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ABSTRACT
Video concept detection aims to find videos that show a certain
event described as a high-level concept, e.g. “wedding ceremony"
or “changing a tire". This paper presents a theoretical framework
and experimental evidence suggesting that video concept detection
on consumer-produced videos can be performed by what we call
“percepts", which is a set of observable units with Zipfian distri-
bution. We present an unsupervised approach to extract percepts
from audio tracks, which we then use to perform experiments to
provide evidence for the validity of the proposed theoretical frame-
work using the TRECVID MED 2011 dataset. The approach sug-
gest selecting the most relevant percepts for each concept automat-
ically, thereby actually filtering, selecting and reducing the amount
of training data needed. It is show that our framework provides
a highly usable foundation for doing video retrieval on consumer-
produced content and is applicable for acoustic, visual, as well as
multimodal content analysis.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Retrieval]: Content Analysis and In-
dexing; D.2.8 [Multimedia Activity and Event Understanding]:
Metrics:complexity measures, performance measures

General Terms
Theory
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Video Concept Detection, Theory, Audio

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AMVA’12, November 2, 2012, Nara, Japan.
Copyright 2012 ACM 978-1-4503-1585-2/12/11 ...$10.00.

1. INTRODUCTION
Social network applications have transformed the Web into an

interactive sharing platform where users upload multimedia docu-
ments, comment on, and share this content with the public. This,
together with the advent of handheld recording systems carried by
people almost all the time capturing video of anywhere with the
press of a button makes the amount of consumer-produced mul-
timedia documents increase rapidly on a minute-to-minute basis.
However, all of these documents are of little value if users cannot
retrieve them easily. Therefore, higher-level search paradigms, like
video concept detection, are in increasing demand by a variety of
users.

Video concept detection aims to find videos that show a cer-
tain event described as a high-level concept, e.g. “wedding cere-
mony" or “changing a tire". In contrast to broadcast TV, movies,
songs, and other professionally-produced content, consumer-pro-
duced multimedia documents have a high variance in quality and
content and typically do not obey any particular content format.
Therefore, traditional retrieval approaches that rely on manual def-
inition of predefined object detectors such as “face” or “walking
person” mostly fail as these manual event definitions are very do-
main specific.

In contrast to surveillance videos, consumer-produced videos
usually contain video as well as audio, making it possible to treat
the video retrieval problem as a multimedia problem. Moreover,
while retrieval problems in the past often suffered the problem of
limited training data – thus the common saying “there is no data like
more data" for training – consumer-produced videos are available
in abundance, often paired with meta-data (such as geo-location or
tags) that can be used as ground truth. This allows for machine
learning algorithms to be trained with as much data as there is CPU
time and memory.

The problem, however, is that with consumer-produced media
having little to no structure, most of the data is noise, so that burn-
ing more CPU cycles might not help at all. In other words, we
are entering an era where the paradigm “there is no data like more
data" is changed to “there is no data like the right selection of data
to train on" or in the end, as we suggest in the title, “there is no data
like less data". So the major question becomes how to select the
right data, i.e. how to reduce the abundance of data to a tractable
amount of data that is maximally useful to build models for search.
Decide how to define an event by its most representative acoustics.

Using the example of video concept detection, this paper investi-

27



gates a theoretical framework for the selection of the right training
data from consumer-produced videos and presents experimental re-
sults that provide evidence for the validity of the framework based
on large dataset of consumer produced videos. Our framework uses
the notion of “percepts" which represent perceptually similar units.
We describe a set of rules for the properties of the percepts and
their mapping to concepts. Furthermore, based on both, empiri-
cal evidence as well as without loss of generality, we assumed the
precepts follow a Zipfian distribution. This allows us to define the
upper and lower bounds for the descriptiveness of the extracted per-
cepts. We then derive some real-world conclusions backed up by
experience in the community before we describe our own experi-
mental evidence based on the NIST TRECVID 2011 MED corpus.

The paper is structured as follows. Section 2 starts presenting
some related work. Section 3 then presents the theoretical frame-
work before and overview of the system in Section 4 and then draw-
ing some real-world conclusions in Section 5. Section 6 presents
the data set and experimental setup before Section 7 describes an
outline of the implementation of our system. Section 8 then con-
tinues with an analysis of the results in the scope of the framework.
Finally, Section 9 resumes with an outlook into the future.

2. RELATED WORK
Our theoretical approach generalizes from practical work already

published in the multimedia community. A good overview is pre-
sented at by [6] and [11]. Many approaches employ supervised
learning techniques in which classifiers are trained to discover dis-
tinct low-level concepts such as “indoor/outdoor" or “people laugh-
ing". The number of classifiers trained in these approaches ranges
from ten as described in [5] to 75 in an approach for video scene
segmentation described in [10].

The downside of these supervised approaches is that training
data has to be manually selected for each new low-level sound-
concept in order to train models for new application domains and
that each low-level sound category has to be anticipated by the spe-
cialists that train the system. We will comment on that further in
Section 5. This was also extensively discussed in [3]. Only very
few approaches take a more holistic perspective and use the entire
audio contents of each file [9] and [2]. These papers can be in-
terpreted as the first set of evidence that less data is actually more
data when it comes to consumer-produced content, as their main
limitation was the training on noise.

Approaches similar to our system implementation are described
in [7] and in [2] although this article provides more theoretical
grounding. The system in [7], however, is already inspired by term
frequency and inverse document frequency.

3. CONCEPTUAL FRAMEWORK

3.1 Philosophy and Terms
We start by the definition of a percept, quoted from Merriam

Webster’s dictionary.

Definition 1. Percepts: an impression of an object obtained by
use of the senses.

Since we are dealing with video concept detection, we will have
to restrict ourselves to events. An event is a complex activity oc-
curring at a specific place and time, involves people interacting
with other people and/or objects, consists of a number of human
actions, processes, and activities that are loosely or tightly orga-
nized and that have significant temporal and semantic relationships
to the overarching activity, finally it is observable by human senses.
Video concept detection is defined as the task of finding videos that

describe the same concept as a set of example videos. Concepts
are usually defined as a higher-level events, e.g. “building a shel-
ter" rather than individual objects. In the end, there seems to be no
crisp definition of a concept in the research community. Therefore,
we decided to adopt one. We found the definition by philosopher
John Locke (1632-1704) quite handy:

Definition 2. “A concept is created by abstracting, drawing away,
or removing the uncommon characteristics from several particular
individual ideas or observations. The remaining common charac-
teristic is that which is similar to all of the different individuals."

The above definition actually tells us how we get from an ob-
served event to a concept. However, philosophy even tells us more.
Immanuel Kant (1724-1804) is famously quoted with:

OBSERVATION 1. Concepts without percepts are empty; per-
cepts without concepts are blind

In other words: Observations without a mapping to a concept
are considered noise and every concept needs to have at least an
observation or it is empty. This gives us a notion of how to distin-
guish representative percepts from not so representative percepts.
Also, it means we can only work on concepts that are actually rep-
resentable.

3.2 Formalization
Let P be a set of percepts {p1, p2, ..., pn}. Let C be a set of

concepts {c1, c2, ..., cn}. According to the definitions above, we
then have a relation between the percepts and the concepts that we
call language L ⊆ P × C. We observe the following properties of
L.

• A unique tuple (pi, cj) ∈ L where only one exact pi maps
to only one exact cj is called perfect or clear mapping.

• Tuples (pi, cj) ∈ L where several pi occur together with the
same particular cj are called synonyms.

• Tuples (pi, cj) ∈ L where one particular pi occurs together
with several cj are called ambiguous or homonymous.

Percepts can be defined as empty by adding a nil concept to C.
Practical evidence suggests that we should also mention the case
where several percepts always occur together to describe the same
concept. We call this as a paraphrastic relation PR ⊆ L.

Definition 3. For a concrete c ∈ C, a model Mc ⊆ L is defined
as a function M : P → c.

We will call a model complete when all percepts ever observing a
concept are included in it. Since given a set of percepts, a model
M can map to a concept, practically, our goal is to find a model
for each concept and percept. Ideally, we want the model to have
certain properties.

3.3 Properties of Models
As of Definition 2, the perfect model is one that contains all per-

cepts common to one concept and only those. This means, we can
define the purity of two models as a purity function. For example,
the following function: purity(M1,M2) = |p∈M1|

1+|p∈M1andM2| for
all p ∈ M1 is a purity function where higher values mean higher
purity. Of course, other definitions are possible and for practical
purposes actually many distance measures are possible, such as KL
divergence or the inverse document frequency as used in [7] and
other works. Therefore, we will not strictly adhere to the defini-
tion, which only serves as an example as of how purity could be
defined most simply.
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On a given set of example videos for one concept, a very impor-
tant notion is the distribution of percepts occurring for one concept.
The easiest way to estimate it is to obtain the frequency of occur-
rence of each percept. Based on empirical evidence reported in
related work, see for example [9] or [3], we can assume that the
distribution is Zipfian. Moreover, given the loose definition of per-
cepts (see Definition 1), assuming a particular distribution can be
done without loss of generality! It means in practice, that percept
extraction methods should be performed with a certain target distri-
bution in mind and in the following we will argue that this should
be a Zipfian distribution.

Zipf’s law originally states that given a corpus of natural lan-
guage utterances, the frequency of any word is inversely propor-
tional to its rank in the frequency table. Likewise, we assume that
for a given concept, the frequency distribution of percepts is defined
by the function:

Definition 4. f(k, s,N) = 1/ks
∑N

n=1(1/n
s)

with N being the number of percepts, k their rank (sorted from
highest frequency to lowest), and s the value of the exponent char-
acterizing the distribution which for our purposes can be defined as
1. In other words, the function defines that out of N percepts, the
frequency of percepts of rank k is f(k; s,N). While the value of
f is not of practical matter given that, in practice, it’s known and
easily obtainable. However, the properties of Zipfian distributions
are well understood.

For example, the cumulative distribution function of a Zipfian
distribution is given as:

OBSERVATION 2. CDF (k, s,N) =
Hk,s

HN,s

reusing the same variables as in the previous definition and Hn,m

being the n-th generalized Harmonic Number given by Hn,m =∑n
k=1

1
km .

An immediate result of assuming a Zipfian distribution is that we
can make a quantitative statement of how much of the concept is
described by the first few n-ranked percepts under the assumption
of a complete and pure model.

The lower frequent percepts are by this definition less descrip-
tive. At the same time, the lower descriptiveness is paired with an
equal chance of being ambiguous, making them better candidates
for noise. With model purity being a goal for distinctiveness, we
therefore deduct that it is better to train models with less data but at
the same time higher descriptive power.

4. SYSTEM’S TECHNICAL OVERVIEW
We provide a description of the system which comprehends three

main stages: Diarization, Clustering, and a TFIDF Filtering that
feeds a Support Vector Machine.

4.1 Diarization
Speaker diarization systems were initially used to detect speakers

and when they were speaking. In this case, we tuned a diarization
system and used it to explore and detect the sounds that describe
the video’s content.

The first step for diarization is the Feature Extraction. The speech
signal is parametrized in frames with a window size of 30 ms and a
step size of 10 ms, computing 19 parameters, using Mel Frequency
Cepstral Coefficients MFCCs.

For the second step, usually diarization systems apply a speech
activity detection procedure to improve the detection of speech and
discard the rest of the sounds in the audio. For our algorithm we use
a speech/non-speech segmentation system that keeps the sounds,

enhancing the performance of the segmentation and clustering step
of the diarization.

For the last step is the core of the diarization, which is the seg-
mentation and clustering with a “bottom-up" agglomerative hierar-
chical clustering, which means that we start with a large number
of clusters that are gradually merged to improve some chosen met-
ric, using some stopping criterion to determine when to discontinue
merging. For this paper we used the Bayesian Information Crite-
rion. The following outline describes the diarization algorithm:

1. An initial segmentation is generated by uniformly partition-
ing the audio in same length S segments. For speaker di-
arization the number of S is bigger than the assumed number
of speakers, for example 16 for a normal meetings corpus.
For this task we tuned it with 64 initial segments due to the
diversity of sounds encountered in the TRECVIDMED 11
data. For each segment we trained a Gaussian Mixture Model
GMM using the Expectation Maximization algorithm. We
ensured a minimum duration of 200 ms to detect smaller du-
ration sounds.

2. A re-segmentation is performed running a Viterbi decoder
using the current set of GMMs to segment the audio.

3. The models of the current segmentation are re-trained.

4. Select the closest pair of clusters and merge them. This is an
iterative method and in every iteration all the possible cluster
combinations are checked computing the difference between
the sum of the BIC scores of each model and the new model
trained after merging a cluster pair. The clusters with the
largest improvement in the BIC scores are merged and the
new GMM is used. The algorithm repeats from step 2 until
there are no remaining pairs that will improve the BIC scores.

4.2 Clustering
The output of the Diariazation are GMMs representing each of

the representative “sounds" of the audio clip. The GMMs have
three parameters, weight, mean and variance. All of them are com-
bined to create simplified super vectors. The compilation of super
vectors are fed to a K-means algorithm. The parameters chosen
were previously tuned for this algorithm and are: a random seed
selection based on the input data, 10 iterations and 300 clusters.

4.3 TFIDF Filtering and SVM
Once we have our output clusters we proceed to relate them to

the diarization GMM super vectors of each audio. Each super vec-
tor corresponds to a sound identified by the diarization and it will
be represented by the closest K-means centroid. The result of this
is an abstract representation of the audio based on the 300 clusters
of the K-means. The distribution frequency of the supervectores
based on the 300 percepts resembles a Zipfian distribution which
sometimes is related to the application of TFIDF techniques. The
abstract representation for each file is a vector corresponding and
representing each of the audio for each of the concepts. Each vec-
tor has the a dimension of 300 by 1, where we show the number of
occurrences of the 300 percepts for each audio file.

The classification is done by the Support Vector Machine, in this
system we used the LIBSVM implementation from [1]. We trained
an SVM model with our compilation of the above-mentioned vec-
tors. They don’t always contain occurrences for all of the percepts.
Therefore we create sparse vectors to feed our SVM. We also used
an intersection kernel for a multi class concept classification us-
ing the concept labels E001-E005. A cross validation to tuned the
learning options was performed too.
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These vectors first go through a weighting step given by the
TFIDF numerical statistics. The Term Frequency-Inverse Docu-
ment Frequency show how important is a word to a document in
a certain corpus. In order to understand the TFIDF approach we
can do an analogy to text analysis, so each of the diarization output
sounds correspond to a ‘’word" and each of the audio files corre-
spond to a document of a corpus. Term Frequency is the number of
times a word appears in that document, and can be defined by the
equation 1.

TF (ci, Dk) =
Σjnj(ci = cj |cj ∈ Dk)

Σj
(1)

Where TF (ci, Dk) is the Term Frequency of audio word ci in
the audio document Dk. The other term is Inverse Document Fre-
quency and tells you whether a word is common or rare across the
documents and can be defined by the equation 2.

IDF (ci) = log
|D|

ΣkP (ci ∈ Dk)
(2)

Where |D| means the total number of documents and P (ci ∈
Dk) is the probability of term ci in the document Dk.

Each concept or event is described by a different combination of
these 300 clusters resulting from the total of videos representing
that concept. We also analyzed the sounds related to the Top-TF
most frequent K-values from the training set, and we found out that
they were closely related to variations of speech and music, which
means that these are the top frequent sounds among the employed
training data set.

The entire training and testing audio datasets went through these
above-mentioned steps in parallel. Except the testing data which
wasn’t fed to the SVM to trained the model, instead it was fed to
the SVM to be classified along with the SVM model. The SVM
provided us with a score for each of the 5 concepts, and the highest
value was the assigned event label.

In this paper we experiment with the top-n percepts taking ad-
vantage of the understanding of how they describe each of our con-
cepts.

5. REAL-WORLD IMPLICATIONS
The above-defined framework has several practical implications.

Unfortunately, the given page limit for this article allows us only to
present a few.

One conclusion of our framework is that the goal should be to
find complete and pure models. The concrete definition of a per-
cepts and concept don’t actually matter. Given a Zipfian distribu-
tion of the percepts, however, a complete model can be approx-
imated by finding maximally pure models of the top-n frequent
percepts.

Since the definition of the percepts does not actually matter, the
language can also be arbitrary. Of course, it is possible to switch
out our definition of precepts by any other definition, eg. to use
percepts that are more human-like. For example, if the percepts are
defined to be words of English language then the problem of video
concept detection can be mapped to natural language understand-
ing. However, practically, it is hard to actually have the computer
extract human-like percepts.

The standard approach for estimating human percepts is dis-
cussed in the related work: Classifiers that detect pre-trained ob-
jects and events are stacked together to find particular predefined
percepts. The limits of the approach, however, are reached quickly
when dealing with “wild" videos. This is also extensively discussed
in [3].

Figure 1: Overview of the video concept detection system used for
the experimental setup

However, from our framework we can actually infer that it is
completely unnecessary to define a concrete language a-priori or to
define the exact concepts other than using a set of example videos
that approximates a complete model. The corresponding real-world
observation would be first-language acquisition or immersive learn-
ing experiences for foreign language acquisition (e.g. as utilized
commercial software like Rosetta Stone) where models are auto-
matically learned by a human without the need to map back to
another language. Most importantly, as we know, word-concept
mappings never match perfectly between two languages, making
translation difficult. More than just providing an idea on how video
concept detection can work, Observation 2 gives an upper limit for
the descriptive power of a subset of percepts. It’s an upper limit
because it is only an actual limit when the models are pure and
complete. Section 8 will elaborate on an example.

6. EXPERIMENTAL SETUP
We use the NIST TRECVID Multimedia Event Detection dataset

(MED) DEV-T subset from the 2011 evaluation task. The record-
ings consist on multimedia content uploaded by public users with
an average duration of three minutes. The organization includes 15
classes with five of those in the test set. The training set compre-
hends 2040 videos, and the test set 4251 where 492 of them belong
to the five classes and the rest correspond to a random video cate-
gory. The five classes used are: E001 Board tricks, E002 Feeding
an Animal, E003 Landing a Fish, E004 Wedding, E005 Woodwork-
ing and other. The “other" class consists of all videos that do not
belong to the first five classes. In this paper, we only use audio
track of the videos. However, our framework can potentially be
combined with video or used on visual data only as, again, the no-
tion of percepts is very general (see Definition 1).

7. SYSTEM IMPLEMENTATION
We realized our audio percepts extraction by generalizing from

a speaker diarization system. The approach is described in detail in
[8]. The time-component of the diarization system helps consoli-
dating paraphrastic percepts.

Mel-Frequency Cepstral Coefficients (MFCCs) are extracted from
the video soundtrack. The diarization system uses a temporal ag-
glomerative hierarchical clustering approach to generate audio seg-
ments of similar acoustic structure. The segments are then clustered
and represented using Gaussian Mixture Models (GMMs). In or-
der to match the audio clusters across the different training videos
belonging to one concept, the system reduces the GMMs to a sin-
gle vector that consists of the sums of the weighted means and the
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sums of the weighted variances of each Gaussian (in accordance
with speech-community terms, we call this vector a simplified su-
per vector). A K-Means method is then used to cluster the sim-
plified super vectors, resulting in clusters that represent prototype
clusters, which we define as being our percepts.

The entire video concept detection system based on the frame-
work outlined above is show in Figure 1 in comparison with the
conceptual approach outlined in previous sections. The diarization
and K-means step represents the percepts extraction. Each con-
cept is represented by 300 percepts, which we used to perform the
experiments described in the next section. The GMMs correspond-
ing to the percepts are then used to detect the same percepts in
the audio tracks of the test videos. This allows a direct mapping
comparison between the percepts in the training and test set. The
top-n percepts selection follows a TFIDF approach [7] and a Sup-
port Vector Machine is used to perform the final classification. The
SVM classification is described in detail in [4], however, without
the proceeding steps.

8. ANALYSIS OF RESULTS

Top-N Actual Hits Predicted Hits Error Ambiguity
1 17% 16% 1% 0%
3 35% 30% 5% 0%
5 46% 36% 10% 20%
10 56% 46% 10% 24%
20 84% 57% 27% 27%
40 99% 68% 31% 31%

Table 1: Predicted descriptiveness of the top-n percepts for
different values of n in comparison to the measurements on
TRECVID MED11 as well as observed model impurity in %.
While it remains unclear how complete the models are, our
theoretical prediction is roughly within the range of actual hits
considering the ambiguity.

As a first experiment, we want to verify that our framework ac-
tually can estimate the descriptiveness for the top-n percepts. We
focused our experiments on a smaller set of videos containing the
same 5 classes for train and test, with a total of 662 clips of train-
ing data, and 492 clips of test data. As discussed in the previous
Section, we extracted 300 percepts for each concept in the training
set. After that, we extracted 300 percepts for each test video. In
this experiment, we control for the class both in test and training
set in order to be able to match the percepts perfectly between test
and training.

We then wanted to know how many videos in the test set actu-
ally match the training percepts in their perspective class, given a
reduction to the top-n highest frequent percepts. In other words,
assuming the training videos in MED 11 as a complete set of per-
cepts for each concept (perfect model), we show how well are the
percepts represented in the test set. Table 1 shows the results of the
experiment.

We show the predicted descriptiveness of the top-n percepts for
different values of n as calculated using Observation 2 and com-
pare it to the empirically observed data. The measurements are
obtained by counting the matching videos for all concepts vs. the
non-matching. In other words, the top-1 column shows how many
videos could in theory already be classified just based on the top-1
occurring percept. The ambiguity is determined by counting the
number of homonymous percepts. As can be seen, the prediction
error is pretty low and correlates with the ambiguity, which pro-
vides evidence for the validity of our framework. Please note, real-
world audio percepts only approximate the Zipfian distribution and
the models are not complete.

As a second experiment, we wanted to show that classification
based on the top-n percepts, will improve classification accuracy
dramatically, therefore providing evidence for our main hypothe-
sis: There is no data like less data. For this experiments, we se-
lected only training videos that contain a) the top-20 percepts (as
determined by TFIDF), b) 20 random percepts and c) the low-20
percepts (as determined by TFIDF). We trained the SVM classifi-
cation system overviewed in Section 7 (and detailed in [8, 4]) using
the three options and measured the classification accuracy. Table 2
shows the results.

Even though we only selected on the level of videos rather than
percepts and so not all ambiguities and noise has been filtered, the
classification accuracy changes dramatically based on the selection
of top percepts. Please note, that the numbers are not comparable
with related work because the system was not tuned in any way as
the only goal was to prove our theory. Also note that the results
are based exclusively on audio and averaged over all five concept-
s/events.

We performed an analysis of the top-n percepts for each of the
five concepts. We spot-listen the top-3 percepts by relating them
to their corresponding segment in the audio file. For E001 Board
tricks, music was the most common percept. For E002 Feeding
an Animal the most common were silences, and speech. For E003
Landing a Fish the most common were silences and speech too.
This is one of the reasons why the system was having troubles clas-
sifying these two classes. For E004 Wedding the most common
were speech and music. Finally, for E005 Woodworking speech
and tool noises were the most common.

Error Baseline Top 20 Low 20
False Alarm 6% 6% 6%
Miss 72% 66% 79%
EER 31% 31% 35%

Table 2: Change of classification error using FA/Miss as defined
by TRECVID MED and using Equal-Error-Rate for no per-
cepts selection, top-20 frequent percepts and low-20 frequent
percepts. Even though our method does not yet account for
ambiguity, less data is better than all data.

9. CONCLUSION AND FUTURE WORK
We presented a theoretical framework that allows us to reason

quantitatively and qualitatively about video concept detection even
when multimedia documents have no obvious structure. Our frame-
work is media independent and our supporting experiments were
conducted on a publicly available large set of consumer-produced
videos. Future work includes extending the framework and learn-
ing more from the natural language community and the original
TREC evaluations (that later resulted in TRECVID).

Our next steps will also include building an actual system that
will utilize the predictive power of our framework in different modal-
ities by eliminating noisy percepts. A limitation of the approach
is that percepts do not necessarily overlap with human percepts,
therefore, introspection and analysis of concept detection results
by human requires an intermittent step: a translator from machine-
generated percepts-concept mappings, i.e. languages, to human
languages. Another point of interest, specially when dealing with
more than five events, is to remove speech and music from the
audio. Then analyse what would be the most representative non-
speech audio classes for each concept/event and compute the clas-
sification results.
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