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The Optimal Control of Heterogeneous Queueing 
Systems: A Paradigm for Load-Sharing 

and Routing 
SCOTT SHENKER AND ABEL WEINRIB 

Abstmct- The essence of the basic control decisions implicit 
in load sharing and routing algorithms is captured in a simple 
model of heterogeneous queue control. We solve for the optimal 
control policy and investigate the performance of previously 
proposed policies in a tractable limit of this model. Using our 
understanding of this solvable limit, we propose heuristic policies 
for the general model. Simulation data on these policies suggest 
that they perform well over a wide range of system parameters. 

Index Terms- Control of queues, heterogeneous systems, 
multiserver systems, routing problems, stochastic optimization, 
stochastic scheduling. 

I. INTRODUCTION 

ISTFUBUTED computing systems composed of net- D worked workstations and servers are now commonplace. 
Such systems are rapidly becoming larger, both in geographic 
extent and also in the number of separate computing ele- 
ments. Distributed systems routinely contain special purpose 
machines (such as “cycle servers”) and, because of the rapid 
pace of technological advance, they often include computing 
elements from several different technology generations. All 
of these factors make diversity, or heterogeneity, an increas- 
ingly important issue in distributed systems. The goal of dis- 
tributed system design is to effectively harness the collective 
power of the constituent elements. Often, the underlying al- 
gorithms have been designed with the assumption of homo- 
geneity; naively applying these algorithms to a heterogeneous 
system can result in surprisingly poor performance. It is a rel- 
atively unexplored but crucial challenge to design distributed 
systems that remain efficient in the presence of heterogeneity. 

Many of the problems that arise in designing distributed 
algorithms to operate in the presence of heterogeneity involve 
controlling queues with servers of differing speeds. For ex- 
ample, load balancing algorithms in heterogeneous distributed 
computing environments, even with free and instantaneous 
communication, require nontrivial decisions about when and 
where to process jobs remotely [2], [ 5 ] ,  [28]. Another ex- 
ample is routing in computer networks which often involves 
selecting one of a number of possible nonequivalent routes 
[9], [ 1 11, [ 121, [29]. Given a specific optimization criterion, 
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such as minimizing waiting time, one would like to determine 
the optimal decision policy. If optimal policies are unavailable, 
then approximately optimal heuristic policies are desired. The 
purpose of this paper is to provide some basic insight leading 
to such heuristic policies. This work builds on two previous 
papers [24], [28], and some of the results in Section I11 were 
first reported in [24]. 

Instead of focusing on any specific application, we will 
study the simple abstract model illustrated in Fig. l(a) of a 
single queue feeding multiple servers (for other work on this 
model, see [l], [14], [15], [18], [19], and [27]). The arrival 
process is Poisson with strength X and the servers are expo- 
nential with service rates p k .  We are modeling server-rate 
heterogeneity: in general p j  # pk for j # k .  A controller for 
the queue chooses when and where to send jobs to be served. 
Our goal is to find a decision policy that minimizes the average 
delay (time spent in service plus time spent in the queue). The 
controller can decide to send a job to an open server (choosing 
the fastest open server), or to hold the job in the queue until 
a faster server becomes available. For homogeneous systems, 
where all of the servers are equivalent, there is no incentive 
to retain jobs in the queue. In heterogeneous systems, queue- 
ing jobs is often preferable when the only available servers 
are relatively slow. There is a tradeoff between the extra time 
spent in the queue waiting for a faster server versus the extra 
time spent in service at the slower server. 

Given values for the system parameters, there arc tech- 
niques to compute the optimal policy (see [7]). For large sys- 
tems, these methods are not tractable analytically and rapidly 
become too cumbersome to implement numerically (since they 
yield a set of self-consistent equations whose cardinality grows 
exponentially in the number of servers). Even in the smallest 
nontrivial case of just two nonidentical servers, solving for the 
optimal control policy is difficult (but possible, see [15] and 
[27]). While optimal solutions are desirable, they generally 
appear beyond our present technical means. 

In the absence of optimal solutions, we turn to devising 
close-to-optimal heuristic policies. In Section 11, we introduce 
several previously suggested heuristic control policies, and 
describe how they apply to our particular model. Each of these 
heuristics can be expressed as minimizing (or maximizing) 
some quantity on a job-by-job basis. The choice of the job- 
by-job optimization principle used in these heuristics is based 
merely on intuition, and their evaluation has previously been 
limited to some isolated simulation results. 
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tails of the calculation are relegated to the Appendix). We 
calculate the exact cost in terms of delay to the system of 
queueing or serving a job, and thus identify the job-by-job 
optimization principle that produces the optimal policy. 

The second goal of this paper, addressed in Section V, is 
to use our understanding of the simple two-speed system to 
generate new heuristic policies for the general model in a 
principled fashion. The key step in this process involves map- 
ping every scheduling decision in the general case to a corre- 
sponding one in the two-speed model. The mapping from the 
general-speed model to the two-speed model is approximate, 
but the two-speed decision is correct. Thus, our heuristic pol- 
icy can be viewed as an approximate calculation of the correct 
job-by-job optimization principle; the other heuristics do an 
exact calculation of a suboptimal optimization principle. 

The final goal of this paper is to demonstrate, through 
simulation studies, that there are model systems for which 
the performance of the heuristic policies (ours and others) 
can be distinguished; simulations of fairly small systems have 
suggested that the performance of various policies are quite 

x = 3  

h ,"""" 
*...**. 

similar (e.g., [19])1 We concentrate on fairly large systems, 
with a large number of slow servers; these systems illustrate 
the differences between the policies, and are also good mod- 
els for many current networked systems where hundreds of 
(slow) workstations are combined with various faster "cycle- 
servers." In the simulation study discussed in Section VI, we 
compare the heuristic policies on two different server con- 
figurations, finding that our policies outperform all of the 
previously suggested heuristic policies. 

The insight generated in Sections I11 and IV would be of 
limited utility if it were only applicable to our specific sin- 
gle queue/multiple server model. In Section VII, we test the 
robustness of this insight, as well as address another impor- 
tant model of distributed systems, by considering the paral- 
lel queue model illustrated in Fig. l(b). We generate a new 
heuristic policy for this case and compare it to previously 
suggested heuristics through simulation. 

(b) 
Fig. 1 .  The heterogeneous queueing models; the scheduler executes policy 

?r to place jobs so as to minimize the average delay. (a) The single queue 
model with queue length x = 3 and servers of rate pa. (b) The parallel 
queue model with queue lengths nk and servers of rate pk.  

The first goal of this paper is to provide a more thorough 
understanding of the performance of these currently available 
heuristic policies. In Section 111, we analyze a simplified and 
solvable special case of our general queue control model, one 
in which there are only two server speeds with some number 
of the fast servers and an infinite number of the slow servers. 
We explore a variety of limiting extremes (an infinite number 
of fast servers, a large but finite number of fast servers, and 
only one fast server with a large ratio in service rates). In each 
of these regimes, we solve for the optimal policy and com- 
pare it to the heuristic policies. This allows us to rigorously 
identify certain limits in which each of these policies perform 
significantly suboptimally. In Section IV, we reanalyze this 
two-speed model using the technique of policy iteration (de- 

II . HEURISTIC POLICIES 
We now define three heuristic queue control policies. Queue 

control policies are decision rules that, given the set of busy 
servers and the number of jobs in the queue, determine 
whether or not to send a job to the fastest open server. Since 
here we are only concerned with the average delay, and not 
higher moments, it does not matter which queued job is sent 
to the open server. However, we will find it useful to say that 
a controller would send the job in queue position x to the open 
server if, given a total queue length of x, the queue control 
decision is to send some job to the server. 

A natural candidate for an effective heuristic policy is the 
shortest expected delay (SED) policy, where the controller 
chooses the option that minimizes the expected delay for each 
individual job [lo], [13]. This policy sends a job in position 
x in the queue to the fastest open server if 

(PLk - Popen) 
f i k  >popen 

X >  (2.1) 
Popen 
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where popen denotes the speed of the open server, and we use 
the convention that x does not count those jobs presently in 
service. The condition in (2.1) can be motivated as follows. 
The expected delay of a job in position x in the queue that is 
queued for a faster server depends on the scheduling decision 
of the jobs ahead of it. If we assume that all jobs ahead of 
position x use only those servers faster than popen, and that 
these servers are never left open while there are jobs in the 
queue, then this expected delay is 

X S  1 
P K  >popen 

(2.2) c pk 
BC >@open 

where the sum is over all of the servers that are faster than the 
fastest open server. In contrast, the expected delay of a job 
that is served immediately by the fastest open server is sim- 
ply llpopen. The condition in (2.1) results if this delay llpopen 
is compared to the delay of (2.2) for each job in the queue. 
Note, however, that the delay calculated in (2.2) is not the ac- 
tual expected delay since the preceding jobs, in following the 
SED policy themselves, may not keep all of the servers faster 
than popen occupied. Nonetheless, and for reasons explained 
in [13], the policy defined by (2.1) does indeed minimize the 
expected delay for each job. 

Agrawala et al. [l] have shown that this SED policy min- 
imizes the average delay of a given batch of jobs with no 
subsequent arrivals. However, with an ongoing arrival pro- 
cess the SED policy no longer always minimizes the aver- 
age delay. Scheduling decisions affect not only the job be- 
ing scheduled but also potentially affect subsequently arriving 
jobs, which may be forced to wait in the queue longer or 
to use a slower server as a result of previous scheduling de- 
cisions. Nonetheless, one might expect that the heuristic of 
minimizing the delay for each individual job would at least 
provide close-to-optimal Performance. Simulation data from 
Nelson and Towsley [19] on relatively small systems suggests 
that SED performs almost as well as other available heuris- 
tics. To the contrary, we will demonstrate that SED is signifi- 
cantly suboptimal for large systems with large heterogeneity in 
speeds; for these systems, the SED policy completely wastes 
the lower delay available from the faster servers. The SED 
policy has also been endorsed as close-to-optimal for systems 
with multiple parallel queues [2], [6]; in Section VII, we shall 
see that SED can perform poorly for this model as well. 

Another possible heuristic is the never queue (NQ) policy, 
where the controller always sends jobs to the fastest available 
server. This policy might at first appear ill-advised, in that 
jobs are scheduled in a manner that increases their individual 
expected delays; however, the NQ policy minimizes the extra 
delay caused to the subsequently arriving jobs, so that the 
effect on the overall average delay may be reasonable. We 
shall see that NQ is asymptotically optimal for large systems. 
However, it does not perform well for smaller systems with 
large heterogeneity. 

The SED policy minimizes the expected delay of each ar- 
riving job. Similarly, the NQ policy can be seen as maximiz- 
ing the instantaneous throughput rate, i.e., the total service 

rate of all occupied servers immediately following a schedul- 
ing decision. Maximizing the throughput rate only at the in- 
stant of scheduling is shortsighted. An alternative throughput 
optimization criterion is to maximize the expected number 
of job completions before the next job arrival. This policy 
will be called the greedy throughput (GT) policy. Nelson 
and Towsley have introduced such a policy [18], [19] (see 
also [2 11); they present general formulas for its implementa- 
tion which are too complicated to redisplay here. Chow and 
Kohler [5]  define a somewhat similar policy for the parallel 
queue model. The GT policy outperforms both NQ and SED 
for most of the systems we investigate, but is outperformed, 
in turn, by the policies that we generate in Section V. 

The job-by-job optimization principle guiding each of 
these policies (individual delay, instantaneous throughput, and 
throughput before next job arrival) have been justified only on 
the basis of intuition. The resulting policies have been previ- 
ously evaluated only through limited simulation. In the next 
section, we calculated their performance in the context of a 
simple model, giving us a more systematic evaluation of these 
policies. 

111. SIMPLIFIED TWO-SPEED MODEL 

Consider a system with only two classes of servers, fast 
and slow, with rn fast servers and an infinite number of slow 
servers. The restriction to two classes of servers introduces 
the simplest form of heterogeneity. An infinite number of 
slow servers is equivalent to a large but finite number of slow 
servers, except in the heavy traffic regime [20], [24]. With 
these two simplifications, this model is now equivalent to the 
problem of admission to an MIMIrn queue with rn fast servers 
when one identifies the average time spent in service at the 
slow servers as the penalty for rejecting a job, and assigns 
a unit penalty per unit time for waiting in the queue. Much 
is known about this admission problem (see [17], [25], and 
[26]). In [ 161, it is shown that the optimal policy is of a thresh- 
old type. A policy with threshold r will send a job to a slow 
server whenever there are r or more jobs ahead of it in the 
queue (this number does not include those jobs presently in 
service). Otherwise, jobs are queued up until a fast server 
becomes available. Our search for the optimal policy now re- 
duces to the search for the optimal threshold 7. 

A .  Delay and Threshold Formulas 

It is helpful to scale the arrival rate by the number of fast 
se: is m, defining p = X/mpfast. The average delay D, in- 
curred by a threshold policy with threshold 7 can be expressed 
in terms of quantities calculated for an MIMImIK queue with 
K = r n $ r :  

where N, is the average number of jobs in the MIMImIK 
system and Z, is the blocking probability (using notation that 
does not explicitly show the dependence on p and m). Both 
N, and Z ,  can be easily expressed in terms of the Erlang-B 
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function, B(m, mp): 

and 

1 - p p '  
1 +BO- 

. 1 - P  

(3.2b) 

These formulas permit numerical determination of the optimal 
7 for a given m and p. Let us define the discrete derivative 
A(T)  D, - D , - 1 .  The full expression for this quantity is 
complicated, and we merely note that the derivative is pro- 
portional to the expression shown below, where we have in- 
troduced the notation R = pfast/pslow: 

A(T) 0: T + m(R - l)(p - 1) 

The optimal threshold is the largest integral value of 7 such 
that A(7) < 0. Alternatively, one can compute the real valued 
solution to AQ) = 0 and set TOpt = [ y J ,  where l y ]  denotes 
the integer part of y .  These solutions are monotonically de- 
creasing in p and monotonically increasing in R .  Furthermore, 
one can show that the optimal threshold is always between two 
bounds: 0 5 70pt 5 m(R - 1). 

The heuristic policies discussed in Section I1 are thresh- 
old policies. Applying formula (2.1) to the two-speed model 
yields TSED = lm(R - 1)J. The NQ policy has a trivial thresh- 
old, 7NQ = 0. The optimal threshold is always bounded be- 
tween these two policies. In general, the computation of the 
GT policy is rather involved [19], [21], but for our simple 
two-speed model the threshold calculation is straightforward. 
The increase in expected throughput derived from scheduling 
an additional job is merely the probability that this job will 
complete service before the next job arrives. When placing 
the job at the end of the queue, in position x ,  this probability 
is given by (1  + ~ ) - ~ ( 1  + mp)-'. Placing the job on a slow 
server yields an increase of (1 +Rmp)-I. Thus, the resulting 
threshold is 

Note that the GT policy is equivalent to the SED policy in the 
p -+ 0 limit and is equivalent to the NQ policy in the p 4 00 

limit. 
With the threshold expressions in hand, we now turn to 

evaluating the delay performance of these three policies. We 
will first analyze the performance in the limit of infinite m, 
then study the performance for large but finite m, and finally 

1727 

(3.2a) 

B. Infinite System Limit 
The behavior of B(m, mp) with large m depends crucially 

on p.  For p < 1 ,  B ---f 0 exponentially fast, so the average 
delay is just Upfast. The delay is independent of the threshold, 
so all policies are identical in this limit. For p > 1 ,  the limiting 
value of B is ( p  - l)/p. The asymptotic delay is then 

Pfast 

Note that the limiting delay depends only on the limit of 7/m 
when m + 00. 

Substituting the expression 7SED = [m(R - 1)J into ( 3 4 ,  
the delay for the SED policy with p > 1 is D,,, = R/Pfast = 
l/pslow. The SED policy makes every server appear as bad 
as the slow servers, in that the controller keeps adding jobs to 
the queue until the average delay for a job entering the queue 
is as long as the expected service time on a slow server. In 
this regime, SED completely wastes the lower service delay of 
the fast servers and would perform just as well if given only 
the slow servers. When m is large, fluctuations in the arrival 
process are insignificant, so queueing up for the fast servers 
just creates added delay without any compensating increase in 
throughput. On the other hand, when m is small, queueing up 
for the fast servers can increase their throughput by smoothing 
out the fluctuations. 

The minimum m = 00 delay is D = l/pfast{l + (R - 
l)(p - l)/p}, and is obtained by any policy that has 7/m = 0 
when m -+ 00. Note that (3.4) has the limiting form TGT = 
[ln(R)/ln(l + p ) J  for m + 00. Thus, both the NQ and GT 
policies achieve asymptotically optimal performance in large 
systems. Fig. 2 shows a graph of the delays for the SED and 
NQ policies. The discontinuity in the SED delay curve reflects 
the fact that the SED policy builds up a large queue as soon 
as it is forced to use any of the slow servers. 

We can extend the infinite system results to the more gen- 
eral many-speed case. Consider an arbitrary normalized dis- 
tribution of server rates p(p) .  Let the N-server version of 
the system consist of N servers with speeds chosen randomly 
from the distribution p ( p )  and an arrival rate of XN = N h .  As 
long as the distribution of server speeds is sufficiently smooth, 
the limit of an infinite number of servers can be modeled by 
a fluctuation-free system. The system will utilize just those 
servers necessary to provide throughput equal to the arrival 
rate, and the various policies will only affect the number of 
jobs kept in the queue. In particular, 

1 1 
PoDen Pave 

&ED = ~ and D N Q  = - (3 -6) 
compute the performance in the special case m = 1 .  



1728 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989 

0.0 1 .o 2.0 

P 
Fig. 2. The m = DC, performance of the NQ and SED policies for the single 

queue model with servers of two speeds, m of the fast ones, and an infinite 
number of the slow ones. The scaled arrival rate p = A/mpe,. pfast = 1 
and psiow = 1/4, so the ratio of speeds is R = 4. The delays are calculated 
according to formula (3.5). Results for large but finite m are very similar 
to these infinite m results, except that the discontinuity is replaced by a 
smooth but steeply sloped curve. 

where popen is the solution to 

(3.7) 

and pave is given by 

(3.8) 
x 

Pave = y-. 
dP P(P> 

L o p e n  

Thus, as in the two-speed case, the NQ policy (and any other 
policy that keeps the queue finite in infinitely large systems), 
always achieves optimal performance in this infinite limit. The 
SED policy has performance equivalent to a system where 
all of the servers have service delay l/popen. Fig. 3(a) and 
(b) depicts the performance of the SED and NQ policies for 
two distributions of server speeds. Fig. 3(a) is for a discrete 
distribution, while Fig. 3(b) is for a continuous distribution. 
In both cases, the NQ policy exhibits markedly lower delay 
compared to the SED policy. 

The above results indicate that the SED policy may be 
significantly suboptimal for infinitely large systems. In this 
regime, bounded threshold policies like NQ and GT are opti- 
mal. In the next section, we examine the behavior for large but 
finite m. By studying the rate of convergence to optimality, 
we will see that SED is better than NQ for p < 1. 

C. Large m 
The properties of formula (3.3) for large m depend on the 

asymptotic nature of B(m, mp) (see [8]), and there are three 
cases that we discuss below. 
Z) p < I: Here, B M (pe(1-P))m/m1/2 so that Topt(m) = 

m(R - 1)(1 - p)  for large m. The delay is given by 

15 

- 8 0" 10 

P c 
5 

5 

SED 

V .  

0 5 10 15 

- E 
0" 
c 
2 0  
5 

0.0 4 
0 5 10 15 

1 
(b) 

Fig. 3. The infinite system (N = m) performance of the NQ and SED poli- 
cies. (a) The mean delay of a job for a system with a distribution of server 
speeds given by @ ( p )  = (1/21)6(p - 1)+(4/21)6(p- 1/4)+(16/21)6(p- 
1/16) where the 6 denotes the delta function. This is a discrete distribu- 
tion with only three classes of servers, with (1/21)N fast servers having 
a service rate of 1, (4/21)N medium servers having a service rate of 1/4, 
and (16/21)N slow servers having a service rate of 1/16. The weights and 
speeds were chosen so that each class has the same total processing power. 
(b) A system with a continuous distribution of server speeds, @ ( p )  = l / p  
for 0 5 p 5 15, chosen so that each class of server contributes the same 
total processing power. For both distributions, NQ produces significantly 
lower delays than SED. 

The asymptotic deviations from optimality for the SED, NQ, 
and GT delays when p < 1 are 

(3. lob) 
B 

Pfast 
D,Q - D,, M -(R - 1) 

In ( P )  B D,, - D,, M -(R - l)R '"('+p). 
Pfast 

(3.10~) 

SED has a faster exponential convergence rate than NQ or GT. 
Even though all of these policies are equivalent to the optimal 
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policy in the limit of infinite m, the rate of convergence to 
optimality can become very slow. For p = 1 - E for small E ,  

the deviation of NQ from optimality goes as e-me2/2/m1/2. 
For m < the convergence rate will be dominated by the 
square root term. 

2) p = I: Here, B M (2/7rm)'I2 -4/37rm  OW^/^). For 
large m, Topt 0: m1/2 and D, - l/pfast 0: m-'I2. The asymp- 
totic delay of the SED policy is DTSED = (R + 1)/2~fast, which 
is not asymptotically optimal. The NQ and GT policies are 
asymptotically optimal, both having delays whose deviations 
from the optimal delays decrease as m-'i2. 

3) p > I: Here, B M ( p  - l)/p + l/mp(p - 1) + O(m-2). 
For large m,  the optimal 7 is given by 

(3.1 1) 

The deviation from optimality for the NQ and GT policies 
decreases as m-I while the SED policy has deviations that 
remain finite in the limit: D,,, x l/pslow. 

While the NQ and GT policies achieve optimal performance 
in the limit of infinite m, the rate of convergence to this limit 
depends on p .  For p < 1 ,  the convergence is exponentially 
fast, while for p > 1 it converges as m-l .  For p = 1 the 
convergence slows to m-lI2. Thus, even for large systems, 
it might be advantageous to use a policy more sophisticated 
that NQ or GT in the crossover region of p M 1 ,  where one 
first needs to utilize the slow servers. In the next section, 
we investigate the single fast server m = 1 case, which re- 
veals precisely how far from optimal these policies are in the 
crossover region. 

D . m = I  
We can further explore the performance of the heuristic 

policies in the limit of large R for the case m = 1 .  The 
expression (3.1) for the average delay becomes, with m = 1 ,  

(1 - (7 + 21p7+l + ( T  + i)p7+2 + ~ ( 1  - p ) 2 p 7 + 1 )  D, = 
Pfast(1 - ~ ) ( l  - P ~ + ~ )  

(3.12) 

The NQ policy yields a delay that always grows linearly with 
R: D,, = (1 + Rp)/pfast(l + p ) .  When p < 1, the opti- 
mal threshold grows linearly with R, 7opt M R(l - p ) ,  and 
the optimal delays as well as the SED delay converge to the 
M/M/l result of D M l/pfast(l - p ) .  Thus, the NQ policy 
is far from optimal for large R when m = 1 and p < 1. 
The behavior of the GT policy is somewhat peculiar. Define 
p c  = (8 - 1)/2 = 0.618. For p < p c ,  the GT delay con- 
verges to the optimal M/M/l result. When 1 > p > p c ,  the 
delay increases as R l+ln (dl In (I+). Apparently in this regime 
the GT policy does not queue up sufficiently to prevent the 
delay from diverging. 

comparison, 70pt = In (R)/ In ( p )  and D,, M R(p - l)/pfastp. 
While all four delay expressions increase linearly with R, 
the SED and NQ delays have a larger slope than the optimal 
threshold and GT delays. 

Forp > 1,DTsED =R/~fast andDTG, " R ( ~ - l ) / ~ f a s t ~ .  For 

So far, for each limiting case we have considered, at least 
one of the available heuristic policies has been asymptotically 
optimal. This is no longer true when we consider the inter- 
mediate case of p = 1.  With p = 1 ,  

r 1 

1 R 
D'Top = ~ ( 

Pfast 1/2 + (2R + 1/4)'/2 

- 1/2(1/2 - (2R + 1/4)lI2)) . (3 .13~)  

Thus, for p = 1 and m = 1 ,  while both the NQ and SED 
delays increase linearly with R, and the GT delay increases 
as R/  In (R), the optimal threshold policy yields a delay that 
increases only as 

The introduction of the simple two-speed model, and the 
subsequent analysis of the three extreme cases, that of in- 
finite systems, large but finite systems, and small systems 
with extreme heterogeneity, have illuminated the performance 
characteristics of the various heuristic policies. The bound 
'TSED 2 Topt implies that the SED policy always overqueues 
for fast servers, causing significant deviation from optimality 
for large systems at high loads. The NQ policy always un- 
derqueues, and while NQ is asymptotically optimal for large 
systems, it performs poorly in lightly loaded small systems 
with a large degree of heterogeneity. In contrast to the NQ 
and SED policies, the GT policy is explicitly dependent on 
the load A. Adjusting to the load aliows this policy to be 
asymptotically optimal for large systems and also for both 
heavily and lightly loaded small systems. However, its per- 
formance is significantly suboptimal in, and slightly below, 
the delicate crossover region p M 1 for small systems with 
large heterogeneity. 

IV. OPTIMAL COST FUNCTION 
We have seen that the SED, GT, and NQ policies fail to per- 

form optimally on our simple two-speed model. Before devis- 
ing better policies, we want to understand why these policies 
fail. The objective function we are trying to minimize is the 
average delay experienced by all jobs entering the system; the 
policy that achieves this objective is sometimes referred to as 
the socially optimal policy [3]. In contrast, the SED policy is 
an individually optimal policy, since it is equivalent to having 
each job minimize its own individual delay without any con- 
sideration of the additional delay experienced by subsequent 
jobs. The fact that individually optimal queue control poli- 
cies are not necessarily socially optimal was first discussed 
by Naor [17]. 

Define a job's social delay to be the sum of both its indi- 
vidual delay and also the delay its presence causes other jobs. 
In this section, we exactly calculate this social delay for our 
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two-speed model. The optimal job-by-job optimization princi- 
ple can then be stated as minimizing the social delay for each 
job. None of the heuristic policies of Section I1 calculate this 
social delay, which is what renders them suboptimal on our 
simple two-speed model. 

For our two-speed model, we define two social delays. The 
first, CP(x),  is the cost in delay of queueing a job at position 
x in the queue for a fast server when the control policy being 
employed is a threshold policy with threshold 7 .  This delay is 
to be compared to the cost of immediately serving the job at a 
slow server, which is merely the processing time at the slow 
server and is independent of the threshold 7 : CSlow = 1 /pslOw. 

To calculate Cy(x) ,  consider a system that at time 0 has a 
queue of length x - 1 ,  and place a single test job at the end 
of the queue. We want to compute the total additional delay 
experienced by the system. Define T, (x ,  t )  to be the total 
delay accumulated up to time t .  The eventual rate at which 
delay accumulates is AD,, so for large t we can express the 
accumulated delay in the form T,(x, t )  N V ,  (x) +tAD, . The 
term V ,  ( x )  reflects the influence of the starting position, and 
Cp(x)  V,(x) - V,(x - 1) is the cost, in terms of total 
delay, of adding a job onto a queue of length x - 1 .  The actual 
computation of e ( x )  is relegated to the Appendix; we use 
the results of that computation below. 

The functional form of cat(.) depends on the value of x 
relative to the threshold 7 .  For x 2 T ,  we have the result 

x + m  
CS""'(x) = - mPfast + P (& - D,) . (4.1) 

This expression for the cost function has an intuitive interpre- 
tation. The first term represents the individual delay of the job; 
the second term represents the additional delay caused to other 
subsequently arriving jobs. This extra delay p(l/ps~ow - 0,) 
is merely the expected number of extra jobs sent to the slow 
servers times the excess delay of those jobs, i.e., the delay 
l/pslow minus the average delay D, . 

For x < 7 ,  we find a recursion relation 

+ p(Cf""'(x + 1) - D,). (4.2) 
x + m  c y ( x )  == ___ 
mPfast 

This expression has the same intuitive interpretation as before, 
except that now the excess delay C y ( x  + 1) - D, is the 
delay of accepting a subsequent job into the queue minus the 
average delay D, . We can find a direct expression for e ( x )  
by applying (4.2) to the results from (4.1) for x = 7 .  We 
find that for x 5 7 ,  the cost function can be expressed in the 
following form 

1 D, -D,-1 C?(x) = ~ + 
Pslow P fastZx - 1 

(4.3) 

How do these cost functions determine an optimal policy? 
Howard, in [7], outlines a procedure to find optimal stochastic 
control policies, called policy iteration. We will not present 
this process in general, but will describe only how it applies 
to our application here. Policy iteration is a two-step process. 
The first step is to evaluate the cost function c"'(x) for a given 
policy (which here is characterized by a threshold 7 ) .  The 
second stage of the process is to create a new policy in which, 

for every x, the policy chooses the option that minimizes the 
cost functions calculated in the previous step. This new policy 
is again a threshold policy, where the new threshold 7' is 
the largest integer that satisfies C?(T') 5 CSlow. Based on 
general arguments in [7], this process is guaranteed to produce 
a new threshold 7' that gives a lower average delay: D, 2 
0:. The process is iterated until termination, resulting in the 
optimal threshold 70pt, which is the largest integer satisfying 
C + ( T o p t )  5 CSlow. Note that this cost-based formulation of 
the optimality criterion is equivalent to the directly computed 
optimality condition of Section 111. 

The canonical policy iteration process uses these cost func- 
tions and iterates until termination. However, in this iteration 
procedure one can equally well use a modified cost function 
for all x ,  

E x + m  f P (A - D T )  . (4*4) 
mPfast 

Note that this is the form of the cost function for x 2 7 merely 
extended over the whole range of x. Since both the correct and 
modified cost functions satisfy the same optimality condition, 
iteration of this modified cost function will result in the same 
optimal threshold. 

We now rewrite (4.4) in terms of locally measurable aver- 
ages; this new expression will be used in the next section as 
the foundation for an adaptive policy that realizes the steps of 
policy iteration dynamically. Define X, as the average value 
of the queue length, and i, as the average fraction of idle time 
of the fast servers. Then, the average occupancy N, takes the 
form X, + m(l - i,). Also, the total throughput of the fast 
servers is just mpfast(l - i,), so the blocking rate Z, can be 
expressed as 2, = 1 -mpfast(l -;,)/A. The delay D, becomes 

Pslow 

X, + m(1 - i,) 
h 

D, = 

(4.5) 

Using this expression in (4.4) for the modified cost function, 

1 
mPfast 

e y ( x )  = ~ 

(x - X,) + mpfast(l - . {  Pslow 

We now have a cost function that is expressed solely in terms 
of system averages X, and i, , the instantaneous system pa- 
rameter x, and the system configuration (i.e., m, Pfast, and 
Pslow). 

V. NEW POLICIES 

The heuristic policies introduced in Section I1 are based 
on job-by-job optimization principles that lend themselves to 
exact calculation but are not guaranteed to produce optimal 
behavior for any heterogeneous system. The two-speed model 
introduced in Section I11 allows us to understand the optimal 
policy of minimizing the social delay C on a job-by-job basis. 
We cannot calculate the social delay in general-speed models, 
but we can approximate it by mapping each general-speed 
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scheduling decision to an analogous two-speed scheduling de- 
cision. While the mapping is approximate in systems with 
more than two speeds, the underlying job-by-job optimization 
principle is rigorously correct. We now turn to the problem 
of approximating the general-speed model by the two-speed 
model. 

Note that there are nontrivial scheduling decisions to be 
made only if there is at least one job in the queue and at least 
one available server. Let the speed of the fastest available 
server, popen, play the role of pslow in the two-speed case; 
let the average speed of the servers faster than the fastest 
open server, call it pave, play the role of pfast; and let the 
number of such servers, call it Nfaster, play the role of m. 
This transcription of the general problem to the two-speed 
problem is basic to the generation of our heuristic policies. 

To turn this transcription into an actual policy, we can then 
follow two different courses. The first policy, the determin- 
istic (D) policy, is found by just inserting the variables popen, 
pave, and Nfaster into their proper places pslow, pfast, and m 
in formulas (4.1) and (4.3), and then minimizing the social 
cost for each job. This is exactly equivalent to using formula 
(3.3) and directly solving for the optimal threshold. The D 
policy determines a threshold for each server; i.e., whenever 
the kth server is the fastest open server, the controller follows 
a threshold policy with threshold 7 k .  Note that the SED and 
GT policies are also threshold policies since they depend only 
on the length of the queue and the identity of the fastest open 
server. A nonthreshold policy would also depend on which 
slower servers were occupied. 

The D policy requires detailed knowledge of the arrival 
rate, and its “derivation” depends crucially on the memory- 
less nature of the arrival and service processes. In real appli- 
cations, servers are not typically exponential nor are arrival 
processes Poisson. A policy that is perhaps more resilient to 
these deviations from the ideal is an adaptive (A)  policy. This 
policy is generated from the form (4.6) for the cost function 
which depends only on locally measured quantities. By mea- 
suring windowed averages, such a policy can settle down to 
the optimal policy for the two-speed model without a priori 
knowledge of the arrival rate A. For each server k, we main- 
tain the measured averages for ik, the average idle time, and 
Xk , the average queue length measured when server k is idle. 
Then, using the same transcription from the general-speed to 
two-speed as above, we can rewrite the cost function (4.6) for 
the general-speed case 

Pk >Popen 

The A policy uses this formula, along with CS1”(x) = 
1 /popen, and always chooses the action with the minimal cost. 
The measured statistics, ik and Xk, will define a policy that, 
in turn, will determine the measured ik and x k ,  and so on. By 

using running averages for the statistics, one should arrive at 
a self-consistent solution analogously to the process of policy 
iteration. We first suggested adaptive policies of this general 
form in [24] and [28]. Bonomi and Kumar [4], and Krish- 
nan [12] have also suggested adaptive policies, with Krishnan 
making the connection to policy iteration explicit. 

VI. SIMULATIONS 
The simulation study of the various policies was carried out 

with a simulation package written for this purpose. Each point 
in the graphs comes from a run of 600000 jobs, with the first 
1000o0 jobs discarded to remove any startup transients. Data 
on the mean job delay are taken in 25 blocks of 20000 jobs 
each; from the block statistics the standard error can be esti- 
mated, and is always less than 1 percent of the measured delay. 
Thus, the differences between policies seen on the graphs are 
large compared to the errors of the simulation. The statistics 
ik and Xk for the A policy are measured using exponentially 
decaying window averages with a decay constant of 500 job 
interarrival times. 

To test the various policies, we present results on two ba- 
sic system configurations. The first configuration models the 
situation of relatively few classes of service rates with many 
servers in each class; it consists of five fast servers with ser- 
vice rate 16, 20 medium servers of speed 4, and an infinite 
number of slow servers with service rate 1. Fig. 4(a) de- 
picts the performance of the various policies on this system. 
Note that outside of the very lightly loaded regime, where one 
need only use the fast servers, the SED policy performs quite 
poorly. The NQ policy performs significantly better than the 
SED policy, except at light loads. The D policy and the A pol- 
icy, which have virtually identical performance, match SED 
for light loads and achieve significantly lower delays than NQ 
throughout the entire range of A. The GT policy does sig- 
nificantly better than NQ but not quite as well as A or D. 
The difference between the A and D delay and the GT delay 
is largest just before the two crossover points X = 80 and 
X = 160. 

One would like to compare these policies to a lower bound. 
The average delay must be greater than the minimum average 
service time. This minimum average service time, which is 
the same as the delay for the infinite system NQ policy, is 
plotted on Fig. 4(a). The lower bound results are significantly 
below our best policy. To determine if this difference reflects 
a poor bound or a poor policy, we searched, via simulation, 
for the optimal set of thresholds 7medium and 7slow (7fast = 0 
since one would always send a job to an idle fast server). We 
find that the D policy is within 1/2 percent of the results from 
the optimal thresholds, which is within the error bars of the 
simulations. Note that the truly optimal policy may not be a 
threshold policy (only for the two-speed model is it known 
that the optimal policy takes this form). 

The second system configuration reflects a more heteroge- 
neous situation, consisting of one server at each of the rates 
of 128, 64, 32, 16, 8, 4, 2, as well as an infinite number 
of slow servers of rate 1. Fig. 4(b) exhibits the performance 
of the various policies for this system. The A and D policies 
again outperform all the other policies throughout the entire 



1732 

0.4 - 

3 0.3- - 
i? 
2 
c 

I 0.2- 

0.1 - 

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989 

0 . 0 4 . 1 .  I .  I .  I .  I .  , I  
0 40 80 120 160 200 240 

h 
(a) 

I I I 

_- 
0.04 . I . . . I . * ' I ' ' . I '  

0 40 80 120 160 200 240 280 

h 
(b) 

Fig. 4. The performance of the SED, NQ, GT, A ,  and D policies for the 
single queue model. The job arrival rate is A. The curves are derived from 
a computer simulation of the system. (a) A system with three classes of 
servers: pfast = 16 mfasr = 5,  pmed = 4 m m e d  = 20, and j i s l O w  = 1 
mslow = CO. (b) A system with servers of speeds 128, 64, 32, 16, 8, 4, 2, 
and an infinite number of servers of speed 1. 

parameter range. In this extremely heterogeneous model, the 
NQ policy performs poorly everywhere. The SED policy per- 
forms quite well for X < 200, but degrades rapidly above that 
point. The difference between the GT and the A and D poli- 
cies is more pronounced here than it was in the first system 
configuration. 

We investigated the robustness of the D policy in three 
ways. First, since not all systems have exponential servers 
and Poisson arrivals, we ran the same policies on systems with 
various combinations of bursty arrivals (Batched-Poisson) and 
nonexponential servers (both deterministic and bimodal ser- 
vice distributions were tried). While the delay values vary 
considerably, the relative ranking of the policies remain es- 
sentially unchanged, with the A and D policies outperforming 
all of the other policies. Surprisingly, the D policy, which has 
none of the adaptive features of the A policy, performs slightly 
better than the A policy. 

Second, we investigated the effect of errors in measurement 
of the arrival rate X. The computation of the D policy explic- 

itly uses A; since it is possible that the arrival rate will be 
known only approximately, we would like the D policy to be 
relatively insensitive to errors in A. Simulations indicate that 
this is indeed the case. Inserting into the D policy a value for 
X that differs by 10 percent from the true arrival rate results in 
an increase in the system delay of less than 1 percent for most 
values of h. The first system displays a maximal increase of 
5 percent in the crossover regime h M 160, and the second 
system has a maximal increase of 11 percent at high loads. 

Third, we tested the effect of finite system sizes. Recall that 
the D policy was motivated by comparison to systems with an 
infinite number of slow servers. We performed simulations of 
two systems identical to those studied above, except that they 
had only a finite number of the slowest servers; rnslow = 80 
in the first case and rnslow = 1 in the second. In both of 
these systems, the D policy continues to display lower delays 
than all of the other policies, indicating that the D policy also 
performs well for finite systems. 

In the examples simulated, the heuristic A and D policies 
outperform all of the other heuristic policies that we are aware 
of. Furthermore, for the first system where we obtained the 
optimal thresholds through exhaustive search, the A and D 
policies exhibit close to optimal performance. This validates 
the central approach in Section V of modeling the general- 
speed model by the simplified two-speed model, and then 
using the two-speed optimal decision rule. We expected the 
adaptive A policy to be more resilient against nonideal arrival 
and service processes. Instead, the deterministic D policy ac- 
tually outperforms, albeit only slightly, the A policy on these 
nonideal systems. Consequently, we will not consider adaptive 
policies in the next section. 

VII. PARALLEL QUEUES 
The single queue problem considered above reflects those 

situations where scheduling decisions can be postponed until 
the job is at the head of a central queue. However, there are 
many systems where the scheduling decisions must be made 
immediately and irrevocably upon the job's arrival. These sys- 
tems are more accurately modeled by the many-queue model 
of Fig. le). Each server has its own queue, and the scheduler 
routes each arriving job to the queue selected by the policy. 
We would like to evaluate several heuristic policies for this 
system. 

A .  Policies 
There are parallel queue versions of the SED, NQ, and 

GT queue control policies. Let n; denote the total number of 
jobs in the ith queue, including any jobs in service. The SED 
policy selects the queue that has the minimal expected delay 
(n; + l)/p;. The NQ policy chooses the fastest server that has 
an empty queue; if there are no empty queues, the queue with 
minimal n;/p; is selected. The GT policy selects the queue 
that maximizes the quantity (p; /(A + p; ) ) l+n '  . 

Previous work has suggested that the SED policy is an ad- 
equate policy for these multiqueue systems. Banawan and Za- 
horjan [2] compute the optimal policy for several models us- 
ing numerical policy iteration and find that over 90 percent of 
the scheduling decisions are consistent with the SED policy. 
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Fig. 5 .  The performance of the SED, NQ, GT, and D policies for the 
parallel queue model. The job arrival rate is A.  The curves are derived 
from a computer simulation of the system. (a) A system with three classes 
of servers: pfasr = 16 rnfasf = 5, pmd = 4 rnmd = 20, and pslOw = 1 
rnslow = 00. (b) A system with servers of speeds 128, 64, 32, 16, 8,4,  2 ,  
and an infinite number of servers of speed 1 .  

Simulations by Rosberg and Kermani [22], [23] demonstrated 
that the SED policy was superior to the two other heuristic 
policies they considered. Furthermore, simulation studies by 
Houck [6] on a similar model (where each queue was served 
by a team of identical servers, but the queues could have dif- 
ferent sized teams) indicated that the SED policy provided 
close-to-optimal delay. The results of our simulations (see Fig. 
5) suggest a different conclusion: as in the single queue case, 
the SED policy is significantly suboptimal for some systems. 

We have no simple solvable parallel queue model; the anal- 
ogous two-speed model is intractable due to the huge state 
space (instead of a single queue length, there are queue lengths 
for each server). However, the infinite system limit is still 
tractable. The results here are essentially identical to the sin- 
gle queue case, with NQ and GT asymptotically optimal and 
SED giving significantly suboptimal delays. With no other 
analytical results for this model, we use our previous single 
queue results to motivate a new heuristic policy for the par- 

allel queue model. The first step is to define a transcription 
between the parallel queue model and the single queue model. 

Consider first a two-speed case, with an infinite number 
of slow servers and m fast servers (now, each with their own 
queue). Our central approximation here is to reduce this prob- 
lem to a corresponding single queue problem. Whenever we 
have a nontrivial scheduling decision to make (that is when all 
of the fast servers are occupied), we use a modified threshold 
policy that treats the fast servers as if they had a single queue 
by adding up all of their queue lengths and then applying a 
threshold to this sum. A job is sent to the fast server with 
the shortest queue as long as the sum of the queue lengths of 
the fast servers is below some threshold; otherwise, the job is 
sent to an open slow server. Using the value for the threshold 
calculated from the single queue formula (3.3), we find that 
this policy performs within 2 percent of the optimal modi- 
fied threshold policy over the entire range of p values. (The 
optimal modified threshold policy was determined through ex- 
haustive simulation; see [28].) The delay values of the single 
queue and the parallel queue models are not the same; how- 
ever, the preceding result suggests that the optimal thresholds 
of the two models are closely related. 

Emboldened by the success of modeling the parallel system 
with the single queue system, we return to the case of general 
server speeds. Exploiting the similarity in thresholds between 
the single queue and parallel queue models, we apply the 
single queue/general speed deterministic D threshold to the 
parallel queue case. We treat all of the servers that are faster 
than the fastest open server as belonging to a single queue, 
and make the decision of whether or not to queue based on 
this threshold. A job to be queued is sent to the queue with 
the minimum (ni + l)/pi. 

B .  Simulations 

We consider the same two sets of server speeds as we did 
for the single queue model. Fig. 5(a) depicts the performance 
of the various policies for the first system configuration and 
Fig. 5(b) shows the same for the second system configuration. 
Both of these graphs are very similar to ones obtained for the 
corresponding single queue systems, providing further support 
for the approximation of modeling the parallel queues as a 
single queue. As in the single queue case, the naive SED 
policy performs poorly compared to the GT and D policies; 
the NQ policy is quite good for the first system, but is bad 
for the second system. Our D policy again outperforms all 
of the other policies over the entire range of arrival rates for 
both systems studied. 

There are two other policies that we did not include in our 
graphs but that deserve mention. Chow and Kohler [5] devised 
a policy (which they conjectured is optimal) that is very sim- 
ilar to the GT policy, except that it maximizes the throughput 
rate before the next job arrival. Through simulations, we find 
that it performs slightly less well than GT. Another policy is 
that devised by Krishnan [ 111, based on a single application 
of policy iteration to a Bernoulli split random assignment al- 
gorithm. This policy does significantly better than SED, but 
performs worse than GT in our simulations. Furthermore, it 
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displays suboptimal performance for our two-speed model in 
the large system limit [28]. 

VIII. SUMMARY 

We have studied the problem of controlling a queue served 
by a heterogeneous set of servers. While the general prob- 
lem remains intractable, we identified a simplified version of 
the problem, the two-speed model, that is solvable. This two- 
speed model was used to analyze the heuristic policies of 
shortest expected delay, never queue, and greedy through- 
put. Despite its apparent naturalness, the SED policy per- 
formed significantly suboptimally in the limit of large systems. 
The other two policies performed suboptimally in small sys- 
tems with extreme heterogeneity. Using the two-speed model 
as a basic source of insight, the D heuristic policy was in- 
troduced. It outperformed all of the other heuristics on the 
two system configurations we simulated, and was within 112 
percent of the optimal threshold policy for the first system 
configuration. We then considered the related problem of par- 
allel queues. Again, the analog of the single queue D policy 
outperformed all of the other policies. 

APPENDIX 
CALCULATION OF COST FUNCTIONS 

Recall that the cost function e(,) is defined by 

C?(X) lim [ ~ , ( x ,  t )  - ~ , ( x  - 1, t)] (A.I) 

where T , ( x ,  t )  is the total delay accumulated up to time t. 
When computing cf““‘(x) there are two cases to consider: x 2 
7 and x < 7. We will first consider x 2 7 and observe that in 
this case accepting a job merely induces a delay until the queue 
reverts back to its original length (the threshold policy sends 
all jobs to the slow servers until the queue length is below 
threshold). Let s be the time until one of the current jobs 
finishes; the probabilty distribution of the values of s is given 
by f ( s )  = mpfaste-“’fasf. The total extra delay accumulated 
during this period is the delay in the queue, s(x +m), plus the 
expected number of jobs sent to the slow servers times their 
expected delay, sX/pslow. Thus, for x 2 7 ,  

t-cc 

dsf (s ) [T , (x  - 1, t -s) + s ( x  + m )  +MA]. 

(A.2) 

Substituting this expression into the definition (A.l), we find 

We now turn to the computation of e ( x )  when x < 7, where 
the situation is a bit more complicated. Upon accepting a job, 
two events can happen; with probability mpfast/(h + mpfast) 
the next event will be that one of the jobs currently being 
processed will finish, and with probability X/(X + mpfaast) the 
next event will be the arrival of a new job, which is then 

placed onto the queue. We can write the equation 

SubtraFting T , ( x ,  t )  from both sides, taking the limit t + CO, 

and rearranging terms, we find a recursion relation for x < 7 

x + m  + p(Cf““‘(x + 1) - D T ) .  (AS) = __ 
mPfast 
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