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ABSTRACT

Multiple recent studies have shown that speaker recognition per-
formance using frame-based cepstral features is improved by adding
higher-level information, including prosodic and lexicalfeatures.
This paper explores the important question of finding a good ker-
nel for a system that models syllable-based prosodic features using
support vector machines (SVMs). The system has been the bestper-
forming of our high-level systems in the last two NIST evaluations,
and gives significant improvements when combined with cepstral-
based systems. We introduce two new methods for transforming the
syllable-level features into a single high-dimensional vector that can
be well modeled by SVMs, resulting in significant gains in speaker
recognition performance.

Index Terms— Speaker recognition, Prosody, GMM, SVM

1. INTRODUCTION

We consider the task of text-independent speaker verification, i.e.,
given a sample from a speaker and a claimed identity we need to
decide whether the claim is true or false. In the last few years a
common approach to speaker verification has been to combine dif-
ferent knowledge sources by modeling them separately, combining
them at the score level to produce the final score that is laterthresh-
olded to obtain a decision. In this paper we focus on a high-level
system, which we call SNERFs, a special case of Non-Uniform Ex-
traction Region Features (NERFs) with extraction regions defined
by the syllables in the utterance [1]. We have found this system
to be the best performing of all our high-level systems on thelast
two speaker recognition evaluations (SRE) organized by NIST ev-
ery year. Furthermore, the system gives significant improvements
when combined with state-of-the-art cepstral-based systems like the
GMM-UBM and MLLR-SVM [2].

Recently, SVMs have been found to be a very effective method
for modeling feature vectors for speaker recognition [3] [4], in
particular in cases where the feature vectors are high-dimensional
and/or sparse. When using SVMs for modeling, a major concern
is to find a transformation of the feature vectors that results in good
discrimination between the two classes (impostors versus true speak-
ers). This transformation is usually realized through the use of ker-
nel functions, as in [4] and [5]. In this work we present and compare
different methods (which can be thought of as highly non linear ker-
nel functions) for turning SNERFs into a representation that can be
successfully modeled using SVMs.

Since much of the information about the speaker identity is con-
veyed on the way the features develop over time, our proposedrep-
resentation focuses on the modeling of time sequences of these fea-
tures along with their individual distributions. Furthermore, prosodic
features present particular challenges in that their distributions can

be continuous, discrete or mixed and that they can be undefined. The
methods introduced in this paper are capable of modeling features
with these characteristics and can be applied to any binary classifi-
cation task in which features of this nature are used.

The remainder of this paper is organized as follows: Section2
briefly describes the features, Section 3 introduces the transforma-
tions proposed in this paper, Section 4 presents the experiments and
results, and Section 5 gives the conclusions.

2. PROSODIC FEATURES

The features used in this work are described in detail in [1].Briefly,
a feature vector is obtained for each syllable in the utterance. Syl-
lables are obtained automatically from the recognition alignments.
For each syllable we extract a large number of features related to the
duration, pitch, and energy of the syllable. Currently, thedimension
of the feature vector is 140. An important characteristic ofthese fea-
tures is that they may be undefined. For example, all pitch features
are undefined when no pitch was found during a syllable. This makes
the modeling of these features more challenging since the fact that a
feature is undefined may contain information about the speaker and
we may want to include that information in the model. Anotherchar-
acteristic that makes these features particularly hard to work with is
that they can be either discrete or continuous, or even a mix of both.
Examples of discrete features are the raw (un-normalized) duration
features which measure time in frames, as given by the recognition
alignments. These features can take only integer values from 0 to a
few tens. Examples of continuous features are the maximum value
of the median-filtered pitch over the syllable, or the average nor-
malized energy over the syllable’s nucleus. Normalized counts are
examples of mixed distribution features, where we find a peakat 0
and a continuous distribution on the positive values.

3. FEATURE DISTRIBUTION PARAMETERIZATION

To model a set of features using SVMs we may first need to define a
transformation (which in turn defines a kernel) that can convert them
into new features that can be well classified by a hyperplane.See, for
example, [4] for a brief explanation of SVMs and further references.
In speakerrecognition, we are given a set of samples from each target
speaker that we use as positive examples for the SVM training. The
negative examples are given by samples of speech from a separate
set of speakers, none of which should be included among our target
speakers.

In the following sections we describe three different ways
of transforming the set of syllable-level feature vectorsX =fx(1); x(2); :::; x(T )g into a single sample-level vectorb(X) that
will be input to the SVMs. Since we train linear kernel SVMs, the
whole process is equivalent to using a kernel given byK(X;Y ) =



b(X)tb(Y ). Each component ofX corresponds to either a syllable
or a pause. We call each of these components a slott. If the slot
corresponds to a syllable,x(t) contains the vector of prosodic fea-
turesf (t) for that syllable; if it corresponds to a pause,x(t) contains
the pause lengthp(t). The overall idea is to make a representation
of the distribution of the features and then use the parameters of that
representation to form the vectorb(X). In all cases we consider
each prosodic feature separately, generating models for the distri-
bution of the features in all syllables and also for the distribution
of the features in two and three consecutive syllables (we call these
unigrams, bigrams and trigrams, respectively). This allows us to
model change in the features over time. Furthermore, we create sep-
arate models for sequences including pauses in different positions of
the sequence. For each N-gram length, each feature and each pat-
tern of pause/non-pause we obtain a separate model. For example,
for trigrams we obtain five different models:(S; S; S), (P;S; S),(S;P; S), (S;S; P ), (P;S;P ) for each feature. Each pairffeature,
patterng determines what we will call atoken. The parameters corre-
sponding to all tokens are concatenated to obtainb(X). The follow-
ing sections describe three different parameterizations of the token
distributions.

Prior to SVM training and testing, the components of the vectorb(X) need to be normalized to equalize their dynamic ranges. To
this end, we apply rank normalization, replacing each feature value
by its rank on a held-out set of samples, and then scaling the ranks to
a value between 0 and 1. We have found this normalization method
to be consistently better than variance normalization across several
different feature types.

3.1. Hard bins

Our first approach for parameterizing these distributions was to sim-
ply discretize each feature separately and then count the number of
times each feature fell in each bin during the utterance [1].Since we
do not know a priori where to place thresholds for binning thedata,
we discretize evenly on the rank distribution of values for the partic-
ular feature, so that resulting bins contain roughly equal amounts of
data. When this is not possible, as in the case of discrete features, we
allow unequal mass bins. For pauses we use one set of hand-chosen
threshold values (60, 150, and 300 ms) to divide them into four dif-
ferent lengths. In this approach undefined value are simply grouped
into a separate bin. The bins for bigrams and trigrams are obtained
by concatenating the bins for each feature in the sequence. This re-
sults in a grid and the features are simply the counts corresponding
to each bin in the grid. In all cases the counts are normalizedby the
total number of syllables in the sample. Many of the bins obtained by
simple concatenation will correspond to places in the feature space
where very few samples ever fall. The vectorb(X) is then com-
posed only of the counts corresponding to bins for which the count
was higher than a certain threshold in some held-out data.

This approach has a few weaknesses. First, the method gener-
ates inherently noisy features since small variations in the raw value
of the feature may result in the feature falling in two different bins.
In our experiments this effect is compensated for in part by the use
of two versions of binnings for each N-gram length, one with lower
resolution than the other. Second, since the bins for bigrams and
trigrams are obtained by simple concatenation of the bins for uni-
grams, we have no guarantee that we are covering the feature space
in any optimal way. Finally, the algorithm to compute the binthresh-
olds requires heuristics to deal with the continuous/discrete nature of
these features. This, along with the need for pruning the list of pos-
sible bins to get rid of the unfrequent ones, makes the approach very
inelegant. The next two approaches aim to deal with these problems.

3.2. GMM soft bins using EM

The main idea behind this method is to model each token with a
Gaussian Mixture Model (GMM) and use the weights of the gaus-
sians to form the vectorb(X). The procedure is as follows: A GMM
is trained using the EM algorithm (initialized using the VQ algo-
rithm described in Section 3.3 to ensure a good starting point) for
each token using the pooled data from a few thousand speakers. The
vectors used to train the GMM for a token corresponding to featurefj and patternQ = (q0; :::qN�1) (whereqi is eitherP for pause, orS for syllable) are of the formY (t)j = (y(t)j;0; :::y(t)j;N�1) wheret is
the slot index (from 1 to T) andy(t)j;k = 8><>: log(p(t+k)) if qk = Pf (t+k)j if k = 0 or qk�1 = Pf (t+k)j � f (t+k�1)j otherwise,

(1)

wherep(t) is the length of the pause at slott andf (t)j is the value of
prosodic featurefj at slott. The logarithm is used to reflect the fact
that the influence of the length of the pause decreases as the length
increases. In this approach the undefined values are treatedexactly
as in Method 2 in [6], i.e., a bootstrap model is first trained using
only vectors for which all features are defined, then the parameters
are reestimated using all data (except vectors that are completely un-
defined). See [6] for details on the implementation. Discrete features
are treated in the same way as continuous ones, with the only precau-
tion that variances that become too small are clipped to a minimum
value. This seems to work reasonably well except for cases inwhich
the distribution has one single value much more likely than others. In
this case EM tends to accumulate most gaussians on the same value,
leaving the least likely values unattended.

Once the background GMMs for each token have been trained,
the features for each test and train sample are obtained by maximum
a posteriori (MAP) adaptation of the GMM weights to the sample’s
data. The adapted weights are simply the posterior probabilities of
the Gaussians given the feature vector, averaged over all syllables
in the utterance. The adapted weights for all tokens are finally con-
catenated to formb(X). A simple smoothing procedure where the
adapted weight is obtained as a convex combination of the weight in
the original GMM and the average of the posteriors for the utterance
was tried but did not show a consistent improvement across different
databases and conditions.

For the unidimensionalcase (unigrams), the procedure described
is closely related to the hard bin method described above with the
bins replaced by gaussians and the counts by posteriors. Forlonger
N-grams, there is a bigger difference: the soft bins represented by
the gaussians are obtained by looking at the joint distribution from
all dimensions, while in the previous method, the bins were obtained
as a concatenation of the bins for the unigrams.

This method is similar to the one presented in [5] in that a GMM
is trained (using the EM algorithm) on data from many different
speakers and MAP adapted to each speaker’s data. The two main
differences between the two methods are, first, that in our case there
is not a single background GMM model, but rather one per token,
second, that we use the weights as parameters rather than themeans
and variances. This approach was chosen as a natural transition from
the hard-bins approach. We believe that for this kind of features,
which are sparser than cepstral features and higher dimensional, the
single background GMM may not be a good approach since there
would not be enough samples in the speaker’s data to perform the
adaptation to such a high-dimensional model (unless the number of
gaussians is very small, in which case the power of the model may
be restricted).



3.3. GMM soft bins using VQ

The GMMs obtained using EM are designed to maximize the like-
lihood of the data given the model. The result is usually a model
where the gaussians overlap each other in order to approximate the
actual distribution of the data as well as possible. This, inturn, re-
sults in features (weights corresponding to those gaussians) that are
highly correlated with each other and that may have limited power
to discriminate between small changes in small regions of the space.
Furthermore, as mentioned before, the models resulting from EM
when discrete values are involved are less than ideal. To overcome
these problems, we decided to look into vector quantization(VQ) as
a different approach for training the background GMMs. The vec-
tors used in this approach are defined as in the previous method, by
Equation 1, and the final features for each sample are obtained by
doing MAP adaptation of the background GMMs to the sample’s
data, also as above.

A variation of the LBG algorithm is used to create the mod-
els [7]. Initially, the Lloyd algorithm is used to create twoclus-
ters. The cluster with higher total distortion is then further split
in two by perturbing the mean of the original cluster by a small
amount. These clusters are used as a starting point for running
a few iterations of the Lloyd algorithm. The algorithm continues
splitting one cluster at a time until the desired number of clusters is
reached. During every step the distortion used is weighted squares,
i.e., d(x;y) = P (xi � yi)2=vi, wherevi is the global variance of
the data in the dimensioni. When an undefined feature is present, the
term corresponding to that dimension is simply ignored in the com-
putation of the distortion. If at any step a cluster is created that has
too few samples, this cluster is destroyed and a cluster withhigh total
distortion is split in two. Once the final set of clusters is obtained, a
GMM is created by assigning one gaussian to each cluster withmean
and variance determined by the data in the cluster and weightgiven
by the proportion of samples in that cluster. This approach naturally
deals with discrete values resulting in clusters with a single discrete
value when necessary. The variances for these clusters are set to a
minimum when converting the codebook to a GMM. Figure 1 shows
a comparison of the gaussians obtained using EM and VQ for the
same feature. Intuitively, it seems that the model obtainedwith VQ
should be able to describe more of the details in the distribution, but
it would also be more sensitive to sparse data, since each weight cor-
responds to a smaller range in the feature space. As we will see in
the next sections the results seem to support this intuition.

4. EXPERIMENTS

Experiments were conducted using data from the NIST SRE from
2005 and 2006. Each speaker verification trial consists of a test sam-
ple and a speakermodel. The test samples are one side of a telephone
conversation with approximately 2.5 minutes of speech. We consider
the 1-side and 8-side training conditions in which we are given 1 or 8
conversation sides to train the speaker model. Each of theseconver-
sations corresponds to one positive example when training the SVM
model for the speaker. The data used as negative examples forthe
SVM training is taken from 2003 and 2004 NIST evaluations along
with some FISHER data, resulting in a total of 2122 conversation
sides. These same samples are used to compute the distribution of
each feature to perform the rank-normalization. The SRE2005 and
SRE2006 tasks contain 25,887 and 24,004 trials for the 1-side train-
ing condition and 17,216 and 15,105 trials for the 8-side training
condition. The average number of syllables per conversation side is
around 600. Trials involving a test or train conversation side with

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

EM soft bins

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 VQ soft bins

Fig. 1. Comparison of gaussians generated by EM and VQ

fewer than 60 syllables where removed from the original listpre-
pared by NIST resulting on the number of trials mentioned above.

The syllable-level features for each test and train conversation
sides (positive and negative examples) are transformed into conver-
sation side-level vectors using the three methods described above.
The data used to obtain the equal mass bins in the first method and to
obtain the background models for the tokens in the other two meth-
ods was drawn from data from the 2003 and 2004 NIST evaluations
along with some FISHER data, yielding a total of 2456 conversa-
tion sides from 1228 unique speakers (2 sides per speaker) with little
overlap with the negative example data.

Figure 2 shows a comparison of results for the three methods
on SRE2005 data for both training conditions for four different sys-
tems: three that use unigrams, bigrams, and trigrams only and one
that uses all three sets. The performance measure presentedin Figure
2 is equal error rate (EER), the false acceptance rate obtained when
the score threshold is tuned to achieve an equal number of false ac-
ceptances and false rejections. Parameters were chosen so that all
three methods result in approximately the same number of features
for each system: 11,000 for unigrams, 13,000 for bigrams, 14,000
for trigrams, and 38,000 for the complete system.

In the case of hard bins this number of features is reached by us-
ing the most frequent bins from two different resolutions, afiner one
(of 72, 16 and 8 for unigrams, bigrams and trigrams) and a coarser
one of approximately 1/4th the resolution of the finer one. For both
soft bin methods, the number of components of each GMM is de-
termined asNg = NsS whereNs is the average number of samples
per conversation side available for training the model andS is a tun-
able parameter. For the EM method, setting S=6.4 in the formula
for Ng results in approximately the right number of features for all
N-gram lengths. For the VQ method, two resolutions are used,one
with S = 8 and one withS = 35 (i.e., a finer one and a coarser
one of around 1/4th the resolution, as for the hard bins) which, af-
ter merging, result in the right number of features. For the first and
third methods, the use of a finer along with a coarser bin resolu-
tion resulted in significant gains in performance. On the other hand,
for the second method a single fine resolution proved to be thebest
choice. This is reasonable given that EM results in gaussians that
usually span greater ranges of the space than either of the other two
methods, resulting in more robust features, avoiding the need for a
coarser resolution.

In Figure 2 we see that for all three systems, bigrams and tri-
grams, which model the development of the features over time, per-
form at least 20% better than the unigrams which simply modelthe
distribution of the features. The gain is bigger when more training
data is available. For all N-gram lengths and for the complete sys-
tem, both soft bin systems outperform hard bins significantly 1 ex-
cept for the case of unigrams and bigrams for 8-side training, where

1Significance is determined with a McNemar test at level 0.05
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Fig. 2. EER results for the three methods on SRE2005 data 1-side
training (left) and 8-side training (right) for four different systems:
using unigrams, bigrams and trigrams only and using all three sets.

EM is not significantly better than hard bins and for the case of uni-
grams with 1-side training, where EM is significantly worse than the
other two methods. When comparing both soft bin approaches we
see that VQ features are significantly better than EM features for the
unigram case on both training conditions. In all other cases, VQ and
EM are not significantly different except for the case of trigrams on
1-side training condition where EM is significantly better than VQ.
Our interpretation of these results is that EM features cannot cap-
ture the small differences between speakers as well as the other two
sets of features where there is no or little overlap between the bins,
allowing for faster adaptation to the speaker’s distribution. When
more data is available, this effect is diminished. Furthermore, the
better treatment of discrete values gives an advantage to VQfea-
tures. Both effects are balanced out by the robustness of theEM
features for higher dimensions and/or less training data.

SRE2006 was used as test set since all development was per-
formed on SRE2005 data. Table 1 shows results on this database for
each of the three SNERF systems alone (using the complete systems
with the three N-gram lengths included) and in combination with a
state-of-the-art MLLR-SVM system [8]. This system was chosen for
combination since it is currently the best of our three cepstral-based
systems. T-Norm is applied on the MLLR system, but not on the
SNERF systems. The table shows minimum detection cost function
(DCF) values along with EER. DCF is the main criterion in the NIST
SRE and is defined as the Bayesian risk withPtarget=0.01,Cfa=1,
andCmiss=10. The combination was performed using a single layer
neural network trained on SRE05 data.

Results on SRE06 maintain the improvement when soft bins are
used as opposed to hard bins, although the differences in EERin
8-side training are not significant. As noticed before, the VQ soft
bins seem to lead to less robust features than the EM soft bins, mak-
ing EM a better choice for SRE06 data which has been repeatedly
shown to be considerably different from SRE05 and SRE04 data.
When combining the EM SNERF system with the MLLR system we
see significant improvements in the EER of 8% for 1-side training
and 19% for 8-side training. Furthermore, these results aresignifi-
cantly better than the ones obtained when combining with thehard
bin SNERF system.

5. CONCLUSIONS

We have presented three approaches to the problem of transforming
a set of prosodic features into a single sample-level vectorthat can

1-side 8-sides
System EER DCF EER DCF

Hard bins SNERFs 14.19 0.6087 5.19 0.2572
VQ soft bins SNERFs 13.17 0.5732 4.91 0.2285
EM soft bins SNERFs 12.30 0.5538 4.85 0.2247

MLLR only 4.59 0.2125 2.05 0.0828
EM SNERFs + MLLR 4.21 0.1953 1.65 0.0718

Table 1. Results on SRE06 for the three different SNERF systems
alone and for the best of them (EM SNERFs) in combination with
the MLLR system.

be input to an SVM, for high-performance speaker recognition. The
transformations model both individual feature distributions and the
pattern of feature values over time. The methods proposed inthis pa-
per can potentially be applied in any binary classification task where
features with mixed continuous, discrete and undefined values are
used.

Results show clearly that the two methods that use a soft repre-
sentation of the feature bins, in the form of a GMM, outperform the
simpler method that uses hard bins. Furthermore, training the GMM
with the VQ algorithm gives a clear advantage for feature vectors
of dimension one, while for higher dimensions, both methodsper-
form similarly. When the resulting prosodic system employing EM
is combined with our best-performing baseline acoustic system (an
MLLR system), the result is an 8% EER reduction over the MLLR
system alone for the 1-side training condition and a 19% EER reduc-
tion for 8-side training.
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