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Abstract
The focus of this work is to improve the speaker diarization
error rate, and more specifically the speaker error rate. We
investigate two methods of improving the speaker error rate:
modifying the minimum duration constraint and incorporating
novel purification techniques. First, in the final step of the
speaker diarization algorithm we replace the minimum dura-
tion constraint with a simple smoothing algorithm, which aver-
ages the log-likelihoods for each of the hypothesized speakers.
This method improves the speaker error rate by 12% relative
for the MDM condition. Second, we utilize the difference be-
tween the largest and second largest log-likelihoods to identify
frames which are believed to be correct (or “pure”). The dif-
ference value is shown be more effective at separating correct
frames from incorrect frames than the previously used maxi-
mum log-likelihood value. Using only the “pure” frames, the
cluster models are retrained and segmentation is performed us-
ing the above mentioned smoothing technique. The proposed
purification and smoothing reduces the speaker error rate over
the baseline; however, it is worse than performing the smooth-
ing step alone.
Index Terms: speaker diarization, cluster purification, tempo-
ral smoothing

1. Introduction
The goal of speaker diarization is to partition an audio signal
into speaker homogeneous speech regions, as shown in Figure
1, where the number of speakers as well as the speaker identities
are not known a priori. Speaker diarization has many applica-
tions, including speaker adaption for automatic speech recogni-
tion [1], audio indexing [2, 3], and speaker localization [4].

Figure 1: Overview of speaker diarization. From an input audio
signal, segment the signal into nonspeech and speech segments,
the latter labeled by speaker (e.g., A, B, C, D).

In this work, we improve upon previous speaker diarization
systems, focusing improvement on reducing the speaker error
rate. The speaker error rate, a component of the Diarization
Error Rate (DER), is the percent of speech time that the hy-
pothesized speaker does not match the reference speaker. Here,
two approaches are investigated to reduce the speaker error rate:
improving upon the minimum duration constraint and utilizing
cluster purification.

In our previous work [5], it was shown that a significant
amount of errors occurred during short segments as well as

near speaker change points. It was hypothesized that maybe
this is a result of the minimum duration constraint which does
not allow speaker changes to occur within tmindur seconds of
speech. In this work, we investigate an alternative to the mini-
mum duration constraint, namely median and mean smoothing
over the log-likelihoods for each hypothesized speaker. While
the minimum duration constraint is useful for eliminating rapid
speaker changes, it puts a sharp threshold on the duration be-
tween speaker change points (often 1.5 to 2.5 seconds of speech
[6]). Utilizing a smoothing approach lessens this restriction
while still reducing the ability to have rapid speaker changes.

We also investigate cluster purification methods, where
cluster models are trained only on the “pure” data, to improve
speaker error rates. Cluster purification methods have shown to
improve diarization results [7, 8]. In [7], models are first trained
according to uniform initialization. Then the data in each cluster
is split into 0.5 second segments. The top 25% of the segments
in each cluster are labeled and the models for each cluster are
retrained. More segments are iteratively labeled and the models
are retrained until all of the data is labeled and included in the
models. Another method of purification is used in [8], where the
authors use the top 55% of segments to retrain speaker models.
The latter work utilizes the purification method at the end of the
algorithm while the former algorithm performs “purification”
in the initial step. Note that the system described in [8] is a
top-down speaker diarization system while the system in [7] is
a bottom-up system.

In this work, a novel method is utilized to determine which
data to use to retrain the models. As opposed to previous work
which uses the data that best fits the Gaussian Mixture Model
(GMM) (the data associated with the highest log-likelihoods
for each cluster), in this work the models are retrained on the
data with the highest difference in log-likelihoods for the best
matched cluster and the second best matched cluster. In other
words, it uses data which better matches one cluster over all
other clusters.

This paper is outlined as follows: in Section 2 we describe
the relevant background information, in Section 3 we discuss
and analyze the preliminary findings on the development set, in
Section 4 we discuss the evaluation set results, and in Section 5
we give our conclusions as well as areas of future work.

2. Background
2.1. Baseline diarization system
There are a number of methods used to perform speaker diariza-
tion [7, 8, 6, 9, 10, 11, 12] . The baseline system in this work is
the ICSI speaker diarization system used in the NIST Rich Tran-
scription 2009 (RT-09) evaluation. A more in depth description
of the system is given in [6]. A short description is given below.

The ICSI speaker diarization system uses a Hidden Markov



Model (HMM) - Gaussian Mixture Model (GMM) agglomera-
tive hierarchical clustering approach [13, 14]. This is a bottom-
up approach where clusters are iteratively merged until each
cluster represents a hypothesized speaker in the meeting. The
algorithm is based on an HMM where each state (or cluster) is
modeled as a GMM.

More specifically, speech detection is performed first and
the speech regions are initially assigned to k clusters. A long-
term feature based initialization is used to determine the value
of k and the initial segmentation [14].

After the initial segmentation, GMM parameters are trained
and the input stream is re-segmented using the Viterbi form of
the Expectation Maximization (EM) algorithm. Note that for
segmentation, a minimum duration constraint of 2.5 seconds of
speech is used to prevent rampant speaker changes [13]. More
specifically, each state has a number of substates, which span
tmindur seconds and have the same probability density func-
tion.

After updating the models of each of the clusters, the next
step is to determine which two clusters to merge. This is done
using the delta Bayesian Information Criterion (∆BIC) [15],
which is computed for each pair of clusters.

Once two clusters are merged, the GMM parameters are re-
trained and Viterbi decoding is performed to output the most
probable segmentation (with a 2.5 second minimum duration
constraint). The merging, retraining, and re-segmentation is
repeated iteratively until the stopping criterion is met. Af-
ter which, a final re-segmentation/re-training step is performed
where the minimum duration is reduced to 1.5 seconds. As a
final smoothing step, if the speakers immediately preceding and
following a short non-speech segment (less than 0.5 seconds)
are the same, the non-speech segment is relabeled as a speech
segment spoken by the same speaker. This step is later referred
to as gapsmoothing.

2.2. Scoring metrics
There are two main metrics used in this work: Diarization Er-
ror Rate (DER) and speaker accuracy. The DER is the sum of
the per speaker false alarm time (overestimating the number of
speakers), miss time (underestimating the number of speakers),
and speaker error time (the hypothesized speaker(s) is (are) not
matched to the appropriate speaker(s) in the reference) divided
by the total speech time in an audio file, as shown in Equation
(1). Note that if three people are speaking at the same time for
a duration of one second, this results in three seconds of speech
time. As done in the NIST evaluations, we scored the DER us-
ing a no-score collar of ±0.25 seconds [16] around reference
segment boundaries. Since the focus in this study is on im-
proving the speaker error rate, often times we simply report the
speaker error time TSPKR.

DER =
TFA + TMISS + TSPKR

TSPEECH
(1)

Speaker accuracy is also utilized to evaluate performance
in this study. It is simply the amount of time the hypothesized
speaker is correctly labeled divided by the total time at least
one speaker is speaking. The speaker diarization system used
in this study does not address the overlapped speaker problem;
and therefore, assigns at most one speaker to any time instance.
In the case that more than one person is speaking at the same
time, it is correct (in terms of speaker accuracy) if the hypoth-
esized speaker corresponds to one of the people speaking. The
denominator for speaker accuracy differs from that used to com-
pute the DER since overlapped speech is only counted once.

2.3. Data
This work is performed on the NIST Rich Transcription (RT)
dataset. More specifically, we use only meeting domain record-
ings. Recordings from the meeting domain have been the focus
of the latest RT evaluations and contain spontaneous speech,
which is representative of “real-world” interactions and chal-
lenging due to disfluencies.

The data was split into two partitions: a development set
and a test set. The development set consists of 28 meeting
recordings from RT evaluations prior to RT-09. The test set
consists of 7 meeting recordings from the latest evaluation set,
RT-09. Both the multiple distant microphone (MDM) and sin-
gle distant microphone (SDM) conditions are investigated.

3. Experimental analysis
In this section, we describe the experiments we performed on
the development set. The results of this experimental analysis
are used to determine the parameters of the final system.

3.1. Minimum duration versus log-likelihood smoothing
We compare the speaker error time (TSPKR) for four differ-
ent approaches to reducing rapid speaker changes. The first
approach is to modify the minimum duration constraint used
within the algorithm (the original system uses 2.5 seconds)
while keeping the last iteration at the default 1.5 seconds. The
second approach changes the minimum duration constraint used
in the last iteration of the algorithm (the original system uses
1.5 seconds) while using the default 2.5 second minimum du-
ration constraint within the algorithm. The third and fourth
approaches apply mean and median smoothing (over a varied
number of frames) to the final log-likelihoods for each hypoth-
esized speaker. The new segmentation is performed on a per
frame basis, where the hypothesized speaker has the highest
mean or median smoothed log-likelihood. The experiments are
performed for both the MDM and SDM conditions and the re-
sults are shown in Tables 1 and 2, respectively.

Table 1: MDM – Speaker error time (in seconds). Values de-
noted with * have combined miss and false alarm rates greater
than 6.0% (due to gapsmoothing).

Min dur Min dur Min dur Mean Median
or smooth last iter smoothing smoothing

time
0.0 4598* 1083 1083
0.5 1611 544* 480 529
1.0 914 505 429 446
1.5 880 527 456 447
2.0 960 589 503 478
2.5 527 666 568 519
3.0 727 730 625 566
3.5 1102 817* 691 623

As shown in Tables 1 and 2, determining the speaker via
mean smoothing the log-likelihood scores is the best and sec-
ond best method for the MDM and SDM conditions, respec-
tively. This method results in a 18.5% and 3.2% relative de-
crease in speaker error rate over the baselines (526.79 seconds
and 1985.49 seconds) for the MDM and SDM conditions, re-
spectively. The DER decreases from 9.6% to 9.0% for the
MDM condition and from 19.6% to 19.3% for the SDM condi-
tion. Though the results for the SDM condition are not as dra-
matic as the MDM condition, the smoothing results are consis-



Table 2: SDM – Speaker error time (in seconds). Values de-
noted with * have combined miss and false alarm rates greater
than 6.4%.

Min dur Min dur Min dur Mean Median
or smooth last iter smoothing smoothing

time
0.0 5355* 6303 6303
0.5 7457 2312* 2288 2671
1.0 3949 2069 1945 2089
1.5 2839 1985 1923 1991
2.0 2218 2017 1955 2002
2.5 1985 2133 1994 2025
3.0 1939 2109 2039 2043
3.5 1875 2118 2095 2081

tently better for shorter smoothing values. We hypothesize that
the SDM results do not improve as dramatically as the MDM re-
sults because the speaker models are not as good. As an aside,
the values annotated with an asterisk contain a higher combined
miss and false alarm error rate than the other values in the table.
This is due to gapsmoothing, which is described in Section 2.1.

3.2. Identifying “pure” frames
In this part of the analysis, we first evaluate the effectiveness
of separating the correct frames from the incorrect frames for
five attributes based on the log-likelihood scores: maximum,
variance, unnormalized entropy, posterior probability, and dif-
ference between the largest and second largest log-likelihood
scores. The log-likelihoods for each of the final clusters are
computed and mean smoothed over a number of durations.
Then the five attributes summarized below are computed for
each frame.

• Maximum: The maximum smoothed log-likelihood
score.

• Variance: The variance of the smoothed log-likelihood
scores for all of the final clusters.

• Entropy: An unnormalized entropy of the smoothed
log-likelihood scores for all of the final clusters. More
specifically, let p(xt|θk) be the probability of the fea-
ture vector x at time t given θk (the GMM parameters of
cluster k ). Then the unnormalized entropy of the log-
likelihoods is defined as,

Ĥ(p(xt|θ)) = −
nX

k=1

p(xt|θk) log p(xt|θk), (2)

where n is the number of final clusters.

• Posterior Probability: The maximum posterior prob-
ability p(θk|xt). Note that p(θk) = 1/n since in our
setup, we assume each cluster is equally likely.

max
k

p(θk|xt) = max
k

p(xt|θk)/

nX
k=1

p(xt|θk) (3)

• Difference: The difference between the largest and sec-
ond largest smoothed log-likelihood scores.

In order to measure the strength of each attribute, we utilize the
Receiver Operating Characteristic (ROC) curve. More specifi-
cally, we compute the Area Under the Curve (AUC) value for
each of the five log-likelihood attributes. Tables 3 and 4 show
the ROC AUC values for the various log-likelihood attributes.

The attributes which better separate the correct and incorrect
classes have larger ROC AUC values. Note that the correct
and incorrect labels are based on the baseline system results.
We will incorporate making a frame level decision based on the
smoothed log-likelihood score in the next set of experiments.

Table 3: MDM – Receiver Operating Characteristic (ROC) Area
Under the Curve (AUC) values for the various mean smoothed
log-likelihood attributes.

Smooth Diff Post Var Max Entr
time (s)

0.0 0.76 0.76 0.65 0.63 0.62
0.5 0.83 0.83 0.68 0.67 0.66
1.0 0.84 0.84 0.70 0.68 0.67
1.5 0.84 0.85 0.70 0.69 0.67
2.0 0.84 0.84 0.71 0.69 0.67
2.5 0.83 0.83 0.71 0.68 0.67
3.0 0.82 0.82 0.71 0.68 0.66
3.5 0.81 0.81 0.71 0.67 0.66

Table 4: SDM – Receiver Operating Characteristic (ROC) Area
Under the Curve (AUC) values for the various mean smoothed
log-likelihood attributes.

Smooth Diff Post Var Max Entr
time (s)

0.0 0.57 0.57 0.50 0.53 0.52
0.5 0.73 0.72 0.53 0.60 0.56
1.0 0.77 0.75 0.54 0.62 0.57
1.5 0.79 0.76 0.55 0.63 0.57
2.0 0.79 0.76 0.55 0.63 0.57
2.5 0.79 0.76 0.55 0.63 0.57
3.0 0.78 0.76 0.56 0.63 0.57
3.5 0.78 0.76 0.56 0.63 0.57

From Tables 3 and 4, we observe that for both the MDM
and SDM conditions the difference and posterior probability
have the largest ROC AUC values, and therefore perform the
best. For the SDM condition, the difference performs better
than the posterior probability and for the MDM condition the
two attributes result in nearly the same ROC AUC values. Since
the performance is so similar for the difference and the poste-
rior probability, with the difference performing slightly better
than the posterior probability for the SDM condition and es-
sentially the same for the MDM condition, we will investigate
the difference attribute in further detail. The maximum log-
likelihood attribute is the third best performing attribute for the
SDM condition and fourth best for the MDM condition. For the
MDM condition, the variance log-likelihood attribute is third
best in terms of the ROC AUC; however, for the SDM condi-
tion, the variance is worst performing attribute. Therefore, it
will not be examined further. We also investigated the mean of
the smoothed log-likelihood scores for all of the clusters and
found that it performed poorly.

We further analyze the difference and maximum attributes
to determine their strength in separating correct frames from in-
correct frames, which is useful for performing cluster purifica-
tion. The difference attribute performed the best and since pre-
vious work [7, 8] relies on using the maximum log-likelihood
scores to determine which frames should be used for cluster
purification, we compare the results when using the maximum
log-likelihood to the difference between the largest and sec-



ond largest log-likelihood. We compute the speaker accuracy,
where the hypothesized speaker is the speaker with the largest
smoothed log-likelihood score, when scoring the frames which
had the highest per cluster difference or maximum scores. Fig-
ures 2 and 3 show the results for all scored time (i.e. ignor-
ing “collar” time) for the MDM and SDM conditions. More
specifically, the figures show that for both the MDM and SDM
conditions, the speaker accuracy for the best difference scores
is better than the speaker accuracy for the best maximum log-
likelihood scores (particularly for the very best scores for each
of the two attributes).
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Figure 2: MDM – Speaker accuracy for the per cluster top
x% of difference between the largest and second largest mean
smoothed log-likelihood values (on the left) and maximum log-
likelihood values (on the right) shown for a variety of smoothing
durations as denoted in the legend.
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Figure 3: SDM – Speaker accuracy for the per cluster top
x% of difference between the largest and second largest mean
smoothed log-likelihood values (on the left) and maximum log-
likelihood values (on the right) shown for a variety of smoothing
durations as denoted in the legend.

3.3. Cluster purification
Based on the previous results, we investigate the use of the dif-
ference between the largest and second largest log-likelihood
values to determine which frames to use to retrain the cluster
models. Log-likelihood values are smoothed over 1.0 seconds
and 1.5 seconds for MDM and SDM, respectively. The smooth-
ing values were determined according to the results found in
Tables 3 and 4, namely we chose the smallest duration for
which the ROC AUC values are large. Figure 4 shows the fi-
nal speaker error results when using a variable amount of data
(according to the top difference scores) to retrain the speaker
models. For comparison, we have also shown the results when
using the maximum log-likelihood to determine which frames
to train the “purified” models on. Similar to previous purifi-
cation work [7, 8], each cluster is split into 0.5 second seg-

ments. In this work, the scores are averaged for 0.5 second non-
overlapping windows. Also, for the MDM condition only the
Mel-Frequency Cepstral Coefficients (MFCCs) are “purified”.
The GMMs trained on delay features are kept the same. This is
because there already is not much diversity in the delay feature
values. Previous work also does not purify GMMs trained on
delay features. Based on the results shown in Figure 4 we see
that retraining on the best per cluster difference values results in
a lower amount of speaker error rate than retraining on the best
per cluster maximum log-likelihood scores. However, decreas-
ing the amount of training data used in the final models and then
mean filtering does not perform as well as mean filtering alone.
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Figure 4: Speaker accuracy after retraining models on the
top x% of difference between the largest and second largest
mean smoothed log-likelihood values (blue) and maximum log-
likelihood values (red) for the MDM (left) and SDM (right) con-
ditions.

4. Test Set Results
Since cluster purification on the last iteration was not found to
improve results, we simply perform mean filtering at the last
iteration. For the MDM condition, the log-likelihoods are mean
filtered over a 1.0 second window and for SDM this window
is increased to 1.5 seconds. For MDM, the amount of speaker
error is reduced from 430.7 seconds to 379.4 seconds, which is
an 11.9% relative improvement. This results in a DER of 17.3%
and 16.5%, respectively. For the SDM condition, the result is
not as dramatic. The speaker error time is reduced from 1086.5
seconds to 1055.7 seconds, or a 2.8% relative improvement, and
the DER decreased from 29.2% to 28.6%.

5. Conclusions and Future Work
In conclusion, we investigate two methods of reducing the
speaker error rate for our speaker diarization system. The first
method involves averaging the log-likelihood scores for each
hypothesized speaker. This was performed on the last iteration
of the speaker diarization algorithm and results in an 11.9% rel-
ative improvement for the MDM condition and a 3% improve-
ment for the SDM condition. We also investigate the usefulness
of the difference between the largest and second largest log-
likelihood in separating correct and incorrect frames. We found
that the difference attribute performed better than the maximum
log-likelihood in terms of identifying correct frames. However,
for our diarization algorithm cluster purification on the last iter-
ation did not reduce the DER.

For future work, we would like to investigate results when
log-likelihood averaging is incorporated throughout the speaker
diarization algorithm (instead of only on the final iteration).
Also, other researchers have found purification based on the
maximum log-likelihoods to improve results [7, 8]. Since we
have shown that the difference feature better separates the cor-
rect and incorrect classes, perhaps it would perform better for
purification on those systems as well.
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