, but the queues could have dif-
ferent sized teams) indicated that the SED policy provided
close-to-optimal delay. The results of our simulations (see Fig.
5) suggest a different conclusion: as in the single queue case,
the SED policy is significantly suboptimal for some systems.

We have no simple solvable parallel queue model; the anal-
ogous two-speed model is intractable due to the huge state
space (instead of a single queue length, there are queue lengths
for each server). However, the infinite system limit is still
tractable. The results here are essentially identical to the sin-
gle queue case, with NQ and GT asymptotically optimal and
SED giving significantly suboptimal delays. With no other
analytical results for this model, we use our previous single
queue results to motivate a new heuristic policy for the par-

allel queue model. The first step is to define a transcription
between the parallel queue model and the single queue model.

Consider first a two-speed case, with an infinite number
of slow servers and m fast servers (now, each with their own
queue). Our central approximation here is to reduce this prob-
lem to a corresponding single queue problem. Whenever we
have a nontrivial scheduling decision to make (that is when all
of the fast servers are occupied), we use a modified threshold
policy that treats the fast servers as if they had a single queue
by adding up all of their queue lengths and then applying a
threshold to this sum. A job is sent to the fast server with
the shortest queue as long as the sum of the queue lengths of
the fast servers is below some threshold; otherwise, the job is
sent to an open slow server. Using the value for the threshold
calculated from the single queue formula (3.3), we find that
this policy performs within 2 percent of the optimal modi-
fied threshold policy over the entire range of p values. (The
optimal modified threshold policy was determined through ex-
haustive simulation; see [28].) The delay values of the single
queue and the parallel queue models are not the same; how-
ever, the preceding result suggests that the optimal thresholds
of the two models are closely related.

Emboldened by the success of modeling the parallel system
with the single queue system, we return to the case of general
server speeds. Exploiting the similarity in thresholds between
the single queue and parallel queue models, we apply the
single queue/general speed deterministic D threshold to the
parallel queue case. We treat all of the servers that are faster
than the fastest open server as belonging to a single queue,
and make the decision of whether or not to queue based on
this threshold. A job to be queued is sent to the queue with
the minimum (ni + l)/pi.

B . Simulations

We consider the same two sets of server speeds as we did
for the single queue model. Fig. 5(a) depicts the performance
of the various policies for the first system configuration and
Fig. 5(b) shows the same for the second system configuration.
Both of these graphs are very similar to ones obtained for the
corresponding single queue systems, providing further support
for the approximation of modeling the parallel queues as a
single queue. As in the single queue case, the naive SED
policy performs poorly compared to the GT and D policies;
the NQ policy is quite good for the first system, but is bad
for the second system. Our D policy again outperforms all
of the other policies over the entire range of arrival rates for
both systems studied.

There are two other policies that we did not include in our
graphs but that deserve mention. Chow and Kohler [5] devised
a policy (which they conjectured is optimal) that is very sim-
ilar to the GT policy, except that it maximizes the throughput
rate before the next job arrival. Through simulations, we find
that it performs slightly less well than GT. Another policy is
that devised by Krishnan [111, based on a single application
of policy iteration to a Bernoulli split random assignment al-
gorithm. This policy does significantly better than SED, but
performs worse than GT in our simulations. Furthermore, it

1734 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

displays suboptimal performance for our two-speed model in
the large system limit [28].

VIII. SUMMARY

We have studied the problem of controlling a queue served
by a heterogeneous set of servers. While the general prob-
lem remains intractable, we identified a simplified version of
the problem, the two-speed model, that is solvable. This two-
speed model was used to analyze the heuristic policies of
shortest expected delay, never queue, and greedy through-
put. Despite its apparent naturalness, the SED policy per-
formed significantly suboptimally in the limit of large systems.
The other two policies performed suboptimally in small sys-
tems with extreme heterogeneity. Using the two-speed model
as a basic source of insight, the D heuristic policy was in-
troduced. It outperformed all of the other heuristics on the
two system configurations we simulated, and was within 112
percent of the optimal threshold policy for the first system
configuration. We then considered the related problem of par-
allel queues. Again, the analog of the single queue D policy
outperformed all of the other policies.

APPENDIX
CALCULATION OF COST FUNCTIONS

Recall that the cost function e(,) is defined by

C?(X) lim [~ , (x , t) - ~ , (x - 1, t)] (A.I)

where T , (x , t) is the total delay accumulated up to time t.
When computing cf““‘(x) there are two cases to consider: x 2
7 and x < 7. We will first consider x 2 7 and observe that in
this case accepting a job merely induces a delay until the queue
reverts back to its original length (the threshold policy sends
all jobs to the slow servers until the queue length is below
threshold). Let s be the time until one of the current jobs
finishes; the probabilty distribution of the values of s is given
by f (s) = mpfaste-“’fasf. The total extra delay accumulated
during this period is the delay in the queue, s(x +m), plus the
expected number of jobs sent to the slow servers times their
expected delay, sX/pslow. Thus, for x 2 7 ,

t-cc

dsf (s) [T , (x - 1, t -s) + s (x + m) +MA].

(A.2)

Substituting this expression into the definition (A.l), we find

We now turn to the computation of e (x) when x < 7, where
the situation is a bit more complicated. Upon accepting a job,
two events can happen; with probability mpfast/(h + mpfast)
the next event will be that one of the jobs currently being
processed will finish, and with probability X/(X + mpfaast) the
next event will be the arrival of a new job, which is then

placed onto the queue. We can write the equation

SubtraFting T , (x , t) from both sides, taking the limit t + CO,

and rearranging terms, we find a recursion relation for x < 7

x + m + p(Cf““‘(x + 1) - D T) . (AS) = __
mPfast

REFERENCES

A Agrawala, E. Coffman, M. Garey, and S. Tripathi, “A stochastic
optimization algorithm minimizing expected flow times on uniform
processors,” ZEEE Trans. Comput., vol. C-33, pp. 351-356, 1984.
S. Banawan and J. Zahorjan, “Load sharing in heterogeneous queueing
systems,” in Proc. ZEEE ZNFOCOM ’89, 1988, pp. 731-739.
C. Bell and S. Stidham, “Individual versus social optimization in the
allocation of customers to alternative servers,’’ Management Sci., vol.

F. Bonomi and A. Kumar, “Adaptive optimal load balancing in a het-
erogeneous multiserver system with a central job scheduler,” in Proc.
ZEEE 8th Znt. Conf. Distrib. Comput. Syst., 1988, pp. 500-508.
Y. Chow and W. Kohler, “Models for dynamic load balancing in a
heterogeneous multiple processor system,” ZEEE Trans. Comput.,

D. Houck, “Comparison of policies for routing customers to parallel
queueing systems,’’ Oper. Res., vol. 35, no. 2, pp. 306-310, 1987.
R. Howard, Dynamic Programming and Markov Processes. Cam-
bridge, MA: MIT Press, 1960.
D. L. Jagerman, “Some properties of the Erlang loss function,” Bell

F. P. Kelly, “Routing in circuit switched networks: Optimization,
shadow prices and decentralization,” Advances Appl. Probability,

L. Kleinrock, Communication Nets. New York: McGraw-Hill,

K. R. Krishnan, “Joining the right queue and routing in data net-
works,” Bellcore Tech. Memo.; also see “Joining the right queue: A
Markov decision rule,” in Proc. ZEEE Conf. Derision Contr., 1987,
pp. 1863-1868.
- , “Adaptive routing for telephone traffic,” Bellcore Tech. Memo.,
1987.
P. Kumar and J. Walrand, “Individually optimal routing in parallel
systems,” J. Appl. Probability, vol. 22, pp. 989-995, 1985.
R. Larsen and A. Agrawala, “Control of a heterogeneous two-server
exponential queueing system,” ZEEE Trans. Software Eng., vol. SE-

W. Lin and P. Kumar, “Optimal control of a queueing system with two
heterogeneous servers,” ZEEE Trans. Automat. Contr., vol. AC-29,

S. Lippman and S. Stidham, “Individual versus social optimization in
exponential congestion systems,” Oper. Res., vol. 25, pp. 233-247,
1977.
P. Naor, “On the regulation of queue size by levying tolls,” Econo-
metrica, vol. 37, pp. 15-24, 1969.
R. Nelson and D. Towsley, “On maximizing the number of departures
before a deadline on multiple processors,” IBM Rep. RC 11255, 1985.

29, pp. 831-839, 1983.

vol. C-28, pp. 354-361, 1979.

SySt. Tech. J . , vol. 53, pp. 525-551, 1974.

vol. 20, pp. 112-144, 1988.

1964, pp. 125-126.

9, pp. 522-526, 1983.

pp. 696-703, 1984.

SHENKER AND WEINRIB: CONTROL OF QUEUEING SYSTEMS 1735

1191

1201

(211

- , “Comparison of threshold scheduling policies for multiple server
systems,” IBM Rep. RC 11256, 1985.
G. F. Newell, Approximate Stochastic Behavior of nServer Service
Systems with Lorge n.
R. Righter, “The stochastic sequential assignment problem with ran-
dom deadlines,” Probability Eng. Inform. Sci., vol. 1, pp. 189-202,
1987.
Z. Rosberg and P. Kermani, “Customer routing to different servers
with complete information,” IBM Rep. RC 13765, 1988.
-,, “Customer routing to different servers with complete infor-
mation,” in Pm. Twenty-Sixth Annu. Allerton Conf. Commun.,
Contr., Comput., 1988, pp. 566-568.
S. Shenker and A. Weinrih, “Asymptotic analysis of large heteroge-
neous queueing systems,” in P m . Sigmetrics 88, 1988, pp. 56-62.
S. Stidham. “Outimal control of admission to a aueueinp. system,”

Berlin, Germany: Springer-Verlag, 1973.

[22]

1231

1241

1251
IEEE Trans. Aitomat. Contr., vol. AC-30, pp. f05-71< 1985.
- , “Scheduling, routing, and flow control in stochastic networks,”
Univ. of North Carolina Tech. Rep. UNC/ORSAITR-86/22, 1986.
J. Walrand, “A note on ‘Optimal control of a queueing system with
heterogeneous servers,’ ” Syst. Contr. Lett., vol. 4, pp. 131-134,
1984.
A. Weinrih and S. Shenker, “Greed is not enough: Adaptive load
sharing in large heterogeneous systems,” in P m . IEEE INFOCOM

T. Yum and M. Schwartz, “The join-biased-queue rule and its appli-
cation to routing in computer communication networks,” IEEE Trans.
Commun., vol. COM-29, pp. 505-511, 1981.

’88, 1988, pp. 986-994.

Scott Shenker received the Sc.B. degree in physics
from Brown University, Providence, RI, in 1978
and the Ph.D. degree in physics from the Univer-
sity of Chicago, Chicago, IL, in 1983. His graduate
studies focused on the scaling properties of chaotic
dynamical systems.

After a year of postdoctoral work at Cornell Uni-
versity, Ithaca, NY, he joined the Xerox Palo Alto
Research Center where he is now a member of
the Computer Science Laboratory. His current re-
search interests include computer systems model-

ing, game-theoretic approaches to resource allocation, and the dynamcs of
computer networks.

Phi Beta Kappa, and Sig

Abel Weinrib received the S.B. degree from the
Massachusetts Institute of Technology, Cambridge,
in 1979 and the Ph.D. degree from Harvard Uni-
versity, Cambridge, MA, in 1983, both in physics.

He is currently a member of the Technical Staff
in the Applied Research Area at Bellcore, where he
has been since 1985. His current research interests
include control issues in circuit and packet networks
and algorithms for distributed systems.

Dr. Weinrib is a member of the Association for
Computing Machinery, the IEEE Computer Society,

,ma Xi.

