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Abstract
This paper uses an unconventional analysis as a tool to diagnose
the problems with three different speech activity detection sys-
tems. The unconventional analysis is to score the frames in an
audio file in order of confidence, starting with the frame that we
have the most confidence in and progressing towards less and
less confident frames. By keeping track of the cumulative num-
ber of errors, we can determine how the errors are distributed
across the data. Using speech activity detection on highly de-
graded audio as a case example, we show how this simple anal-
ysis can yield useful insight into system performance. In our
case example, we use the analysis to establish that (1) a small
percentage of the frames account for a lion’s share of the errors,
(2) three different systems perform very poorly on the same
small subset of ‘hard’ data, and (3) the ‘hard’ data is primarily
characterized by its proximity to speech-nonspeech boundaries.
Through follow-up analyses, we show that the boundaries are
‘smoothly’ hard, and that scoring collars alone are not enough
to handle the problem. Through this case example, we demon-
strate the utility of confidence-based scoring as a general diag-
nostic tool for detection tasks on time-series data.
Index Terms: confidence-based scoring, speech activity detec-
tion

1. Introduction
Traditionally, detection systems are characterized by a re-
ceiver operation characteristic (ROC) or detection error tradeoff
(DET) curve. The ROC/DET curve shows the tradeoff between
false alarm errors and miss detect errors. This paper introduces
a simple analysis method that allows us to gain deeper insight
into system performance by showing how errors are distributed
across the data. For audio detection tasks, the analysis would
consider frames in each audio file in order of confidence, start-
ing with the frame with highest confidence and progressing to-
wards frames with less and less confidence. By keeping track of
the cumulative number of errors, we can determine how the er-
rors are distributed across the data when ordered by confidence.
Using speech activity detection on highly degraded audio as a
case example, we apply this simple analysis to three existing
systems in order to diagnose the problems with these systems.
Through this case investigation, we demonstrate the utility of
confidence-based scoring as a general diagnostic tool for detec-
tion tasks on time-series data.

We now turn our attention to the specific case example at
hand: speech activity detection (SAD). By applying this analy-
sis to three different SAD systems on RATS data, we establish
three main points. First, a small fraction of the data accounts for
a large fraction of the errors. Second, the three SAD systems all
perform very poorly on this small fraction of ’hard’ data. Third,
this small fraction of ‘hard’ data is primarily characterized by

its proximity to speech-nonspeech boundaries. We show that
the results we observe are not simply a consequence of ground
truth inaccuracy, but rather a steady, observable progression of
data becoming increasingly difficult as we move closer to the
boundary. After explaining the experimental setup in section 2,
we demonstrate the first two points in section 3 and establish the
third point in section 4. Section 5 summarizes and concludes the
work.

2. Experimental Setup
We explain the experimental setup in three parts: the system
descriptions, the data, and the analysis methodology.

2.1. System Descriptions

In this section we describe the three SAD systems. Since our
goal in this paper is not to advocate a particular approach to the
task of SAD but rather to demonstrate the utility of confidence-
based scoring as a diagnostic tool, the fine details about these
three systems are not of primary importance. Therefore, the de-
scriptions given here are limited to a high level overview rather
than an in-depth explanation, so that more space can be given
to the analysis sections. The most important piece of informa-
tion in this section is to simply note that the three systems are
very different from each other – they have very different decod-
ing algorithms and very different features. In the remainder of
this section, we briefly describe these three systems and include
appropriate references and background work for the interested
reader.

The first system is a two-state hidden markov model with
MFCCs. The two states correspond to speech and nonspeech,
and each state is modeled as a mixture of gaussians. The train-
ing and decoding algorithm for this system will be abbreviated
as HMM-GMM for the remainder of this paper. The MFCC
features are 39 dimensional and include first and second or-
der derivatives. This first system is typical of an approach that
might be used as a reference baseline.

The second system is an HMM-GMM with spectrotemporal
modulation features. Spectrotemporal modulation features have
been explored in the last decade as a more flexible and power-
ful feature representation for various speech-related tasks. The
main idea of these features is to consider the spectrogram as a
two-dimensional image and to measure the response of various
two-dimensional filters at different patches in the spectrogram.
These features are biologically motivated (see [1], for example),
and seek to approximate the types of auditory stimuli that cause
neurons in the brain to fire. In our experiments, we used the set
of two-dimensional Gabor wavelet filters described in [2] and
[3], which results in a 449 dimensional feature vector. For re-
cent work in applying spectrotemporal modulation features to



the SAD task, see [4], [5], and [6].
The third system is an approach that dynamically combines

a set of weak classifiers using voicing-related features. It treats
each feature as a weak classifier and assigns weights to the weak
classifiers in a dynamic fashion. Unlike approaches such as
Adaboost where the weights of the classifiers are determined
during training and fixed during prediction, this system deter-
mines the weights dynamically by considering how confident
each weak classifier is in its current prediction. It adopts the ap-
proach in [7] referred to as dynamic selection, in which the most
confident weak classifier is given all the weight and thus com-
pletely determines the prediction. The features for this system
consist of a base voicing feature and a set of 220 derived voicing
features. The base feature is a probability of voicing estimate
by a subband autocorrelation pitch tracker, which is described
in [8]. Using this probability of voicing at every frame as a
base feature, we then derived a family of features by calculating
statistics on windows of various sizes. The statistics we consid-
ered were the minimum, the maximum, and various quantiles
in between (where, for example, the 50% quantile would corre-
spond to the median). We considered windows up to 2 seconds
long. A complete description of this system is given in [9]. This
system was designed based on the metaphor of an economics
marketplace, and will be referred to as the economics approach.

2.2. Data

Our experiments used data from the DARPA RATS program.
The data consists of conversations recorded over various ra-
dio transmission links. In general, the audio data is very noisy
and contains highly non-stationary noise, including high energy
non-transmission regions. Due to ground truth label integrity
issues, we randomly selected 1 minute segments and manually
verified the labels, throwing out any segments that had poor la-
bels. Our final data set consisted of 523 training segments and
324 evaluation segments. For more information on the data and
on other SAD approaches proposed for this data set, see [10],
[11], and [12].

2.3. Analysis Methodology

Our analysis is based on what we will call an error trajectory.
SAD systems are traditionally characterized by ROC curves,
which show the tradeoff between false alarm (FA) and miss de-
tect (MD) errors. An error trajectory examines a single point on
the ROC curve and shows how the FA and MD errors are dis-
tributed across the data. (Note that, since we would like to show
the breakdown of total errors into its constituent parts, we pre-
fer the linear axes of the ROC plane over the non-linear axes of
the DET plane.) To compute an error trajectory, we consider the
frames in each audio file in order of confidence, starting the with
the frame that we have the most confidence in and progressing
towards less and less confident frames. By keeping track of the
cumulative number of errors, we can determine how errors are
distributed across the frames. An error trajectory thus begins
at the (0,0) point in the ROC plane (before it has scored any
frames), and it ends at the specified point on the ROC curve (af-
ter it has scored all frames). The error trajectory will serve as
the foundation for our analysis.

In addition to explaining the conceptual idea of an error tra-
jectory, there are a few practical considerations that are impor-
tant to mention. One very useful visualization technique is to
demarcate points along the error trajectory at regular intervals.
In the error trajectories we show in this paper, plotted points
show milestones in 5% increments. In other words, each suc-

Figure 1: Error trajectories for three different speech activity
detection systems showing how system errors are distributed
across the data. Note that the confidence ordering for all three
trajectories has been adopted from the economics system, so
corresponding segments of different trajectories refer to the ex-
act same subset of data.

cessive segment between two plotted points shows the amount
of error contributed by another 5% of the frames in an audio
file (averaged across the evaluation data set). These demarcated
points make it easy for us to see, for example, how much error
was contributed by the most confident 20% of frames. Another
important consideration is to point out that we exclude frames
within scoring collars. When comparing system hypotheses to
ground truth labels in an SAD task, it is customary to exclude
frames that are very close to speech-nonspeech boundaries in
order to accommodate for ground truth label inaccuracies. In
the error trajectories we present, we use a 200 ms speech scor-
ing collar and a 500 ms nonspeech scoring collar, which are the
collar sizes specified in the official RATS SAD evaluation. This
means that the 200 ms on the speech side of each boundary and
the 500 ms on the nonspeech side of each boundary will not be
scored. Lastly, it is important to point out that the error trajecto-
ries for two different SAD systems are not directly comparable,
since the two systems will yield different confidence orderings
of the frames. For this reason, we adopt the technique of taking
the ordering of frames from one system and applying it to all
other systems. By doing this, we make the trajectories directly
comparable, since corresponding segments will thus refer to the
exact same subset of frames. Trajectories whose ordering is
adopted from a different system will be referred to as imputed
error trajectories.

3. Results
Figure 1 shows the error trajectory for the economics mar-
ketplace system and the imputed error trajectories for the two
HMM-GMM systems. This means that the ordering of frames
for all three trajectories is adopted from the economics system.
There are two important things to notice about this figure.

First, a small subset of frames accounts for a lion’s share



of the errors. The spacing of the demarcated points in the solid
line is very dense at the beginning of the trajectory and compar-
atively very sparse towards the end of the trajectory, indicating
that we are performing very well when we’re confident and very
poorly when we’re not confident. In fact, the 50% of the data
that the economics system is most confident in accounts for only
7% of the total FA errors and 11% of the total MD errors (this
is denoted by the boxed point on the solid line). In contrast,
the 13% of the data that the economics system is least confi-
dent in accounts for 50% of the total number of both FA and
MD errors (this corresponds roughly to the point at 2% FA and
2% MD). Recall that these results have already excluded very
generous scoring collars, so the extremely poor performance on
the least confident frames cannot simply be attributed to ground
truth inaccuracy. It appears that there is a small set of legiti-
mately scored frames that is responsible for most of the errors.

Second, all three systems agree on what is hard. Note that
the last few segments in all three trajectories are very long,
showing that all three systems perform very poorly on the same
subset of data (recall that the three trajectories are all using the
ordering adopted from the economics system, so correspond-
ing segments in different trajectories are directly comparable).
Given that the three systems are fairly diverse in their decod-
ing algorithms and features, a reasonable explanation for this
phenomenon is that this small subset of frames is inherently
difficult to classify – regardless of the type of feature or decod-
ing algorithm. While we can only directly show that these three
particular systems agree on what is hard, we can hypothesize
that perhaps most if not all SAD systems would agree that this
subset of frames is the most difficult to classify.

The analysis above suggests that the most reasonable way
of improving our SAD systems is to focus on the 13% of least
confident frames, which contributes 50% of our total errors.
Who are these 13%? Answering this question is the focus of
the next section.

4. Discussion
In this section we will show, through a series of follow-up anal-
yses, that the frames that contribute the most errors are those
near speech-nonspeech boundaries. We also demonstrate that
this is not merely an artifact of ground truth inaccuracy, but
rather a steady, observable progression of the data becoming
increasingly hard to classify (in a statistical sense) as we move
closer to the boundary. We rely on three different methods of
follow-up analysis to demonstrate these claims.

The first analysis is to consider the distance from every
frame to the nearest speech-nonspeech boundary (in ground
truth). Once we have computed this distance for every frame,
we can then consider the distribution of these distances for vari-
ous subsets of frames. Figure 2 shows the distributions for 4 dif-
ferent subsets: the 25% of highest confidence frames, the 25%
of lowest confidence frames, and the two quartiles in between.
As the confidence level decreases, there is a clear progression
of the data being concentrated more and more closely to the
boundaries. Note that this progression is not just a characteris-
tic of the small subset of hard frames, but a steady progression
that we observe from the very beginning with the highest confi-
dence frames.

The second analysis is to investigate the temporal sequence
of frames when ordered by confidence. Consider an audio file
with 6000 frames and imagine the frames as a sequence of boxes
next to each other. Let’s say that the most confident frame in this
file is frame 3500 and it is a prediction for speech, so we fill in

Figure 2: Distribution of distance to nearest speech-nonspeech
boundary grouped by relative confidence level. As the confi-
dence level decreases, frames tend to be concentrated more and
more closely to the boundaries.

box 3500 with “sp”. The next most confident frame is frame
2000 and it is a prediction for nonspeech, so we fill in box 2000
with “ns”. We continue this process until all frames have been
filled in. Every time we fill in a box, we answer three questions
about that box: Does this frame extend an already existing “is-
land” of frames of the same type? Does this frame start a new
island? Is this frame adjacent to an island of the opposite type?
Frames that satisfy these rules are considered to be extenders,
starters, and opposers, respectively. In the example above, the
first two frames would be starter frames, since they both start an
island (i.e. in each case the two adjacent frames have not been
scored yet). If the third most confident frame was frame 3501
and it was a prediction for speech, it would be an extender since
it extends the existing speech island at frame 3500. (If it was a
prediction for nonspeech, it would be an opposer instead, since
it effectively ends the rightward growth of the adjacent speech
island.) Note that a frame can simultaneously be an extender
and an opposer if it fills in a box between a speech island and a
nonspeech island. The notions of starter, extender, and opposer
frames is depicted in figure 3.

By keeping track of the roles that each frame plays, we
can gain an intuitive understanding of the temporal sequence
of frames when ordered by confidence. Table 1 shows the frac-
tion of frames that fulfill these different roles when the frames
are divided into 4 subsets of confidence quartiles. We see that
approximately 90% of the frames are extending islands of the
same type, and the other 10% of frames are starting new islands.
There are almost no opposers until we get to the least confident
frames, and even then they occur very sparingly. Let’s describe
the mental picture that these numbers paint. The highest con-
fidence frames start in the middle of speech or nonspeech seg-
ments. As we progress to less and less confident frames, these
islands of scored frames extend and grow larger. Occasionally,
a new island will appear, and it will extend and grow as well.
Islands of the opposite type (speech vs nonspeech) do not touch
each other until we reach the lowest confidence levels. It is in



Figure 3: Examples of starter, extender, and opposer frames.
When considering frames in an audio file in decreasing order
of confidence, knowing what fraction of frames satisfy these
various roles helps to gain insight into the data.

these regions – the locations of contact between speech islands
and nonspeech islands – that we accumulate the most errors.

Difficulty Quantile Starters Extenders Opposers
0-25% 7.0% 93.0% 0.0%
25-50% 8.7% 91.3% 0.0%
50-75% 9.5% 90.4% 0.1%

75-100% 11.7% 87.2% 2.6%

Table 1: Percentage of starter, extender, and opposer frames.
The first row refers to the 25% of frames with highest confi-
dence, while the last row refers to the 25% of frames with the
lowest confidence.

The third analysis is to consider segments of low confidence
frames, to stitch the corresponding audio segments together,
and to listen to them. Though this analysis is not quantitative,
it is nonetheless useful to share our qualitative observations.
The hard speech data consists of lots of beginning and ends of
words, transient sounds, and breaths or exhalations. The hard
nonspeech data also contained a lot of transient sounds, such
as transmission onsets/offsets or suddenly changing noise con-
ditions. These qualitative observations are consistent with the
explanations suggested by the previous two analysis methods.

These three confidence-based analysis methods help to an-
swer the question: who are the 13%? The frames that contribute
the lion’s share of errors are those near speech-nonspeech
boundaries. The analyses show that there is a steady, observ-
able progression of data becoming harder as we move closer
to the boundaries. One important practical implication of this
conclusion is that researchers who report results on SAD tasks
should always specify the size of their scoring collars. Since the
majority of errors occur near speech-nonspeech boundaries, the
size of the scoring collars will greatly affect the results. For ex-
ample, when we reduce the scoring collars in our experiments
down to 50 ms, we observed that error rates increased by 30-
70%. In our reading of SAD literature, the scoring collars are
rarely (if ever) mentioned, and this omission makes results dif-
ficult to interpret. Another potential implication of these anal-
yses is to reconsider the general approach to SAD on highly
degraded audio. Since we know that most or all systems will
perform very poorly on the region around the boundaries, ap-

proaching the problem as a boundary estimation problem rather
than a frame-level classification may be a more fruitful avenue
of exploration.

5. Conclusions
This paper uses an unconventional confidence-based scoring
analysis as a useful diagnostic tool to gain deeper insight into
system performance and data. Using speech activity detection
in highly degraded audio as a case investigation, we apply this
analysis method to demonstrate three things. First, a small frac-
tion of the data is responsible for a large fraction of the er-
rors. Second, three different speech activity detection systems
all agree on what data is hard. Third, the hard data is primarily
characterized by its proximity to speech-nonspeech boundaries.
Through several follow-up analyses, we show that this is not
merely an artifact of ground truth inaccuracy, but rather a steady,
observable progression of declining system performance as we
move closer to the boundaries. Through this case example, we
show how this analysis can yield useful insights into the data.
The analyses in this paper would be applicable to any detection
task on time-series data.

6. Acknowledgements
Thanks to Nelson Morgan for his feedback and comments on
this paper. This material is based on work supported by DARPA
under contract no. D10PC20024. Any opinions, findings, con-
clusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect the view of
DARPA or its contracting agent, the US Department of the In-
terior, National Business Center, Acquisition & Property Man-
agement Division, Southwest Branch.

7. References
[1] Mesgarani, N. and Shamma, S., “Speech Processing with a Corti-

cal Representation of Audio”, Proc. of IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pp.
5872 - 5875, 2011.

[2] Meyer, B. T., Ravuri, S. V., Schadler, M. R., and Morgan, N.,
“Comparing Different Flavors of Spectro-Temporal Features for
ASR”, in Proc. of Interspeech 2011.

[3] Tsai, T. and Morgan, N., “Longer Features: They do a speech
detector good”, in Proc. of Interspeech 2012.

[4] Mesgarani, N., Slaney, M. and Shamma, S. A., “Discrimination of
Speech From Nonspeech Based on Multiscale Spectro-Temporal
Modulations”, in IEEE Transactions on Audio, Speech, and Lan-
guage Processing, Vol. 14, No. 3, May 2006.

[5] Markaki, M. and Stylianou, Y., “Discrimination of speech from
nonspeech in broadcast news based on modulation frequency fea-
tures”, Speech Communication 53, pp. 726 - 735, 2011.

[6] Bach, J. H., Anemuller, J. and Kollmeier, B., “Robust speech de-
tection in real acoustic backgrounds with perceptually motivated
features”, Speech Communication 53, pp. 690-706, 2011.

[7] Tsymbal, A. and Puuronen, S., “Bagging and boosting with dy-
namic integration of classifiers”, Principles of Data Mining and
Knowledge Discovery, pp. 195-206, 2000.

[8] Lee, B. S. and Ellis, D., “Noise Robust Pitch Tracking by Subband
Autocorrelation Classification”, Proc. of Interspeech 2012.

[9] Tsai, T. and Morgan, N., “Speech Activity Detection: An Eco-
nomics Approach”, Proc. of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) 2013.

[10] Walker, K. and Strassel, S., “The RATS Radio Traffic Collection
System”, Odyssey 2012-The Speaker and Language Recognition
Workshop 2012.



[11] Ng, T., Zhang, B., Nguyen, L., Matsoukas, S., Vesely, K., Mate-
jka, P., Zhu, X., and Mesgarani, N., “Developing a speech activity
detection system for the darpa rats program”, Proc. of Interspeech
2012.

[12] Thomas, S., Mallidi, S. H., Janu, T., Hermansky, H., Mesgarani,
N., Zhou, X., Shamma, S., Ng, T., Zhang, B., and Nguyen, L.,
“Acoustic and Data-driven Features for Robust Speech Activity
Detection”, Proc. of Interspeech 2012.


