|
| |
|]

INTERNATIONAI
COMPUTER SCIENCE
I' NS TI1TUTE

|

JPush Away Your Privacy:
A Case Study of Jiguang’s Android SDK

Joel Reardon®3, Nathan Good?3, Robert Richter3
Narseo Vallina-Rodriguez®*>, Serge Egelman®#®, Quentin
Palfrey’:

TR-20-001

August 2020

Abstract

Our investigations into Android apps found that Chinese company Jiguang invasively monitors
the activity of consumers who install apps that include their SDK. Jiguang’s SDK can collect
consumers’ GPS locations, immutable device persistent identifiers, and even the names of all
the apps they have installed—including when new ones are added or old ones removed. It does
this collection even if the app that contains their code is not used. They send data over UDP
sockets with misused cryptography, resulting in consumers’ personal data being trivially
vulnerable to eavesdroppers. We observed their SDK communicating with Jiguang in 31 apps.

lUniversity of Calgary, 2Good Research LLC, 3AppCensus Inc., *International Computer Science Institute, >IMDEA

Networks, ®UC Berkeley, “Future of Privacy Forum

JPush Away Your Privacy:
A Case Study of Jiguang’s Android SDK

Joel Reardon!?, Nathan Good?3. Robert Richter?
Narseo Vallina-Rodriguez®*, Serge Egelman®%5, Quentin Palfrey”

YUniversity of Calgary, 2Good Research LLC, 3AppCensus Inc.,
“International Computer Science Institute, °IMDEA Networks, SUC Berkeley,
"International Digital Accountability Council, ®Berkman Klein Center for Internet & Society, Harvard

Abstract—Our investigations into Android apps found that
Chinese company Jiguang invasively monitors the activity of
consumers who install apps that include their SDK. Jiguang’s
SDK can collect consumers’ GPS locations, immutable device
persistent identifiers, and even the names of all the apps they
have installed—including whern new ones are added or old ones
removed. It does this collection even if the app that contains
their code is not used. They send data over UDP sockets with
misused cryptography, resulting in consumers’ personal data
being trivially vulnerable to eavesdroppers. We observed their
SDK communicating with Jiguang in 31 apps.

I. INTRODUCTION

As is common in software development, some of the func-
tionality within mobile apps is provided by third-party libraries
and SDKs, many of which have business models based on
personal data collection (e.g., ad networks and analytics). Re-
cent work has emphasized the risks that such SDKs pose [18],
[19], [4], [17], [15], [25]. In particular, third-party SDKs have
access to the same set of permissions as the app in which
they are embedded; an app that may have legitimate use
of the location permission may have that permission abused
by a third-party SDK embedded in it. Consumers have little
transparency into—or control over—the various third-party
SDKs, including tracking tools, that are embedded in the apps
they use. Worse, they have even less insight into the behaviors
of these SDKs and the personal data that they collect: it is
not reasonable to expect consumers to reverse-engineer their
apps or perform deep packet inspection, which are essentially
the only tools available to them, given that app developers
are under no obligation to disclose their presence in privacy
policies.!

Not all third-party components embedded in mobile apps are
primarily related to advertising and tracking services. For ex-
ample, Unity’s SDK provides a game development framework,
and many companies provide SDKs for push notifications.
Push notifications are small server-to-client messages that can
reach audiences anywhere and anytime. They are at the core
of customer engagement services, whose purpose is to create a
direct communication channel between an external stakeholder

'For example, both the GDPR and CCPA only require that companies
disclose broad categories of data recipients, and do not require that individual
companies be named, or that apps link to third parties’ privacy policies.

(consumer) and an organization, such as a company, developer,
advertiser, or brand. Push notification services offered by
SDKs might be associated with companies that also offer
analytics and advertisement services, but have not received
the same degree of scrutiny as those primarily concerned with
advertising and tracking.

In this paper, we provide an in-depth case study and analysis
of one Android SDK offering a wide range of services, includ-
ing analytics and push notifications, among others: Jiguang—
also known as Aurora Mobile>. We study its prevalence,
behavior, and its associated privacy risks. They claim to be
present in more than a million apps and, incredulously,> more
than 26 billion mobile devices [13]. We only examined free
apps in the Google Play store and found their presence in ap-
proximately 400. Despite that, some of the apps have millions
to hundreds of millions of installs, and thus their behaviors
pose a serious risk to consumers. Similar techniques may also
be used by other SDKs, impacting even more consumers. We
observed the following:

o Invasive personal data collection and monitoring:
We observed the transmissions of precise GPS location,
full scan details of nearby wireless networks, immutable
persistent identifiers (e.g., IMEI), and even the names
of other apps consumers install and uninstall, that is,
even those that do nor contain this SDK. We note that
the set of apps that a consumer curates on their mobile
device can reveal a great deal about them, such as their
interests, hobbies, health, political leanings, and sexual
orientation [20].

o Continuous background monitoring: This information
is collected in the background, even when the consumer
never uses the app that contains Jiguang’s code. An-
droid facilitates this with two permissions: (i) the RE-
CEIVE_BOOT_NOTIFICATION permission, which allows
apps to start automatically when the the device is started,;
and (ii) the RECEIVE_USER_PRESENT permission, which
can start apps and informs them whenever a consumer
unlocks their phone screen (i.e., is present). Not all of the

Zhttps://www.jiguang.cn
3The GSM Association estimated that by 2025, there will be approximately
4.5B smartphone users worldwide [8].

Jiguang-communicating apps have the boot permission,
but 100% of them have the user present one. Jiguang’s
Android SDK integration documentation states that this
user present permission is essential to correctly integrate
the SDK in Android apps [3].

o Unusual development practices: We also found three
methods that Jiguang uses to obfuscate and hide their
behavior and network activity, which we detail in depth.
This includes encrypting network traffic using an insecure
non-standard key exchange, the curious use of (non-
QUIC) UDP datagrams to send JSON data, and the
static Vernam-cipher encryption of all string constants in
the compiled program—a behavior more appropriate in
malware than legitimate software [16].

The organization of the paper is as follows. Section II
describes our methods. Section III presents our results. Finally,
Section IV draws conclusions.

II. APP ANALYSIS METHODS

In this paper, we analyse Android apps using a combina-
tion of static and dynamic analysis provided by AppCensus.*
We developed a heavily instrumented version of Android 7
(Nougat), which we deploy on actual Android Nexus 5X
smartphones. Our instrumentation monitors access to sensi-
tive data at runtime and reports all network traffic payloads,
including traffic that is secured by TLS. We are also able to
accurately attribute all network flows to the specific app that
is responsible for it.

In order to scale up our analysis, the phones are connected
to a computer that automatically installs apps through the
Google Play Store if they are available, and then runs them
by interacting with them using a UI fuzzer for a period of
ten minutes. After this, the app is uninstalled along with any
other app that may have been installed during the UI fuzzing.
We collect the network traffic and filter for traffic related
to the app being tested. We further installed and removed a
different app—using adb commands—during this experiment
to see if this event was reported by the app being tested.
Our instrumentation further evades the detection of “rooting”
or ‘“jailbreaking” on the device, so apps execute without
expecting possible scrutiny.

The next step is to process the captured network traffic. We
apply a suite of decoders to reveal encoded network traffic,
such as base64 and gzip. We also manually analyze net-
work traffic and statically analyze particular code libraries that
use obfuscation to reveal how the data is being transmitted.
This method is used for popular domains that receive data from
consumers, but for which we identified no private information
being sent during our initial automated testing. This technique
frequently reveals that private information is sent in an ob-
fuscated manner. For example, we scrutinize transmissions to
domains associated with an SDK that has accessed private
information, such as the consumer’s location, but for which
no transmission was observed using existing instrumentation.

“https://www.appcensus.io

This signals that data may have been transmitted in ways that
we were not readily able to detect, and the app is flagged for
manual analysis. Whenever we find a new obfuscation method
during manual analysis, we add it as a new decoder into our
suite and reanalyze all the network traffic for new findings.
Indeed, it was precisely this iterative analysis of obfuscation
that lead us to discover the peculiar behavior of Jiguang’s
Android SDK.

More technical details about AppCensus’ instrumentation
and capabilities can be found in our previous research stud-
ies [19], [18], [10], [11].

III. RESULTS

In this section we provide the results of our analysis of
Jiguang’s Android SDK. We first provide the list of apps
we found communicating with Jiguang along with the private
information that they send. We then describe their technique
to obfuscate string constants that we saw in some instances
of their code, the method that they use to obfuscate data over
UDP, and a further method that they use to obfuscate data that
appears in more-recent versions of their SDK. In Appendix D,
we provide example network transmissions that comprise the
variety of private data exfiltrations that we observed.

A. Apps and Data Transmissions

We began with a corpus of 118,926 apps downloaded from
the Google Play Store; this includes historical versions for a
total of 368,128 APK files. We winnowed it to 422 unique apps
that may contain Jiguang’s code by searching for a number of
string constants that appear in their SDK. We then downloaded
the newest version of these apps on January 14th, 2020, of
which 415 were still available in Canada, which is where
we ran our experiments. Using our dynamic analysis testbed,
we ran each of these apps and recorded its network traffic,
which we then used to study data transmission and obfuscation
techniques.

Of the 415 apps, we found that the newest versions of
24 apps communicated with Jiguang during a 10-minute test
performed between January 14th and the 22nd, 2020. Further
independent testing of apps found seven additional apps that
communicate with Jiguang, which we added to our data to
bring the total to 31. Prior to publishing we redid our experi-
mentation late August 5th, 2020, with the newest versions of
all 31 apps. The results we provide are from the most recent
analysis.

We define an app as having communicated with Jiguang
as opening a socket and sending data to any of the domains
that we attribute to them. This includes those ending in
jpush.io, jpush.cn, or jiguang.cn (cf. Appendix A),
as well as easytomessage.com, which is referenced by
the Jiguang SDK and uses the same packet format and obfus-
cation technique (as described in Section III-C). Finally, we
include specific IP addresses that are provided by one of these
Jiguang domains to the running app as apparent endpoints for
data harvesting.

TABLE I
APPS COMMUNICATING WITH JIGUANG ALONG WITH THE TYPES OF PERSONAL INFORMATION WE OBSERVED BEING TRANSMITTED.

Identifiers Apps Location
Package Name Version Installs | IMEI ~ Android MAC Serial | Install Listing| Router GPS

1D Addr # MAC
com.e2link.tracker 64 SK+ X X X X X X
com.eyugame.ow.globalard 16 IM+ X X X
com.ipc300 44 1K+ X X
com.juanvision.jcloud 1196 10K+ X X X X X X X
com.lovestruck1 497 100K+ X X
com.maaii.maaii 290006 1M+ X X X X X X
com.macrovideo.v380 57 SM+ X
com.macrovideo.v380pro 25 IM+ X X
com.mfw.roadbook 869 100K+ X X
com.nexttrucking.trucker 146 50K+ X X
com.qcplay.slimegogogo 85 IM+ X X X
com.specialyg.ippro 1591 IM+ X X X X X X X
com.starvebird.client 164 1K+ X X X X X X
com.suncitygroup.apps.suncity 396 5K+ X X
com.thinker.swift 10 1K+ X X X X X X
com.vbikes.us.alpha 33 10K+ X X
premom.eh.com.ehpremomapp 118 500K+ X X

The apps integrating Jiguang’s SDK range from selfie ed-
itors to dating apps to sales and CRM apps. According to
the Google Play Store, some have been installed on as few
as 10,000 phones [21], and some more than 100,000,000 [9].
There is diversity in the maturity levels of the apps using these
SDKs: some have a PEGI 3 / Everyone rating [S] and others
are rated PEGI 18 / Mature [14]. This suggests that some of
these apps can potentially track vulnerable populations like
minors, who are protected by strict regulations like COPPA in
the USA [19], [23] and GDPR-K in the EU [22].

Table I shows the app name and versions that sent private
information to a Jiguang domain during our testing in August
2020. This does not include the apps that communciated with
Jiguang domains but without sending personal information.
We searched for particular types of personal information in
these transmissions; when they were observed we denote with
a X in the tables corresponding to the app (row) and data
type (column). We group personal data collection into three
categories:

1) Unique identifiers. This category includes immutable
identifiers, such as the IMEI, WiFi MAC address, and
serial number, as well as “semi-resettable” ones like the
Android ID. Persistent identifiers, typically bound to
hardware components, cannot be changed except with
extraordinary steps, such as rooting or jailbreaking the
phone and installing a custom operating system.’ The
Android ID can be reset, but only through a factory reset
of a phone, something that most consumers do not do.
Android 7, on which we ran our experiments, does
not allow access to the WiFi MAC address, but in-
stead returns a “blank” value.® Jiguang SDKs can

5The IMEI is the most persistent of these identifiers, and in some places
(e.g., the United Kingdom) it is illegal to change.

Ohttps://developer.android.com/about/versions/marshmallow/android-6.
0-changes.html

access the true value using a side channel enabled
by the getNetworkInterfaces () method in the
java.net .NetworkInterface class [12]. Incred-
ibly, this side channel, known for at least five years, is
still exploitable and exploited on Android 10, despite
Google’s awareness.” As of Android 10, access to the
serial number and IMEI is limited to “privileged” apps
(e.g., pre-installed ones) [2]. This means that Android
does not consider apps’ access to these identifiers to be
legitimate under any other circumstances.

2) Location data. This category has two data types that

correspond to the device’s geolocation. The first is the
MAC address of the WiFi router to which the phone is
connected, also known as the “BSSID.” This information
is known to be a surrogate for the device’s location [1].
This is because WiFi routers typically remain immobile
once installed in a location, and therefore commercial
APIs exist that map router MAC addresses to their
physical locations [6]. The United States Federal Trade
commission (FTC) reached a $4M settlement with an-
alytics firm InMobi for its alleged deceptive collection
of location data in a similar manner [24].
Since Android 7, apps must request a location per-
mission to access the MAC address of the connected
WiFi router.! The second is precise GPS location; we
require three decimal points of precision (i.e., accuracy
of approximately 100m)° and the transmission of both
latitude and longitude in the same network flow to be
considered a transmission of location data.

3) User actions and system events. The final data type

7Our bug report number 159780579 was marked as a duplicate of bug
32554324, which suggests it has been known for quite some time.

8https://developer.android.com/reference/android/net/wifi/Wifilnfo.html#
getBSSID()

9https://en.wikipedia.org/wiki/Decimal_degrees

reports whether the app is monitoring user actions like
the installation and removal of apps. We tested this by
installing and removing an app that was not on our
device and was not part of the set of apps we were
testing. We did this installation and removal once for
each app we tested, and looked to see if the app we
installed appeared in the network transmissions for the
app we were testing.

All of the apps in Table I held the RE-
CEIVE_USER_PRESENT permission, which allows code in the
app to run whenever the consumer unlocks their phone (i.e., is
present at the device). We observed this behaviour in practice,
where apps that we had left installed on devices while doing
our analysis would continue to transmit our location and other
data as soon as we unlocked the phone after rebooting it.

B. String Constant Obfuscation

Android apps are typically compiled into “byte code”, an
assembly-like language that is processed by a virtual machine.
It is a common practice for developers to shrink and obfuscate
their code when deploying a production release. Tools de-
signed for this purpose remove the inherent human-readability
from code to reduce its footprint [7].

This works by replacing all semantically meaningful
class names (like HttpRequest), method names (like
dispatch), and variable names (like result) with seman-
tically meaningless replacements. This results in lines of code
looking like an alphabet soup of A.a.c (b, c).

While investigating one sample of Jiguang’s SDK, we found
an obfuscation technique that we had not yet seen in any of our
previous research into the Android SDK ecosystem. They ob-
fuscated the string constants themselves, replacing them with
pseudo-encrypted values that are decoded at runtime [16]—a
technique more in line with malware development practices
than legitimate software. This technique has the effect of
actually bloating the program because each class provides its
own code to do the decoding and the size of the “encrypted”
string is the same as the original. Note that this technique was
not used in all versions of Jiguang’s SDK; where we did see it,
however, it was not being done to the entire application code,
but only to Jiguang’s SDK code. Thus, this may be the actions
of a developer to elect to obfuscate Jiguang’s presence, rather
than Jiguang providing the SDK in that state.

The exact procedure worked as follows. Consider the
“app_version”, which is needed within Jiguang’s SDK.
We saw this string actually stored in byte code as
“IbgT\u0015M ‘db\u000cF” and it is decoded at runtime into
the value required for the program to work. In this example, the
parts “\u0015” and “‘\u000c” are how the hexadecimal value
0x15 and 0xOc are represented (respectively), because they
are not printable characters that can be typed and stored in a
string.

This string obfuscation is done with a Vernam cipher using
a repeating code word—an XOR-based variant of the classic
Viginere cipher that can easily be broken using standard
cryptanalysis. The Viginere cipher takes a short “word” as a

secret key, and “adds” the word to the message letter by letter.
For example:

h a p p vy (input)
+ k o a 1 a (key)
r o p a 'y (result)

So, ‘h’ (7) and ‘k’ (10) becomes ‘r’ (17). When the
secret word is shorter than the message to “encrypt”, then
the secret word is repeated as often as necessary, so the
input happytrail would be encrypted with koalakoala.
Jiguang’s string obfuscation is similar, except that it uses a
bit-wise XOR operation instead of an alphabetic shift.

Every source code file has its own key to “encrypt” the
strings contained in that file. Since the source code is written in
Java, each file is its own class and the class’s static constructor
is used to run the deobfuscation code. In effect, this builds
a dictionary that maps an identifier to the actual meaningful
string that is stored in memory whenever the program is
running. Then, each string access is replaced with an access
to the relevant data structure at runtime. In Appendix B we
provide the decompiled byte code (in smali syntax) for the
string obfuscation code with our own explanatory comments.

Jiguang’s technique complicated our investigations because
the use of string constants is so crucial to any deep analysis
of the behaviour of a compiled artifact and for attribution
purposes. String constants act as a kind of anchor that allows
us to take tens of thousands of lines of code and rapidly find
the area that needs investigation. As such, we wrote a tool that
takes a smali byte code file as input and writes an equivalent
file with each string juxtaposed with a comment that reveals
its decoding, i.e., its true value. Appendix C provides this tool.

C. UDP Network Traffic

Another interesting behaviour we observed was the use of
UDP (on port 19000) to transmit JSON data using a broken
“roll-your-own” cryptographic protocol. This behaviour was
conspicuous as JSON data is seldom transmitted over non-
QUIC UDP flows.

Jiguang uses the following method to encrypt their UDP
traffic. First they generate a random 32-bit number and remove
the high-order 8 bits. They then permute it as detailed by
the algorithm in Figure 1. The result is converted to a string
based on its decimal representation, which is prefixed with
“JCKP”. That string is then hashed with MD5 to create a
128-bit binary string. That binary string is then converted
to a 256-bit string by taking the hexadecimal representa-
tion of the string (e.g., 0lef), converting that to ASCII,
and taking the bits of the ASCII as the binary string (e.g.,
001100000011000101100101001100110).

The resulting key is then used in the AES cipher in cipher-
block chaining (CBC) mode. CBC mode requires a random
128-bit initialization vector (IV), for which Jiguang uses the
first half of the 256-bit key. For CBC mode to work correctly,
IVs are supposed to be random for each message, and so this
does not follow best practices.

int32_t jiguang_permute (int32_t seed) {

static int32_t mul[10] = {
0x8, 0x5, 0x17, 0x3, 0xd,
0x11, 0x7, O0x1f, Oxld, 0x25};
static int32_t quo[l0] = {
Ox4a, 0x58, O0xf, 0x49, 0xo60,
0x31, 0x44, 0x27, 0x29, 0x5b};
int32_t offset = seed % 10;
if (offset < 0) offset += 10;
int32_t val = seed * mul[offset];
int32_t remain = seed % quoloffset];

if (remain < 0) remain += quol[offset];
val += remain;
return val;

Fig. 1. C code snippet that performs Jiguang’s permutation.

Standard practices to secure UDP sockets is the use of
DTLS. Instead Jiguang uses their own implementation based
on a 24-bit random number. This number is further included
in the UDP packet payload, presumably so that Jiguang is able
to decrypt the resulting transmission. This makes it trivial for
anyone to decrypt and observe the traffic, meaning that they are
sending consumer’s precise GPS coordinates over the Internet
to servers in China, using effectively no security precautions
to prevent eavesdropping. We were able to decrypt all the
traffic we had already collected simply by finding the 24-bit
number in the header, running their algorithm, and decrypting
the payload.

D. TCP Network Traffic

A further communication format was found using similar
techniques as the UDP transmission. These were done over
TCP, but used neither HTTP nor TLS in their transmissions.
They used high port numbers—over 7000—on the server side.
They also did not use hostnames, but rather received the IP
and port from a command and control server that was first
communicated with using the UDP format.

They also provided a 24-bit number stored as a little-endian
32-bit number within a 37-byte header. It occurs in different
places in the header and we did not determine how to predict
that so we instead attempt each 24-bit number that follows a
zero byte.

This method takes this 24-bit number and performs the
same sequence to derive the encryption key, i.e., permuting,
prefixing, hashing, and ASCII-fying to generate a 256-bit AES
encryption key used in CBC mode. Instead of the first half
of the key being used as the IV, they used the fixed value
1i0p203040506aPk! for these transmissions. The decrypted
data may be further compressed with gzip, so if the magic
number is present, we then decompress.

E. Jiguang V3 Reports

The final obfuscation
when Jiguang issues HTTP POST requests to
alidata.jpush.cn/v3/report. This V3 protocol
used HTTP over TLS, i.e., best practices for securing

technique we found s

communications. Nevertheless we found it being used in
addition to both the UDP and TCP communications we found
earlier, all of which were used to transmit sensitive user
information.

We analyzed a sample of the code to study their new
transmission method. It consisted of a randomly generated
encryption key used to AES-encrypt the data in CBC mode.
Key generation also uses the same “permute and hash a 24-
bit random number” technique described in Section III-C to
create a 256-bit binary string for use as an encryption key.
The initialization vector is the same for all values and equal
to the bytes of ASCII string 10p203040506aPk!.

Similarly to how the random number is transmitted in the
UDP-version of Jiguang’s packets, this new technique also
sends the encryption key alongside the data. In this case, it
leverages the HTTP Authorization header to send the
encryption key to Jiguang so that it can decrypt the traffic.
For example, we saw the transmission of the following HTTP
header (newlines added):

Authorization: Basic MzQOMTE3NTcOODc6MJF1IN
DJhNJYyYWEXOTAZZ JkwNTZmMT IJmMDg1NTk20GUSME
00TZkMzo2M2VmMMTY5ZmI3YTQ3N2MxYmUIMjULOTQON
GNmNmJk Yw==

The base64 decoding of that value is the following (newlines
added):

34411757487:21e42a662aal903£9056£12£085596
8e921496d3:63efl69fb7a477clbe52559444cfebdc

The encryption key is the last component:
63efl169fb7a477clbeb52559444cfebdc.

Again, because the encryption key is transmitted in the
packet, we were able to decrypt all the traffic after the fact
by adding a new decoder into our analysis suite. In this case,
consumers are protected by the fact that Jiguang also uses TLS
to secure the network transmission; in this case the additional
encryption step simply serves to obfuscate the transmissions
and has no security benefit to consumers.

IV. CONCLUSION

In this paper, we provide a detailed analysis of Jiguang’s
Android SDK, which we found present in a number of An-
droid apps and which was performing invasive monitoring of
consumers. In particular, it was collecting immutable persistent
identifiers, precise GPS locations, and monitored different user
actions like the installation and removal of other apps that are
not connected to the app containing Jiguang’s code.

Jiguang’s SDK is particularly concerning because this code
can run silently in the background without the consumer ever
using the app in which it is embedded. Moreover, they send
sensitive information insecurely over the Internet allowing
any eavesdropper to monitor the traffic. We have provided
examples of the network traffic generated by Jiguang’s SDKs,
along with the use of obfuscation techniques which impede
the analysis of software using traditional methods. While the

majority of the previous research efforts focused on SDKs
specialized in analytics and advertising services, the results of
our analysis call for the need of analyzing and regulating the
behavior of the whole third-party SDK ecosystem due to their
privacy and consumer protection implications.

[1]

[2]

[3]

[4]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

J. P. Achara, M. Cunche, V. Roca, and A. Francillon, “Short
paper: Wifileaks: underestimated privacy implications of the AC-
CESS_WIFI_STATE Android permission,” in Proceedings of the 2014
ACM conference on Security and privacy in wireless & mobile networks,
2014, pp. 231-236.

Android Developers, “Privacy changes in Android 10,” https://developer.
android.com/about/versions/10/privacy/changes, 2019, accessed: January
23, 2020.

Aurora Mobile, “Android SDK Integration Guide,” https://docs.jiguang.
cn/en/jpush/client/Android/android_guide/, 2018, accessed: January 23,
2020.

A. Feal, J. Gamba, N. Vallina-Rodriguez, P. Wijesekera, J. Reardon,
S. Egelman, and J. Tapiador, ““Don’t accept candies from strangers’:
An analysis of third-party SDKs,” in CPDP, 2020.

Foscam, Inc., “Foscam,” https://play.google.com/store/apps/details/?id=
com.foscam.foscam, 2020, accessed: January 23, 2020.

Google, Inc., “The Google Maps Geolocation APL” https://developers.
google.com/maps/documentation/geolocation/intro, accessed: September
29, 2017.

Google, Inc, “Shrink, obfuscate, and optimize your app,” https://
developer.android.com/studio/build/shrink-code, 2019, accessed: Jan-
uary 23, 2020.

GSM Association, “The mobile economy 2018,”
/lwww.gsma.com/mobileeconomy/wp-content/uploads/2018/05/
The-Mobile-Economy-2018.pdf, 2018, accessed: January 23, 2020.
Hago Games, “HAGO - Play With New Friends,” https://play.google.
com/store/apps/details/?id=com.yy.hiyo, 2020, accessed: January 23,
2020.

C. Han, I. Reyes, A. Elazari Bar On, J. Reardon, A. Feal, S. Egelman,
and N. Vallina-Rodriguez, “Do you get what you pay for? comparing
the privacy behaviors of free vs. paid apps,” in IEEE ConPro Workshop,
2019.

C. Han, I. Reyes, A. Feal, J. Reardon, P. Wijesekera, N. Vallina-
Rodriguez, A. Elazari Bar On, K. Bamberger, S. Egelman et al.,
“The price is (not) right: Comparing privacy in free and paid apps,”
Proceedings on Privacy Enhancing Technologies, vol. 2020, 2020.

https:

InformaticOre on StackOverflow, “How to get the
missing Wifi MAC Address in Android Marshmallow
and later?” https://stackoverflow.com/questions/31329733/

[20]

[21]

[22]

[23]

[24]

[25]

how-to-get- the-missing- wifi-mac-address-in-android-marshmallow-and- later/

32948723, 2015.

Jiguang, “Aurora mobile,” https://www.jiguang.cn/en/, 2020, accessed:
January 23, 2020.

Love Group Hong Kong Limited, “Lovestruck - Real Dating,” https://
play.google.com/store/apps/details?id=com.lovestruck 1, 2020, accessed:
January 23, 2020.

Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: fast and accurate
detection of third-party libraries in android apps,” in Proceedings of
the 38th international conference on software engineering companion.
ACM, 2016, pp. 653-656.

Y. Moses and Y. Mordekhay, “Android app deobfuscation using static-
dynamic cooperation,” virus bulletin, 2018.

A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, S. Sundaresan,
M. Allman, C. Kreibich, and P. Gill, “Apps, Trackers, Privacy, and
Regulators: A Global Study of the Mobile Tracking Ecosystem,” in Proc.
of NDSS Symposium, 2018.

J. Reardon, A. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez,
and S. Egelman, “50 ways to leak your data: An exploration of apps’
circumvention of the android permissions system,” in 28th {USENIX}
Security Symposium ({USENIX} Security 19), 2019, pp. 603-620.

I. Reyes, P. Wijesekera, J. Reardon, A. E. B. On, A. Razaghpanah,
N. Vallina-Rodriguez, and S. Egelman, ““Won’t Somebody Think of
the Children?” Examining COPPA Compliance at Scale,” Proceedings
on Privacy Enhancing Technologies, vol. 2018, no. 3, pp. 63-83, 2018.

S. Seneviratne, A. Seneviratne, P. Mohapatra, and A. Mahanti, “Your
installed apps reveal your gender and more!” SIGMOBILE Mob. Comput.
Commun. Rev., vol. 18, no. 3, 2015.

Suntronics Technologies Inc., “Swift Wifi Cam,” https://play.google.
com/store/apps/details/?id=com.thinker.swift, 2018, accessed: January
23, 2020.

The European Union, “Article 8: Conditions applicable to
child’s consent in relation to information society services,”
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:
02016R0679-20160504& from=EN%23tocId12, April 27 2016.

U.S. Federal Trade Commission, “How to comply
with the children’s online privacy protection rule,”
http://www.ftc.gov/bep/conline/pubs/buspubs/coppa.htm.

——, “Mobile Advertising Network InMobi Settles FTC
Charges It Tracked Hundreds of Millions of Con-
sumers’ Locations Without Permission,” 2016. [On-

line]. Available: https://www.ftc.gov/news-events/press-releases/2016/
06/mobile-advertising-network-inmobi-settles- ftc-charges-it-tracked

J. Zhang, A. R. Beresford, and S. A. Kollmann, “Libid: reliable iden-
tification of obfuscated third-party android libraries,” in Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2019, pp. 55-65.

APPENDIX A: DOMAINS AND IP RANGES USED BY
JIGUANG

ali-stats. jpush.cn
bjuser. jpush.cn
easytomessage.com
gd-stats. jpush.cn
sis.jpush.io
s.jpush.cn

stats. jpush.cn
tsis.jpush.cn
update.sdk. jiguang.cn
102.230.236.0/24
117.121.49.100
121.46.20.0/24
121.46.25.0/24
121.46.30.0/24
124.202.138.0/24
175.25.50.0/24
183.232.25.0/24
43.247.88.0/24
49.4.114.240

:goto_2
const/16 v6, 0x63

xor key to character and store result
:goto_3
xor—int/2addr v2,
int-to-char v2, v2
aput-char v2, v5,
add-int/1it8 v7,

vo

v7
v7, 0x1

exit the loop when the offset is equal
to string length

:cond_1
if-gt v4,

v7, :cond_0

APPENDIX C: CODE TO DEOBFUSCATE STRINGS

We wrote a python program to deobfuscate the string con-
stants in Jiguang SDKs that made use of string obfuscation
(cf. Section III-B). This program takes as input a smali file
as generated by apktool, and juxtaposes comments next to
obfuscated string constants with their true value. It can be
run in batch for all smali files in the current directory and

subdi

rectories using UNIX’s find command with an exec

APPENDIX B: JIGUANG’S STRING OBFUSCATION CODE

The code we found in a Jiguang SDK that obfuscated all
strings. We have added comments, which appear after an
octothorpe (#), to provide context on what the code is doing.

.method static constructor <clinit>()V

init vO0 to be an array of 65 strings

const/16 v0, 0x41

new-array v0, v0, [Ljava/lang/String;
const/4 v1, 0xO0

const-string v2, "E{dxCIbg+\u0015M‘db..... "

store an obfuscated string in position 0
... store the other 64 strings

then for each string in array, loop over
every letter. Here v7 is offset string

and v5 is the string
:cond_0
aget-char v2, v5, v7

compute v7 modulo 5 to find pos in key
rem—int/1it8 v6, v7, 0x5

packed-switch v6, :pswitch_data_0

goto :goto_2

a switch statement to get secret byte
to xor. in this case the mask is the
5-byte string 0x2812170b63
:pswitch_40
const/16 ve6,
goto :goto_3
:pswitch_41
const/16 ve6,
goto :goto_3
:pswitch_42
const/16 ve6,
goto :goto_3
:pswitch_43
const/16 ve6,
goto :goto_3

0x28

0x12

0x17

Oxb

argument.

wnn

usage:

import codecs
import sys

d =
if len(d) == O0:

init = False
stop = 0
strs = []
for n,
if i
if "<clinit> ()"
init = True
continue

if ".method"
init = False
continue
if init
if
stop = n

_ .

in

if stop
i = stop
byte = []
while 1 > 0:
if "const/4 "

True:
’'xor—-int/2addr’

open(sys.argv[l],

python filename.py smali_file """

sys.exit ()

i in enumerate (d) :
continue
in i and ".method"

i:

in df[i]

in 1:

sys.exit ()

or

byte.append (int (d[i].split (’
if "packed-switch" in df[i]:

break
i -=1
byte.reverse ()

if len (byte)

5:

def demask (s, m):

i=1
out =

rr

sys.exit ()

"r’).read().split ("\n’)

"const/16

s = codecs.escape_decode (s) [0] "statistics_sdk_ver": "",

while 1 < len(s) - 1: "channel": "developer-default",

if "\u00" == s[i:i+4]: "app_version": "5.4 Build 20191231"

x = int ("Ox" + s[i+4:i+6], 16) }

out += chr(x)

i += 6 Example of network traffic listing all installed apps. This
else: ' has been deobfuscated and headers removed. The JSON has
Ci)ui_+: s[i] added whitespace for clarity.

ret = '’

{

"content": [

{
"itime": 1579129190,

for i in range (0, len(out)):
c = ord(out[i])

c =c¢c " m[i % len(m)]

ret += chr(c)

lltypell: "app_list",
eturn ret
e "account_id": "",
n n".
def getstr(s): d?ta A
for i in range (0, len(s) - 2):
ifls[i-ig2f ;: " (n{) "name": "com.android.cts.priv.ctsshim",
return.s[i+2-] ') "pkg": "com.android.cts.priv.ctsshim",
return "" ’ "ver_name": "7.0-2996264",
"ver_code": 24,

"install_type": 1

f = open(sys.argv[l], "w’) ?
for n, i in enumerate (d): "name": "Phone and Messaging Storage",
£ wriée(i + \n’) : "pkg": "com.android.providers.telephony",
if PR "ver_name": "7.1.2",
cont inue : "ver_code": 25,
LI AL

if "<clinit>()" in i and ".method" in i: : install_type': 1
init = True !
cont inue /* close to 100 apps reports truncated =/
if ".method" in 1i: { " - "
init = False name": "Contacts Storage",
cont inue "pkg": "com.android.providers.contacts",
if init == True: "ver_name": "7.1.2",

i "ver_code": 25,

if ’const-string’ in i:

LI ”.
result = demask (getstr (i), byte) install type": 1

f.write ("\t# const-string \"" 1’
+ l + AL n "
£ zizzei) \"An") "name": "CaptivePortalLogin",
’ "pkg": "com.android.captiveportallogin",
" ": ll7.1.2ll
APPENDIX D: EXAMPLE TRAFFIC uiii‘iiﬂin- o5 ’
— . 14
Example of network traffic containing an app installation "install type": 1
event. This has been deobfuscated and headers removed. The] }
JSON has added whitespace for clarity. The app being installed - ,slice index": 1
. . — . ’
1s com.duolingo. "slice_count": 1
{ }
Al n".] 4
c?ntent 1 "platform": "a",
n : n. n n "uid": 34072608256,
jaction®: fadd®, "app_key": "7celb5£314£2990e7d£02319",
appid": "com.duolingo", "edk ver": "3.o . On
pitimen: 1579092994, "core_sdk_ver": "112.7",
itype’: "app_add_rmv", "share_sdk_ver": ""
"account_id": "", "ssp cdk ver": ;"’ !
"3 AL —_— — .
install type": 0 "statistics_sdk_ver": "",
]) "verification_sdk_ver": "",
! "channel": "developer-default"
'platform®: "a%, "app_version": "3.3.10" '
"uid": 34871748965,) - : T
"app_key": "84887e3fdfed4ab64d0£38c99",
"sdk_ver": "3.1.3"
"eore sdk ver": "1 " 3m Example of deobfuscated UDP traffic. The JSON has added
. _ . . . ’
"share_sdk_ver": "M, whitespace for clarity and the precise GPS coordinates were
"ssp_sdk_ver": "", redacted

lltypell . 1,

"appkey": "b959%efbl9b6e37fd4745660b",
"sdkver": "2.1.2",

"platform": O,

"uid":34002478781,

"Opera" . " ",

"lat" XXX .XXXXXX,

"lng":YYY.YYYYYY,

"time":1579090476

Example of deobfuscated TCP traffic using the newest
“v3” reporting. Whitespace was added, the full network scan
truncated and private data redacted.

{
"content": [
{

"itime": 1579092210,

"type": "loc_info",

"account_id": "",

"network_type": "WIFI",

"local_dns": "192.168.0.101",

"wifi": [

{

"mac_address": "XX:XX:XX:XX:XX:XX",
"signal_strength": -39,
"ssid": "REDACTED",
uage": O,
"itime": 1579092208,
"tag": "connect"

"mac_address": "XX:XX:XX:XX:XX:XX",
"signal_strength": -42,
"ssid": "REDACTED",
uage" : O,
"itime": 1579092208,
"tag": "strongest"
by
/* seven other wifi reports truncated =*/
1,
"cell": [
{
"mobile_network_code": -1,
"cell_id": 28975913,
"radio_type": "gsm",
"signal_strength": -93,
"mobile_country_code": -1,
llcarrier": llll,
"location_area_code": 11229,
"generation": "wifi",
"itime": 1579092208
}
1,
Ilgpsll: [
{
"lat": XXX.XXXXXXX,
"lng": YYY.YYYYYYY,
"alt": Z27.27272727277,

"bear": 0,
"acc": 21.773000717163086,
"tag": "network",

"itime": 1579092210

}

}
1,
"platform": "a",
"uid": 34871748965,
"app_key": "84887e3fdfed4ab64d0£38c99",
"sdk_ver": "3.1.3",

"core_sdk_ver": "1.2.3",
"share_sdk_ver": "",

"ssp_sdk_ver": "",
"statistics_sdk_ver": "",
"channel": "developer—-default",
"app_version": "5.4 Build 20191231"

	TR-20-001(draft)
	TR-20-001

