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Abstract
Tandem systems based on multi-layer perceptrons (MLPs)

have improved the performance of automatic speech recogni-
tion systems on both large vocabulary and noisy tasks. One
potential problem of the standard Tandem approach, however,
is that the MLPs generally used do not model temporal dy-
namics inherent in speech. In this work, we propose a hy-
brid MLP/Structured-SVM model, in which the parameters be-
tween the hidden layer and output layer and temporal transi-
tions between output layers are modeled by a Structured-SVM.
A Structured-SVM can be thought of as an extension to the clas-
sical binary support vector machine which can naturally classify
“structures” such as sequences. Using this approach, we can
identify sequences of phones in an utterance.

We try this model on two different corpora – Aurora2 and
the large-vocabulary section of the ICSI meeting corpus – to in-
vestigate the model’s performance in noisy conditions and on a
large-vocabulary task. Compared to a difficult Tandem baseline
in which the MLP is trained using 2nd-order optimization meth-
ods, the MLP/Structured-SVM system decreases WER in noisy
conditions by 7.9% relative. On the large vocabulary corpus, the
proposed system decreases WER by 1.1% absolute compared to
the 2nd-order Tandem system.
Index Terms: Structured SVM, Noise Robustness, LVCSR,
Hybrid Systems

1. Introduction and Related Work
Using multi-layer perceptrons (MLPs) to model acoustics has
had a long history in automatic speech recognition (ASR). One
approach that has proven successful, especially for feature com-
bination, is the Tandem method [5]. In the Tandem approach,
9-15 frames of a base feature, such as PLP, MFCC, or more ex-
otic features, are trained with a MLP on a phone recognition
task. Processed log posteriors from the MLP are appended to
standard features such as MFCCs, which are then used as input
to an acoustic model.

While the context frames allow the MLP to model longer
temporal regions, a possible problem with this approach is that
the MLP does not explicitly model any temporal dynamics. In
more traditional acoustic modeling, a number of researchers
over the years have tried to extend the MLP model to handle
time transitions. The “hybrid” ANN/HMM approach of [11]
included HMM-style parameters between two consecutive out-
put layers, and the model was trained using maximum likeli-
hood (ML). With the renewed interest in neural networks us-
ing a “deep approach,” a number of new discriminative training
criteria has been proposed or adapted from HMM-GMM sys-
tems: MMI/MPE [24], boosted MMI [20], and scalable min-

imum Bayes risk [6]. While comparatively less research has
focused on Tandem systems, there have been some notable ef-
forts. [23] explored the use of recurrent neural networks to re-
place the MLP, using second-order Hessian-free optimization
for training. [10] and [12] proposed a hybrid system consist-
ing of a linear-chain conditional random field and a multi-layer
perceptron, and improve upon the MLP baseline on a phone
recognition task.

Much of the difficulty of augmenting an MLP-based sys-
tems with time transitions and using a purely discriminative
model is that, empirically, the system can easily become over-
trained. In the original hybrid ANN/HMM acoustic model and
its successors trained on discriminative criteria, the probability
of the phone given the input feature is divided by the probability
of state to create an ersatz generative model. In the hybrid CRF-
MLP approach of [12], very clever normalizations were used to
combat what the authors call “a low entropy frame output.”

In this work, we propose introducing temporal structure us-
ing the framework of Structured-SVMs, and in particular the
Hidden Markov Support Vector Machine (HMSVM), first in-
troduced in [1]. Figure 1 shows the proposed hybrid system.
The architecture from the input layer to hidden layer is a multi-
layer perceptron, while the parameters from the hidden layer to
output layer, and those between output layers, are part of the
Structured-SVM.

There are two reasons, one theoretical and empirical, to
suggest that such a hybrid discriminatively-trained system may
work. The theoretical reason is that generalization error of a
support vector machine, with a couple modifications, also hold
true for Structured-SVMs (see [17] for a example of this bound)
provided that the VC-dimension is finite. Bounded inputs pro-
vide a finite VC-dimension, and hidden layers based on tanh
or sigmoid (as used in this work) non-linearities are bounded.
Thus, at first glance, the generalization result may allow us to
circumvent the overtraining problem. Empirically, researchers
working on other tasks such as part-of-speech tagging ([4]) have
noted that Structured-SVMs seem to work well when input fea-
tures are binary. As shown in Figure 2, the hidden units of a
multi-layer perceptron with sigmoid units serve as an approxi-
mation to binary features.

Structured-SVMs have been successfully applied to other
areas of automatic speech recognition. [26] used Structured-
SVMs as a type of meta-learning algorithm to improve ASR
results; using log-probabilities from competing HMM word hy-
pothesis and a language model as input features, the authors
used a Structured-SVM to improve inference and optimize seg-
mentations for the Structured-SVM. This work was later ex-
tended to large-vocabulary tasks in [28] by focusing on sub-
word units and adding a parameter for a prior.
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Figure 1: Diagram of the Hybrid MLP/Structured-SVM Model
for two consecutive frames. The parameters from the input fea-
tures to the hidden units are those of a standard MLP, while the
parameters from the hidden units to outputs, and time transi-
tions, are trained using a Structured-SVM.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

value of sigmoid hidden layer node

no
rm

al
iz

ed
 c

ou
nt

s

Figure 2: Histogram for activation values for hidden layer
nodes.

In the following sections, we provide an overview of the
Structured-SVM and the hybrid MLP/Structured-SVM Tandem
system, and show results on noisy and large-vocabulary cor-
pora.

2. Structured SVM
2.1. Model

Structured-SVMs can be thought of as an extension of the bi-
nary Support Vector Machine, in which the prediction is no
longer a binary decision, but are more “complex” structured
outputs such as multi-class labels, sequences, or trees. Although
space constraints preclude us from giving a more general treat-
ment, we refer readers to an excellent overview paper in [19],
and outline the specific structure used in the work. We use
a Hidden Markov Support Vector Machine, first introduced in
[1]. Informally, the HMSVM includes the same temporal pa-
rameters as a HMM, but no normalization across exiting states
is needed. Moreover, the output distribution of the HMM is re-
placed by a multi-class SVM. More formally, define n to be the

length of an utterance, h = [hT
1 | . . . |h

T
n ]T the input features

of the entire utterance, P ∈ {1, . . . , k} the output phone set
, y ∈ Pn the prediction, and w to be the model of the Hid-
den Markov SVM.w includesWo andWt, but the weights are
stacked as follows to create a single vector:

w = [wT
1 | . . . |w

T
k |w11|w12| . . . |wkk]T

where
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2
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1

wT
2

. . .

wT
k

3
775

and
wij = [Wt]ij

At test, the best prediction y is solved as follows:

arg max
y

w
T
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Intuitively, φ(h,y) can be thought of as a feature func-
tion associated with the prediction y, and the feature function
“turns on” correct features to interact with the right parts of the
model w. In practice, the optimization problem is solved using
a Viterbi algorithm.

At training time, we maximize the margin between the cor-
rect possible phone sequence and all incorrect ones. This leads
to the constrained optimization problem:

min
w,ξi

1

2
||w||2 + C

X
i

ξi

subject to

∀i s.t. ŷi �= y
∗
i ,w

T(φ(h,y
∗
i )− φ(h, ŷi)) ≥ 1− ξi

The training objective is similar to the binary SVM, with
one modification: there must be a margin between y∗

i and all
incorrect ŷi.

2.2. Training

The optimization problem in the previous subsection should
give us pause, as the number of possible constraints is expo-
nential in length of sequence. While cutting-plane training al-
gorithms exist for reducing training complexity to linear in data
size, optimization becomes increasingly more expensive as the
size of dataset, and therefore the number of constraints, in-
creases. Instead, we solve the problem in the primal. Rewriting
the optimization problem and setting λ = 1

C
yields:

min
w

λ

2
||w||2+

X
i

max(1−arg max
ŷi �=y∗

i

w
T(φ(h,y

∗
i )−φ(h, ŷi)), 0)
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We use an extension of the PEGASOS algorithm [18] for
Structured-SVMs. PEGASOS is a projected subgradient de-
scent algorithm, and convergence is independent of training set
size. While subgradients are extremely efficient to calculate
(since for each sequence, the subgradient requires only a Viterbi
output), we lose the ability to easily check for convergence. In
practice, however, convergence can be monitored by checking
performance on a held-out set.

2.3. Proposed Method

Parameter estimation for a hybrid MLP/Structured-SVM Sys-
tem consists of two steps: training a multi-layer perceptron
model withWt = 0, and then updating parametersWo andWt

using a Structured-SVM approach. For the first stage, we train a
standard multi-layer perceptron using a modified second-order
method called Krylov Subspace Descent in [22], as we noted
the best results (both for baseline Tandem systems and the hy-
brid model) using this method. In the second step, we propagate
the input features to the hidden layer, and using the hidden layer
as inputs, train the Structured-SVM using the PEGASOS algo-
rithm.

During inference, we follow the approach in [27], and con-
sider the model to be a conditional random field trained with
large margin optimization, to generate frame-level posteriors.
We also tried to compare against a more standard MLP-CRF
hybrid system, but could not obtain results that matched the
baseline Tandem results, likely because of the overtraining issue
mentioned in [12]. We perform Karhunen-Loève Transform on
the log posteriors per frame, and append those features to stan-
dard MFCCs.

3. Experimental Setup
In this study, we compared 13-dimensional perceptual linear
prediction (PLP) features with first and second derivatives dis-
criminatively trained either by aMLP or MLP/Structured-SVM,
and processed using the Tandem approach. This feature is ap-
pended to a 13-dimensional MFCCwith first and second deriva-
tives in all the experiments.

We tested this hybrid model on Aurora2 [2] and the large-
vocabulary section of the ICSI Meeting Corpus [3], to check
the model’s performance in noisy conditions and for a large-
vocabulary task, respectively. The two subsections below pro-
vide more detail on the experimental setups.

3.1. Aurora2

The Aurora2 data set is a connected digit corpus which contains
8,440 sentences of clean training data and 70,070 sentences of
clean and noisy test data. The test set comprises 10 differ-
ent noises (subway, babble, car, exhibition, restaurant, street,
airport, train-station, MIRS-filtered subway, and MIRS-filtered
street) at 7 different noise levels (clean, 20dB, 15dB, 10dB,
5dB, 0dB, -5dB), totaling 70 different test scenarios, each con-
taining 1,001 sentences. All systems were trained only on the
clean training set but tested on the entire test set.

The parameters for the HTK decoder used for this exper-
iment are the same as that for the standard Aurora2 setup de-
scribed in [2]. The setup uses whole word HMMs with 16 states
with a 3-Gaussian mixture with diagonal covariances per state;
skips over states are not permitted in this model. This is the
setup used in the ETSI standards competition. More details on
this setup are available in [2].

3.2. ICSI Meeting Corpus

For the large vocabulary task, we use the spontaneous meeting
portion of the ICSI meeting corpus [3], recorded with near-field
microphones. The training set consists of 23,739 utterances –
20.4 hours – of speech across 26 speakers. The training set
is based on meeting data used for adaptation in the SRI-ICSI
meeting recognizer [16]. The test set comprises 58 minutes
of speech, taken from ICSI meeting from the NIST Rich Tran-
scription Evaluation Sets 2002 [13], 2004 [14], and 2005 [15].

We use HTK version 3.4 for MFCC calculation, acoustic
modeling, and decoding (ICSI’s feacalc is used for PLP fea-
tures used for Tandem systems). The mel-cepstra are standard
13-dimensional features, including energy, with first and second
derivatives, and the MFCCs are mean-normalized at the utter-
ance level. We use HDecode with a wide beam search (300)
for decoding. Decoded utterances are text normalized before
NIST’s sclite tool is used to calculate word error rate (WER).

The acoustic models use cross-word triphones and are
trained using maximum likelihood. Each triphone is modeled
by a three-state HMMwith a discrete linear transition to prevent
skipping. The output distribution for each state is modeled by
a GMM with 8 components per mixture with diagonal covari-
ance. Training roughly follows the standard recipe, in which
monophone models are estimated from a “flat start”, duplicated
to form triphone models, clustered to 2,500 states, and then re-
estimated.

4. Results
The details of every system reported in this Section are as fol-
lows:

• MLP: The MLP is a single hidden-layer multi-layer per-
ceptron with 2,000 hidden units. This number was cho-
sen as it gave the best results on both the Aurora2 and
ICSI meeting corpora. The inputs to the MLP were 13-
dimensional PLP features with first and second deriva-
tives, and 9 frames of context were used per frame. The
multi-layer perceptron is trained with Krylov Subspace
Descent, as performance was better than similar net-
works trained with Hessian-free [8] or stochastic gra-
dient descent. The neural network was trained with 8
sweeps through the data on Aurora2, and 20 on the ICSI
Meeting Corpus.

• MLP/Structured-SVM: The hybrid structure also uses
2,000 hidden units. The Structured-SVM is trained with
PEGASOS, extended for use with Structured-SVMs.
Around 1,500 epochs were used Aurora2 data and about
3,000 epochs were used on the ICSI Meeting Corpus.
A batch size of 128 was used (meaning that each epoch
used 128 sequences, which constitutes 1.4% and 0.5% of
Aurora2 and ICSI Meeting Corpus respectively). A λ of
0.25 was used for Aurora2, and 0.5 for the ICSI Meeting
Corpus, although performance was similar for the two
values.

4.1. Phone Recognition

When training both models, we held out around 10% of the
training utterances – 800 for Aurora2 and 2,170 for the ICSI
Meeting Corpus – to test for convergence of the MLP and
MLP/Structured-SVM. Thus, we get error rates for a phone
classification task from the held out data by using our sys-
tems. Tables 1 and 2 show the per-frame phone error rate on
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Aurora2 and the ICSI Meeting Corpus, respectively. As ex-
pected, the MLP/Structured-SVMModel decreases phone error
rate on the MLP baseline. For the smaller Aurora2 task, the
MLP/Structured-SVM has a 22.7% relative improvement over
the standard MLP baseline, while for the larger vocabulary task,
the relative improvement was a more modest 8.4%.

System MLP MLP-SSVM
PER 10.28% 7.94%

Table 1: Phone Error Rate on Cross-Validation Set of Aurora2
for both the multi-layer perceptron (MLP) and MLP/Structured-
SVM (MLP-SSVM).

System MLP MLP-SSVM
PER 39.91% 36.83%

Table 2: Phone Error Rate on Cross-Validation Set of the ICSI
Meeting Corpus for both the multi-layer perceptron (MLP) and
MLP/Structured-SVM (MLP-SSVM).

4.2. Speech Recognition

Typical results on the Aurora2 test set using the ETSI setup re-
port accuracies (or mean accuracy) across the 10 noises at 7
noise conditions. Instead, we report word error rate (WER), as
this is the standard metric used for ASR performance, and a re-
duction in errors typically corresponds fairly well to common
costs of using a system (for instance, how often a system must
back off to a human operator). Moreover, we average across
noises and report scores for each noisy condition, to see how the
system degrades as SNR decreases. We also include a “usable
average” that calculates WER across all noises and conditions
at SNRs of 10dB and higher. With the exception of the two
cleanest conditions, all results are significant with a p-value of
0.02 using the differences of proportions significance test.

Table 3 shows the results for the different systems on Au-
rora2. In almost every condition, except for the noisiest case
(−5dB), the hybrid system improves upon an standard MLP
Tandem baseline, trained with second order methods, a diffi-
cult baseline.1 In particular, the MLP/Structured-SVM system
improves upon the MLP baseline by 7.9% relative. The best
relative improvements seem to occur in the cleaner cases, and
taper off with more mismatched conditions.

Table 4 shows results for the large vocabulary section
of the ICSI meeting corpus. Including Tandem features to
the standard MFCCs improves performance by 1.3% absolute
over the MFCC baseline. Swapping those features with the
MLP/Structured-SVM improves results by another 1.1%. All
results are significant with a p-value of 0.05 using the differ-
ences of proportions significance test.

5. Conclusions and Future Work
In this work, we propose a hybridMLP/Structured-SVMmodel,
and show how to use a system in a “Tandem” approach. In

1The is among the best Tandem result in our lab, regardless if the
MLP architecture is “shallow” or “deep”. Please refer to [21] for com-
parison.

SNR MFCC MLP MLP-SSVM
Clean 0.97% 0.54% 0.50%
20dB 5.99% 1.46% 1.36%
15dB 15.66% 3.85% 3.48%
10dB 36.62% 10.83% 9.99%
5dB 64.29% 28.75% 27.44%
0dB 84.66% 58.29% 57.91%
-5dB 92.21% 84.20% 85.18%

usable avg. 14.08% 4.10% 3.83%

Table 3: Average WER for several systems under different noise
conditions on the Aurora2 corpus. “Usable average” is the av-
erage WER across noise conditions with SNRs 10dB and above.
Bold numbers indicate best performance. Note that, as men-
tioned before, MLP use the Krylov Subspace Descent optimiza-
tion method.

System MFCC MLP MLP-SSVM
WER 33.2% 31.9% 30.8%

Table 4: WER for several systems on the large vocabulary sec-
tion of the ICSI meeting corpus. Note that, as mentioned before,
MLP use the Krylov Subspace Descent optimization method.

both noisy and large-vocabulary tasks, the MLP/Structured-
SVM improved upon a Tandem baseline trained with second-
order methods.

There are a few ways in which the model could be im-
proved. One way could be improving optimization. Currently,
the model is trained in two stages: first, as standard MLP; and
then as a standard Structured-SVM. The reasoning behind split-
ting optimization into two stages is that performing joint opti-
mization would break the convexity of the Structured-SVM and
the nice theoretical convergence properties of the Structured-
SVM training algorithm. On the other hand, there is no reason
to believe that the hidden units after MLP training are optimal
for a Structured-SVM, and perhaps alternating between the two
types of training phases could yield better results.

For actual modeling, it is by no means obvious that a
HMSVM is the optimal Structured-SVM for the hybrid sys-
tem. One simple extension would be to investigate as second- or
third-order Markov parameters for improving performance; or
perhaps another structure, such as a tree, would improve both
phone and word recognition. For the multilayer perceptron,
with the interest in deep architectures, it would be interesting
to determine the optimal number of hidden layers for this hy-
brid approach.

Finally, given the resurgence in interest in “hybrid” sys-
tems for acoustic modeling, it is an interesting question if a
MLP/Structured-SVM system could be a replacement for other
types of ANN/HMM acoustic models. One unanswered ques-
tion in this work is whether the current model could handle
context-dependent triphones, and if not, what modifications
need to be made to the model to handle that many states.
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