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ABSTRACT

Multiple recent studies have shown that speaker recogrto-
formance using frame-based cepstral features is improyedithing
higher-level information, including prosodic and lexidahtures.
This paper explores the important question of finding a goerd k
nel for a system that models syllable-based prosodic festusing
support vector machines (SVMs). The system has been thepdest
forming of our high-level systems in the last two NIST evdioias,
and gives significant improvements when combined with capst
based systems. We introduce two new methods for transfgrthia
syllable-level features into a single high-dimensionaiteethat can
be well modeled by SVMs, resulting in significant gains inaer
recognition performance.

Index Terms— Speaker recognition, Prosody, GMM, SVM

1. INTRODUCTION

We consider the task of text-independent speaker verificatie.,

be continuous, discrete or mixed and that they can be undefiine
methods introduced in this paper are capable of modelinmfes
with these characteristics and can be applied to any birlasgii-
cation task in which features of this nature are used.

The remainder of this paper is organized as follows: Se&ion
briefly describes the features, Section 3 introduces thesfivama-
tions proposed in this paper, Section 4 presents the expetinand
results, and Section 5 gives the conclusions.

2. PROSODIC FEATURES

The features used in this work are described in detail inBtipfly,

a feature vector is obtained for each syllable in the utezarSyl-
lables are obtained automatically from the recognitiogratients.
For each syllable we extract a large number of featurese:atthe
duration, pitch, and energy of the syllable. Currently,diraension
of the feature vector is 140. An important characteristithete fea-
tures is that they may be undefined. For example, all pitctufea
are undefined when no pitch was found during a syllable. Thisas

given a sample from a speaker and a claimed identity we need thhe modeling of these features more challenging since ttgffat a

decide whether the claim is true or false. In the last few year

feature is undefined may contain information about the spreakd

common approach to speaker verification has been to comifine dwe may want to include that information in the model. Anotttesr-

ferent knowledge sources by modeling them separately, congb
them at the score level to produce the final score that is thtesh-
olded to obtain a decision. In this paper we focus on a higatle
system, which we call SNERFs, a special case of Non-Unifoxrm E
traction Region Features (NERFs) with extraction regioefned
by the syllables in the utterance [1]. We have found this esyst
to be the best performing of all our high-level systems onlése
two speaker recognition evaluations (SRE) organized byTNd%-
ery year. Furthermore, the system gives significant imprams
when combined with state-of-the-art cepstral-based sysli&e the
GMM-UBM and MLLR-SVM [2].

acteristic that makes these features particularly hardotd with is
that they can be either discrete or continuous, or even a fhiinth.
Examples of discrete features are the raw (un-normalizedjtidon
features which measure time in frames, as given by the rétmgn
alignments. These features can take only integer values@to a
few tens. Examples of continuous features are the maximuuoe va
of the median-filtered pitch over the syllable, or the averagr-
malized energy over the syllable’s nucleus. Normalizedht®are
examples of mixed distribution features, where we find a @gdk
and a continuous distribution on the positive values.

Recently, SVMs have been found to be a very effective method 3. FEATURE DISTRIBUTION PARAMETERIZATION

for modeling feature vectors for speaker recognition [3] [
particular in cases where the feature vectors are high+tsinaal

To model a set of features using SVMs we may first need to define a

and/or sparse. When using SVMs for modeling, a major concertransformation (which in turn defines a kernel) that can eorthem

is to find a transformation of the feature vectors that rednlgood
discrimination between the two classes (impostors versaspeak-
ers). This transformation is usually realized through tee of ker-

nel functions, as in [4] and [5]. In this work we present anthpare
different methods (which can be thought of as highly nordirieer-

nel functions) for turning SNERFs into a representation taa be
successfully modeled using SVMs.

Since much of the information about the speaker identitpis c
veyed on the way the features develop over time, our propesed
resentation focuses on the modeling of time sequencessé fha-
tures along with their individual distributions. Furthesra, prosodic
features present particular challenges in that theiridigtons can

into new features that can be well classified by a hyperplaee, for
example, [4] for a brief explanation of SVMs and further refeces.

In speakerrecognition, we are given a set of samples froimtaaget
speaker that we use as positive examples for the SVM traiffihg
negative examples are given by samples of speech from aasepar
set of speakers, none of which should be included among metta
speakers.

In the following sections we describe three different ways
of transforming the set of syllable-level feature vectofs
{2 2T} into a single sample-level vectdf X ) that
will be input to the SVMs. Since we train linear kernel SVMset
whole process is equivalent to using a kernel giveriiyX, Y) =



b(X)"b(Y). Each component ok corresponds to either a syllable
or a pause. We call each of these components at sltitthe slot
corresponds to a syllable{") contains the vector of prosodic fea-
turesf(*) for that syllable; if it corresponds to a paus€; contains

3.2. GMM soft bins using EM

The main idea behind this method is to model each token with a
Gaussian Mixture Model (GMM) and use the weights of the gaus-

the pause lengtp). The overall idea is to make a representationSians to form the vectdi(.X'). The procedure s as follows: A GMM

of the distribution of the features and then use the paraseté¢hat
representation to form the vectofX ). In all cases we consider
each prosodic feature separately, generating models éodigtri-
bution of the features in all syllables and also for the istion
of the features in two and three consecutive syllables (Wehese
unigrams, bigrams and trigrams, respectively). This alas to
model change in the features over time. Furthermore, weesegp-
arate models for sequencesincluding pauses in differesitiqus of

the sequence. For each N-gram length, each feature and atch p
tern of pause/non-pause we obtain a separate model. Fopéxam

for trigrams we obtain five different model$s, 5, S), (P, S, 5),
(S, P,5), (5,8, P), (P, S, P) for each feature. Each pdffeature,
patterr} determines what we will callmken The parameters corre-
sponding to all tokens are concatenated to olitak). The follow-
ing sections describe three different parameterizatiéniseotoken
distributions.

Prior to SVM training and testing, the components of the eect
b(X)
this end, we apply rank normalization, replacing each feavalue
by its rank on a held-out set of samples, and then scalingthiesito
a value between 0 and 1. We have found this normalizationadeth
to be consistently better than variance normalization scseveral
different feature types.

3.1. Hard bins

Our first approach for parameterizing these distributioas t® sim-
ply discretize each feature separately and then count thdeuof
times each feature fell in each bin during the utteranceSijce we
do not know a priori where to place thresholds for binningdaéa,
we discretize evenly on the rank distribution of values ffiar partic-
ular feature, so that resulting bins contain roughly eqoadants of
data. When this is not possible, as in the case of discretigréea we

is trained using the EM algorithm (initialized using the V@&
rithm described in Section 3.3 to ensure a good startingtpfon
each token using the pooled data from a few thousand speditexrs
vectors used to train the GMM for a token corresponding ttuiea
f; and patterr@ = (qo, ...qn—1) (Whereg; is eitherP for pause, or
S for syllable) are of the forn¥( " = (33, ...4\) _,) wheret is
the slot index (from 1 to T) and

log(p(t‘i'k)) if gp =P
s =3 £ th=00rgoi=P (D)
£iHR — pHE= otherwise,

wherep(") is the length of the pause at skoandfj(t) is the value of
prosodic featurg; at slot¢. The logarithm is used to reflect the fact
that the influence of the length of the pause decreases asrythl
increases. In this approach the undefined values are trertedy
as in Method 2 in [6], i.e., a bootstrap model is first trainethg

need to be normalized to equalize their dynamic ranges 18nly vectors for which all features are defined, then the ipatars

are reestimated using all data (except vectors that areletehpun-
defined). See [6] for details on the implementation. Discfeatures
are treated in the same way as continuous ones, with the cedgp-
tion that variances that become too small are clipped to &mim
value. This seems to work reasonably well except for casekich
the distribution has one single value much more likely ththers. In
this case EM tends to accumulate most gaussians on the same va
leaving the least likely values unattended.

Once the background GMMs for each token have been trained,
the features for each test and train sample are obtained kiymm
a posteriori (MAP) adaptation of the GMM weights to the sasigl
data. The adapted weights are simply the posterior prabebibf
the Gaussians given the feature vector, averaged overl@bgs
in the utterance. The adapted weights for all tokens ardyinah-
catenated to fornd(X'). A simple smoothing procedure where the

allow unequal mass bins. For pauses we use one set of hasdrtho adapted weight is obtained as a convex combination of thghwei

threshold values (60, 150, and 300 ms) to divide them into difu
ferent lengths. In this approach undefined value are simplyped
into a separate bin. The bins for bigrams and trigrams areircdd
by concatenating the bins for each feature in the sequerids r&-
sults in a grid and the features are simply the counts caoretipg
to each bin in the grid. In all cases the counts are normalizetie
total number of syllables in the sample. Many of the binsiolehby
simple concatenation will correspond to places in the feaspace
where very few samples ever fall. The vectd) is then com-
posed only of the counts corresponding to bins for which thent
was higher than a certain threshold in some held-out data.

the original GMM and the average of the posteriors for theratice
was tried but did not show a consistentimprovement acrdfesett
databases and conditions.

For the unidimensional case (unigrams), the procedureitiesic
is closely related to the hard bin method described above thi
bins replaced by gaussians and the counts by posteriordorkger
N-grams, there is a bigger difference: the soft bins represkby
the gaussians are obtained by looking at the joint disiobufrom
all dimensions, while in the previous method, the bins wétained
as a concatenation of the bins for the unigrams.

This method is similar to the one presented in [5] in thata GMM

This approach has a few weaknesses. First, the method genés-trained (using the EM algorithm) on data from many differe

ates inherently noisy features since small variationsér#w value
of the feature may result in the feature falling in two diéfat bins.
In our experiments this effect is compensated for in partigyuse
of two versions of binnings for each N-gram length, one watlver
resolution than the other. Second, since the bins for bigrand
trigrams are obtained by simple concatenation of the binsifio-
grams, we have no guarantee that we are covering the fegtace s
in any optimal way. Finally, the algorithm to compute the thiresh-
olds requires heuristics to deal with the continuous/eismature of
these features. This, along with the need for pruning thefipos-
sible bins to get rid of the unfrequent ones, makes the appreery
inelegant. The next two approaches aim to deal with theddemnts.

speakers and MAP adapted to each speaker’s data. The two main
differences between the two methods are, first, that in ose teere

is not a single background GMM model, but rather one per tpken
second, that we use the weights as parameters rather tharetres

and variances. This approach was chosen as a naturalitrarigim

the hard-bins approach. We believe that for this kind ofufess,
which are sparser than cepstral features and higher dioreaisthe
single background GMM may not be a good approach since there
would not be enough samples in the speaker’s data to perfoem t
adaptation to such a high-dimensional model (unless thebeuof
gaussians is very small, in which case the power of the modgl m
be restricted).



3.3. GMM soft bins using VQ

EM soft bins 2r VQ soft bins

0.5F 1.81

The GMMs obtained using EM are designed to maximize the like- 16f

lihood of the data given the model. The result is usually a @hod
where the gaussians overlap each other in order to appreitmea
actual distribution of the data as well as possible. Thiguin, re-
sults in features (weights corresponding to those gaussihat are
highly correlated with each other and that may have limited/gr
to discriminate between small changes in small regionseo$pace.
Furthermore, as mentioned before, the models resulting
when discrete values are involved are less than ideal. Tiwore
these problems, we decided to look into vector quantizgi@p) as
a different approach for training the background GMMs. The-v
tors used in this approach are defined as in the previous ahatlyo
Equation 1, and the final features for each sample are olottdine

doing MAP adaptation of the background GMMs to the sample’s . The sy_II_abIe-IeveI fea_tures for each test and train comfens
data. also as above. sides (positive and negative examples) are transformectorver-

- . . sation side-level vectors using the three methods destdbeve.

A variation of the LBG a'gof'thm IS used to create the mod-rpg yata used to obtain the equal mass bins in the first metitbiha
els [7]. Initially, the_Lon_d algorithm s us_ed to create tw:dus_- obtain the background models for the tokens in the other tethm
ters. The cluster with higher total distortion is then fenttsplit ¢ \ya5 drawn from data from the 2003 and 2004 NIST evalugtion
in two by perturbing the mean of the original cluster by a Smal 55, yith some FISHER data, yielding a total of 2456 cormers

amount. These clusters are used as a starting point formgnni i, siges from 1228 unique speakers (2 sides per speakbrjitié

a few iterations of the Lloyd algorithm. The algorithm contées overlap with the negative example data

splitting one cluster at a time until the desired number oftrs is Figure 2 shows a comparison of résults for the three methods
_reac;ed. Dgrlng eyery ste2p the dr:stonlp_n ;Jhsedllsbwlelgrqadrses,f on SRE2005 data for both training conditions for four diffet sys-
Le.,d(z,y) = ) (i —y:)"/vi, wherev, is the global variance of oo ihree that use unigrams, bigrams, and trigrams omlyoar
the data in the dimensianWhen an undefined feature is present, thethalt uses all three sets. The performance measure pregeFitgdre
term corresponding to that dimension is simply ignored &dom- 2 is equal error rate (EER), the false acceptance rate @utavhen
putation of the distortion. If at any step a cluster is crddktat has the score threshold is tune’d to achieve an equal numbersef &at-
too few samples, this clusteris destroyed and a clusterhgthtotal ceptances and false rejections. Parameters were choskatsalt
distortion is split in two. Once the final set of clusters isaibed, a three methods result in approximately the same number tires
GMM is created by assigning one gaussian to each clustemétm for each system: 11,000 for unigrams, 13,000 for bigrams)Qo+
and variance determined by the data in the cluster and wegigén for trigrams, and 38 600 for the comple’te s;/stem

by the p_ropo_rtion of samples in t_hat _cluster. This_appro_aﬂ_brally In the cz;lse of ha’lrd bins this number of features is reached-by u
deals with discrete values resultl_ng in clusters with alsiigscrete ing the most frequent bins from two different resolutionginar one
value when necessary. The variances for these clusteretie & 5(°f 72. 16 and 8 for unigrams, bigrams and trigrams) and ar

minimum when converting the codebook to a GMM. Figure 1 show: - ; :
a comparison of the gaussians obtained using EM and VQ for nane of approximately 1/4th the resolution of the finer one. lfath

same feature. Intuitively, it seems that the model obtaimigt VQ Soft bin methods, the number of components of each GMM is de-
. s H _ Ng H
should be able to describe more of the details in the digtobubut termined asv, = whereX, is the average number of samples

S
; o . . er conversation side available for training the model iigla tun-
it would also be more sensitive to sparse data, since eagfnier- p 9
responds to a smaller range in the feature space. As we wilinse

able parameter. For the EM method, setting S=6.4 in the farmu
the next sections the results seem to support this intuition
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Fig. 1. Comparison of gaussians generated by EM and VQ

fewer than 60 syllables where removed from the original pist-
pared by NIST resulting on the number of trials mentionedrabo

for N4 results in approximately the right number of features fér al
N-gram lengths. For the VQ method, two resolutions are used,
with S = 8 and one withS = 35 (i.e., a finer one and a coarser
one of around 1/4th the resolution, as for the hard bins) had-
ter merging, result in the right number of features. For tret find
Experiments were conducted using data from the NIST SRE fronthird methods, the use of a finer along with a coarser bin vesol

4. EXPERIMENTS

2005 and 2006. Each speaker verification trial consistsedtesam-
ple and a speakermodel. The test samples are one side gfladate
conversation with approximately 2.5 minutes of speech. tsider
the 1-side and 8-side training conditions in which we aregi or 8
conversation sides to train the speaker model. Each of theser-
sations corresponds to one positive example when traihe&vVM
model for the speaker. The data used as negative examplésefor
SVM training is taken from 2003 and 2004 NIST evaluationsiglo
with some FISHER data, resulting in a total of 2122 convérgat
sides. These same samples are used to compute the distribfiti
each feature to perform the rank-normalization. The SRE20@
SRE2006 tasks contain 25,887 and 24,004 trials for the é tsadh-
ing condition and 17,216 and 15,105 trials for the 8-sidaiing
condition. The average number of syllables per convensaiite is
around 600. Trials involving a test or train conversatiatesivith

tion resulted in significant gains in performance. On thepttand,
for the second method a single fine resolution proved to bédise
choice. This is reasonable given that EM results in gausdtzet
usually span greater ranges of the space than either ofllee oo
methods, resulting in more robust features, avoiding theelrier a
coarser resolution.

In Figure 2 we see that for all three systems, bigrams and tri-
grams, which model the development of the features over, fiae
form at least 20% better than the unigrams which simply mtidel
distribution of the features. The gain is bigger when moaéing
data is available. For all N-gram lengths and for the conepdgts-
tem, both soft bin systems outperform hard bins signifigahéx-
cept for the case of unigrams and bigrams for 8-side trajnirtgre

1Significance is determined with a McNemar test at level 0.05
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Fig. 2. EER results for the three methods on SRE2005 data 1-sid%

training (left) and 8-side training (right) for four diffent systems:
using unigrams, bigrams and trigrams only and using aletsegs.

EM is not significantly better than hard bins and for the cdsené
grams with 1-side training, where EM is significantly worser the

1-side 8-sides
System EER | DCF | EER| DCF
Hard bins SNERFs 14.19 | 0.6087| 5.19 | 0.2572
VQ soft bins SNERFs 13.17| 0.5732| 4.91 | 0.2285
EM soft bins SNERFs 12.30 | 0.5538| 4.85 | 0.2247
MLLR only 459 | 0.2125| 2.05 | 0.0828
EM SNERFs + MLLR 4,21 | 0.1953| 1.65 | 0.0718

Table 1. Results on SREOQ6 for the three different SNERF systems

alone and for the best of them (EM SNERFsS) in combination with
the MLLR system.

be input to an SVM, for high-performance speaker recogmitiche
transformations model both individual feature distribng and the
pattern of feature values over time. The methods proposhésipa-
er can potentially be applied in any binary classificatasktwhere
atures with mixed continuous, discrete and undefinedegafue
used.

Results show clearly that the two methods that use a so#+epr
sentation of the feature bins, in the form of a GMM, outparfdhe
simpler method that uses hard bins. Furthermore, traitiagtViM

other two methods. When comparing both soft bin approaciees wwith the VQ algorithm gives a clear advantage for featuretarsc

see that VQ features are significantly better than EM featimethe

unigram case on both training conditions. In all other cAg&sand

EM are not significantly different except for the case ofraigs on
1-side training condition where EM is significantly bettean VQ.

Our interpretation of these results is that EM features oainap-

ture the small differences between speakers as well asliee wto

sets of features where there is no or little overlap betwkerbins,

allowing for faster adaptation to the speaker’s distrimuti When

more data is available, this effect is diminished. Furthmenthe

better treatment of discrete values gives an advantage tde¥€
tures. Both effects are balanced out by the robustness dtlthe
features for higher dimensions and/or less training data.

SRE2006 was used as test set since all development was per-

formed on SRE2005 data. Table 1 shows results on this datédtras
each of the three SNERF systems alone (using the compldensys
with the three N-gram lengths included) and in combinatidth \&
state-of-the-art MLLR-SVM system [8]. This system was daofor
combination since it is currently the best of our three aapstased

systems. T-Norm is applied on the MLLR system, but not on thgzy)
SNERF systems. The table shows minimum detection costibmct

(DCF) values along with EER. DCF is the main criterion in tH&N
SRE and is defined as the Bayesian risk Wi, 4.:=0.01,Cf,=1,

andC,,;..=10. The combination was performed using a single Iaye|[3]

neural network trained on SREOQ5 data.

Results on SRE06 maintain the improvement when soft bins argy
used as opposed to hard bins, although the differences iniEER

8-side training are not significant. As noticed before, th@ $6ft
bins seem to lead to less robust features than the EM softrbals-

ing EM a better choice for SRE06 data which has been repgated|
shown to be considerably different from SRE05 and SREO4. datag]
When combining the EM SNERF system with the MLLR system we

see significant improvements in the EER of 8% for 1-side ingin
and 19% for 8-side training. Furthermore, these resultsigmafi-
cantly better than the ones obtained when combining wittére
bin SNERF system.

5. CONCLUSIONS

We have presented three approaches to the problem of tramsp
a set of prosodic features into a single sample-level vebtdrcan

of dimension one, while for higher dimensions, both methoeis
form similarly. When the resulting prosodic system emphoyiEM
is combined with our best-performing baseline acoustitesygan
MLLR system), the result is an 8% EER reduction over the MLLR
system alone for the 1-side training condition and a 19% EdtRc-
tion for 8-side training.
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