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Abstract

We have incorporated spectrotemporal features in a
speech activity detection (SAD) task for the Speech in
Noisy Environments 2 (SPINE2) data set. The features
were generated by applying 2D Gabor filters to the mel
spectrogram in order to measure the strength of various
spectral and temporal modulation frequencies in differ-
ent patches of the spectrogram. Using several different
back-ends, the Gabor features significantly outperformed
MFCCs, yielding relative reductions in equal error rate
(EER) of between 40 and 50%. Compared to the other
backends, Adaboost with tree stumps performed partic-
ularly well with Gabor features and particularly poorly
with MFCCs. An investigation into the reasons for this
disparity suggests that the most useful features for SAD
incorporate information over longer time scales.

Index Terms: spectrotemporal features, speech activity
detection

1. Introduction

One approach to developing robust features for speech
processing tasks is to model higher level representations
of audio in the human brain. Neurophysiological ex-
periments have shown that neurons in the primary audi-
tory cortex are tuned to certain types of auditory stimuli
(see [1] for related references). The stimulus that causes
a high firing rate in a particular neuron is called its spec-
trotemporal receptive field (STRF), and can be thought of
as a particular pattern in a particular patch of the spectro-
gram. The STRFs exhibit a wide variety of spectrotem-
poral characteristics and often span much longer periods
of time than the time intervals spanned by traditional fea-
tures like MFCCs. Spectrotemporal features roughly ap-
proximate this representation of audio by measuring the
strength of various temporal and spectral modulation fre-
quencies in different patches of the spectrogram. Here we
explore the use of such features in a noisy speech activity
detection task, while also comparing the relative perfor-
mance of several classification methods.

Earlier studies have also investigated spectrotempo-
ral features for speech/non-speech discrimination. Bach

et al. [2] considered the strength of temporal modula-
tions within each spectral channel, and found that the
resulting features often had better generalization prop-
erties than MFCCs in mismatched train-test conditions.
Markaki and Stylianou [3] similarly considered temporal
modulations within each spectral channel and employed
various methods to reduce the dimensionality of the fea-
ture set by minimizing redundancy and maximizing rel-
evance to the target class. The resulting feature set pro-
vided classification performance on par with MFCCs, but
yielded additional performance gain when combined to-
gether with MFCCs. It is useful to point out that filter-
ing temporal modulations within each spectral channel
has been shown to improve robustness to noise on other
speech processing tasks such as speech recognition [4, 5].
Mesgarani et al. [6] showed that a feature set that con-
siders both temporal and spectral modulation frequencies
provides robustness to additive and convolutional noise in
a speech discrimination task for 1 second long audio seg-
ments. Here we also use features that incorporate both
temporal and spectral modulation frequencies, and report
performance on a frame-level speech activity detection
task for conversations in physically noisy environments
(i.e., not adding noise digitally).

2. Experimental Setup

This section describes the experimental setup in three
parts: the data, the features, and the back-end.

2.1. Data

For these experiments we used the second Speech in
Noisy Environments (SPINE2) corpus. Related experi-
ments have used TIMIT [2] [6] and RT-03 [3]. The data
sets in [2] and [6] are generated by digitally adding noise
to clean read speech. This approach has the benefit of
being able to see how system performance degrades as
the signal-to-noise ratio decreases, as [2] methodically
shows for a variety of different noise backgrounds. The
disadvantage of this approach is that the artificially gen-
erated data is not as accurate a model of speech, as it
ignores the Lombard effect (the tendency for people to



speak with more strain and effort in noisy environments),
and also misses effects from acoustic reflections in the
room. The data set in [3] is a combination of broad-
cast news and conversational telephone speech, which in-
cludes more natural, spontaneous speech but has no ex-
plicit noise component. This paper complements pre-
vious experiments by using SPINE2, which consists of
recorded conversations between two communicators per-
forming a battleship-like task in various noisy environ-
ments. While the noise was created artificially (it was
played back in the recording rooms over speakers), Lom-
bard effects and some room acoustic phenomena should
be captured since the noise was added acoustically. The
SPINE2 training and evaluation data sets each contained
about 7 hours of audio, and both data sets were equally
split among the same 8 noise backgrounds. The back-
grounds consisted of military environments ranging from
silence to street noise to F16 jet engine noise.

2.2. Features

The features explored in this paper are taken from [7].
A general summary of how to compute the features is
as follows. (1) Compute the mel spectrogram. (2) Con-
volve the mel spectrogram with each of the desired 2-
dimensional filters. In this case, the set of desired filters
consists of 59 Gabor filters (real component only) cov-
ering a range of temporal and spectral modulation fre-
quencies. These 59 spectrotemporal filters are shown in
figure 1. Note that the size of each filter is such that it in-
cludes one and a half cycles of the modulation frequency
in both the temporal and spectral dimensions. Intuitively,
the resulting Gabor features measure how similar each
spectrotemporal filter is to different patches of the spec-
trogram. The biological analogy of this step is a neuron
that fires if it observes a particular pattern in a region of
the spectrogram. (3) Perform critical sampling. Since
large spectrotemporal filters will yield similar outputs
when shifted by only one spectral channel, only 449 of
the possible (23 channels * 59 filters =) 1357 features are
used at each time index. As a final pre-processing step,
mean and variance normalization of the features within
each audio file was performed. For a baseline, we also
ran experiments using 39 dimensional MFCCs. These
baseline features included A and A-A components.

2.3. Classification Back-Ends

We performed frame-level SAD on the SPINE2 evalu-
ation data set using three different classification algo-
rithms. The first uses a two-state hidden Markov model,
where each state is modeled as a mixture of 256 Gaus-
sians. A Viterbi decoding pass is used to determine the
best state sequence. The receiver operation characteris-
tic (ROC) curve is generated by sweeping across a range
of transition probability values in the acoustic model for
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Figure 1: The set of 2D filters applied to the mel spec-
trogram, shown by temporal and spectral modulation fre-
quencies. Taken with permission from [7].

the speech state. SRI’s DECIPHER system was used for
this purpose. This system will be referred to as HMM-
GMM. The second back-end is a multi-layer perceptron
(MLP) with 1 hidden layer and two output nodes. The
input layer contains 4 context windows on either side of
the current frame (resulting in a total of 9*449=4041 in-
put units for Gabor features, for example), and the size
of the hidden layer is selected to ensure that there are
approximately 20 training data points per MLP param-
eter. Given the amount of training data in the SPINE2
corpus, this resulted in hidden layers containing 30 and
345 units for Gabor features and MFCCs, respectively.
The MLP output, which approximates the posterior prob-
abilities of speech and nonspeech, is given by applying a
softmax nonlinearity to the two output nodes. The speech
class probability is then compared to a threshold in order
to determine the frame-level hypothesis. This threshold
is varied in order to generate the ROC curve. The third
back-end is the Adaboost algorithm with tree stumps as
weak classifiers. Each tree stump is a single feature com-
pared to a threshold. In other words, the Adaboost classi-
fication for frame i is given by

M

F(@) = sign((Y_ am - gm(@) —t) (1)
m=1
Im(Ti) = 2+ 1(Zyj,, 2 Bm) — 1 2)

where Z; is a vector containing (say) the 449 Gabor fea-
tures for frame i, M is the number of weak classifiers,
gm(Z;) and «,, are the prediction and weight of the
m*" classifier, and t is the global threshold that sweeps
the ROC curve. In equation (2), j,, and (,, specify
the index of the feature and the threshold for the m®"
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Figure 2: ROC curves for all experiments. The three up-
per curves (green) correspond to MFCCs, while the three
lower curves (blue) correspond to Gabor features.

classifier, respectively. At each iteration in the training
phase, aum, jm» Bm, and the direction of the inequality in
(2) is selected to minimize the exponential loss function
L(y, f(Z)) = e~ ¥/ over the training set. M is selected
to minimize exponential loss on a separate validation set.
For the Adaboost algorithm, small subsets of 20k and 5k
randomly selected frames from the SPINE2 training data
set were used as training and validation sets, respectively.

3. Results

With two different features (MFCCs and Gabor features)
and three different back-ends, the results can be summa-
rized by the corresponding six ROC curves, which are
shown in figure 2. There are two important aspects of the
results to point out.

First, the Gabor features significantly outperform the
MFCCs under all back-end configurations. Without even
considering the type of back-end, we can see that the Ga-
bor features (three lower curves) outperform the MFCCs
(three upper curves) over the range of operating regions
between 2 and 15 percent miss detect or false alarm. In
fact, the equal error rate (EER) of the worst back-end with
Gabor features is still better than the best back-end with
MEFCCs by an absolute 4.1%. Table 1 shows the EERs
of all back-ends for MFCCs and Gabor features, ordered
from best to worst.

Second, the Adaboost algorithm is particularly well
suited for the Gabor features. Note from table 1 that Ad-
aboost is the best back-end for Gabor features. This is
notable because, in contrast, Adaboost is by far the worst

back-end for MFCC:s. It is also notable because, as men-
tioned previously, the Adaboost algorithm has a double
disadvantage — it has a much smaller training set (20K
randomly selected frames, which amounts to <1% of the
full training set), and it does not use any context frames
(as does the MLP). Yet, despite these significant disad-
vantages, the Adaboost algorithm still outperforms both
the HMM-GMM and MLP back-ends for this front end.

| Feature | Back-end | EER | Rel Impr |
MFCC | HMM-GMM | 9.9%
MFCC MLP 10.2% -3%
MFCC Adaboost 12.7% -28%
Gabor Adaboost 5.2% +47%
Gabor | HMM-GMM | 5.8% +41%
Gabor MLP 5.8% +41%

Table 1: EERs for various feature/back-end pairings. The
last column indicates relative reduction in EER compared
to the MFCC/HMM-GMM baseline.

4. Discussion

This section investigates why Adaboost performs so
poorly with MFCCs and so well with Gabor features.
Three observations help explain this phenomenon.

The first observation is that MFCCs can be consid-
ered a special case of spectrotemporal features where the
2D filters are of size nx1, where n is the total number of
spectral channels. These “skinny” filters measure spec-
tral modulation frequencies across the entire spectrum
within a single time frame. In this regard, MFCCs rep-
resent one extreme where the 2D filters are very tall and
skinny. This selection means that the resulting features
capture information along the entire spectral dimension,
but capture no information along the temporal dimen-
sion (beyond the current frame). The Gabor filters, on
the other hand, have a wide variety of sizes, containing
every combination of tall, short, fat, and skinny filters.
In particular, this means that many of the filters capture
spectral information over more localized regions of the
spectrum (rather than over the entire spectrum), and tem-
poral information over broader time intervals. Thus, we
can understand the comparison between MFCCs and Ga-
bor features as a comparison between two different sets of
spectrotemporal filters, where one set is very constrained
and the other set has much more variety.

Secondly, unlike the MLP and HMM-GMM back-
ends, the Adaboost algorithm does not incorporate any
context information. The MLP backend incorporates
context by including the features for the 4 frames be-
fore and after the current frame as units in the input layer.
The HMM-GMM incorporates context during the Viterbi
decoding by estimating the most likely state sequence,
rather than just estimating the state of a single isolated



frame. The Adaboost algorithm, however, does not in-
corporate any context information into its prediction be-
yond whatever temporal information is contained in the
features themselves. So, if the features at a given frame
do not contain sufficient temporal information to make
a reasonable prediction, we would expect the Adaboost
algorithm to perform poorly, as is indeed the case with
MFCCs. On the other hand, the Gabor features seem to
have captured sufficient temporal context to allow Ad-
aboost to make isolated predictions that are as good as
(and in this case, even better than) an estimation of the
entire state sequence using the HMM-GMM backend. In
this sense, the Gabor features allow the backend to make
predictions that are decoupled in time.

Finally, the optimal weak classifiers selected by the
Adaboost algorithm (using Gabor features) favored fea-
tures with low temporal modulation frequencies. One
measure of the importance of an input feature to Ad-
aboost is its relative influence [8], computed by consider-
ing all the tree stumps that split on that feature and sum-
ming the empirical improvement in squared error on the
training set as a result of each split. (This measure is the
same criterion used to select the feature/threshold pair at
each training iteration of Adaboost.) For our Adaboost
model, the 173 features capturing temporal modulations
of 3.9 Hz and below accounted for more than 95% of
the total relative influence of all 449 features. When we
trained an Adaboost model on this reduced subset of 173
features, we observed no decrease in system performance
(the EER remained at 5.2%). Additionally, the two fea-
tures with O spectral modulation frequency and smallest
temporal modulation frequencies (0 Hz and 2.4 Hz) dom-
inated the relative influence, contributing 68% and 11%
of the total relative influence, respectively. An Adaboost
model trained on only these 2 features yielded an EER
of 6.2%. Note that the filters with temporal modulation
frequencies of 0, 2.4, and 3.9 Hz span lengths of approx-
imately 1, .7, and .5 seconds, respectively. Because fil-
ters with low temporal modulation frequency span longer
time intervals, these results strongly suggest that the most
useful features for SAD incorporate information over
longer time scales, at least for these data.

Putting these 3 observations together, we believe that
we can explain why Adaboost performs so poorly with
MFCCs and so well with Gabor features. The Gabor fea-
ture set represents spectrotemporal filters of many sizes
and shapes. Presented with this variety of features, the
Adaboost algorithm performs well because it downplays
or ignores features that are less useful and gives more
weight to more useful features. In this case, it emphasizes
features that capture information over long time scales.
The MFCCs, on the other hand, exclusively come from
tall, skinny spectrotemporal filters — exactly the type of
features that Adaboost downplayed with Gabor features.
Given the limited range of MFCCs, the Adaboost has

poor performance despite its feature selection capability.
Because Adaboost does not otherwise incorporate con-
text, the results are especially poor.

5. Conclusion

We incorporated Gabor spectro-temporal features (de-
rived from a mel spectrogram) in a noisy speech activity
detection task. For each back-end, Gabor features sig-
nificantly outperformed MFCCs, yielding relative reduc-
tions in EER between 40 and 50%. The Gabor features
seem particularly well-suited to a simple threshold deci-
sion rule, Adaboost with tree stumps, despite using a very
small subset of the available training data for this back-
end only. Results with Adaboost models suggest that the
most useful features for SAD use information over long
time scales, on the order of .5 to 1 seconds long.
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