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Abstract

While the incorporation of phonetic information has contributed to speaker verification improvements for lexically unconstrained
speech in the past, improvements have not been widely observed using the state-of-the-art i-vector system, which typically
performs best using a "bag-of-frames" approach. This work explores ways to incorporate Broad Phonetic Class (BPC)
information for the i-vector system with noisy speech data that is not lexically constrained. Different approaches for combining
the BPCs have been examined. Results suggest that, through parallelization and combination strategies, BPCs may contribute to
roughly a 13% improvement over an i-vector baseline system. However, confounding factors such as increased parameter size,
use of noise-generated speech data, and the advantage of combination strategies are potential caveats to attributing the
improvement to the discriminating power of BPCs alone.

This work was funded by Air Force Research Laboratory (AFRL) award FA8750-12-1-0016. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the view of the AFRL.



1. INTRODUCTION

It has been hypothesized that for purposes of human com-
munication, phonetic sounds have emerged to correspond to
both human speech production (i.e., articulatory apparatus)
as well as the human perception system (e.g., cochlear struc-
ture). In human speaker verification, phonetic classes provide
a cognitive structure around which the acoustic information
for verification is organized. In automatic speaker verifica-
tion using conversational data that’s not lexically constrained,
however, the most common and popular use of the state-of-
the-art i-vector system treats the acoustic information as a
bag of frames, without regard to phonetic structure. While
this ”bag of frames” approach has led to state-of-the-art per-
formances for i-vector systems, the systems can perhaps be
improved by “enriching” their GMM models with phonetic
sounds that correspond to human speech production and per-
ception.

While incorporating phonetic information has not been
commonly used with the state-of-the-art i-vector using data
that’s not lexically constrained, there has been a significant
amount of work using past speaker verification approaches.
The work of Omar and Pelecanos in 2010 investigated a
GMM supervector system where the UBM mixture compo-
nents are derived from mixture components of pre-trained
acoustic models for automatic speech verification [1]. This
approach performed better in the majority of the SREOS core-
core conditions compared to a maximum likelihood approach
to UBM training, and provides a framework for the parallel
initialization of UBMs [1]. The work of Gutman and Bistriz
in 2002 investigated the use of phoneme-specific GMMs in a
GMM-UBM system, where GMMs of each phoneme were ei-
ther used in separate speaker verification systems, or as part of
one system [2]. The work of Faltlhauser and Ruske in 2001
dealt with a parallel GMM speaker verification system ap-
proach, where each parallel component represented a system
for a specific phoneme or group of phonemes. The work of
Baker et al. in 2005 [3] investigated the use of broad phonetic
categories (BPC) and syllabic events for speaker verification,
using the GMM-UBM system. The work of Lei and Lopez-
Gonzalo in 2009 investigated the use of simple BPCs [4]
in a Factor Analysis-based GMM-UBM system. The work
of Scheffer et al. [5] investigated phonetic combinations at
the factor loading matrix-level using a Joint Factor Analysis
(JFA) system. Lastly, Larcher et al. investigated the effect of
incorporating phonetic information on i-vector system perfor-
mance, but only on phonetically-constrained short utterance
data [6]. This work investigated whether having target and
test conversation sides with matched phonetic information
improves speaker verification, and not whether the incorpo-
ration of phonetic information in speaker models is beneficial
to speaker verification using lexically-unconstrained data.

In this work, we investigated the use of phonetic infor-
mation for the i-vector system, in an attempt to discover sce-

narios in which use of phonetic information would be helpful
with lexically-unconstrained data. In particular, we focused
the modeling power of our systems on phonetic regions of
speech by implementing standalone systems only on speech
data regions containing certain phonetic content, such as vow-
els or nasals. Different ways of combining the standalone
phonetic systems, were also investigated.

This paper is organized as follows: Section 2 describes
the data used. Section 3 describes the phonetic units. Sec-
tion 4 describes the speaker verification system and combina-
tion approaches. Section 5 describes the results, and Section 6
provides a summary and concerns that must be addressed in
any future work.

2. DATA

All gender-dependent experiments were performed using
SREO8 and SREI10 noiseless telephone data, either with or
without added noise. We generated the noise-added data us-
ing the noiseless data. The noiseless data contains 706 male
speakers and 1,059 females speakers, with 4,587 male and
7,037 female target speaker training conversation sides, and
1,041 male and 1,427 female test conversation sides. We
note that the target speaker training conversation sides were
also used as i-vector system development conversation sides,
which conforms to the recent NIST Speaker Recognition
Evaluation 2012 framework. To generate the noise-added
conversation sides, samples of crowd noise and car exhaust
noise — too common noises encountered in the environment
— were first obtained from the publicly available audio data
source freesound.org [7].

Each noise sample was repeated enough times such that
their overall duration exceeds the conversation side durations.
Next, four copies of each noiseless telephone conversation
side were made, where each copy is mixed with one of the two
noise samples at 10dB or 20dB SNR. The publicly available
Filtering and Noise Adding Tool (FaNT) Toolkit [8] was used
to mix the speech with the noise samples. The four combina-
tions of noise and SNR — crowd at 10dB SNR, crowd at 20dB
SNR, car exhaust at 10dB SNR, and car exhaust at 20dB SNR
— were implemented for all conversation sides. The overall
dataset consists of the four noisy copies of each conversation
side, along with the original noiseless versions. There are a
total of 119,133,175 trials with 243,500 true speaker trials for
males, and 250,706,375 trials with 338,600 true speaker trials
for females.

3. PHONETIC UNITS

The phonetic units include a set of 5 Broad Phonetic Classes
(BPCs): Vowels, Nasals, Glides/Liquids, Fricatives, and
Stops. Using a subset of the male data, we found that Vow-
els comprise of 51% of the data, Fricatives comprise 16%



of the data, Stops comprise 14% of the data, Nasals com-
prise 10% of the data, and Glides/Liquids comprise 9% of
the data. While other phonetic units, such as the smaller
Di-BPC (which are syllabic in nature) and phone units, can
be used as well, but past experiments have shown that such
units suffer from data sparsity. Note that phonetic labels for
all conversation sides were obtained from SRI’s DECIPHER
phone recognizer [9] output, which uses forced-aligned phone
decodings from automatic speech recognition word output.

4. SPEAKER VERIFICATION SYSTEMS

The i-vector speaker verification system was primarily used in
our experiments. For each conversation side, 60-dimensional
MFCC C0-C19 + A + AA acoustic features are extracted,
and Gaussian feature warping [10] is performed cross 3-
second windows. A background GMM model, or Universal
Background Model (UBM), is trained using the features from
the development conversation sides. Zeroth, first, and second
order Baum-Welch sufficient statistics are extracted for each
conversation side using the UBM, and a low-rank Total Vari-
ability Matrix (T-Matrix) is trained using the development
conversation sides statistics. This matrix captures the overall
variability of the development conversation side statistics.

The T-matrix, first order statistics, and the UBM are used
as follows to extract low-dimensional i-vectors for each con-
versation side:

M=m+Tw n

where T is the T-matrix, m is a vector of the UBM means,
and w are low-dimensional vectors, known as the identity vec-
tors” or i-vectors [11]. The i-vectors w for each conversation
side were obtained via the approaches described in [12] and
[13].

Once the i-vectors are extracted, a Probabilistic Linear
Discriminant Analysis (pLDA) likelihood ratio [14] [15] is
used to generate scores for each trial. The pLDA likelihood
ratio is shown in Equation 2:

score(wy,ws) = logN ({ Z; } ; [ Z ] ’ [ %:; SZ’; ])

oo ([ [0 ] T 2 ])

where w; and wy are the two i-vectors, N(-) is the normal
Gaussian probability density function, and 3;,; and ¥, are
the total and between-class scatter matrices of the training
i-vectors. Hence, given a pair of i-vectors, the approach com-
putes a likelihood ratio of Gaussian distributions centered
upon the i-vectors. Each distribution is parameterized by the
the scatter matrices obtained from the training data. Note
that prior to applying the likelihood ratio, the i-vectors are

WCCN-normalized, and length-normalized [16] to be of unit
length.

We note that for all experiments, the open-source ALIZE
toolkit [17] is used for GMM model training. The Brno Uni-
versity of Technology’s (BUT’s) Joint Factor Analysis Matlab
demo [18] is used to assist in i-vector extraction, and the HTK
software [19] is used for acoustic feature extraction.

Three approaches were used to combine standalone BPC
systems with one another as well as the baseline system. The
first is the concatenation of i-vectors of each BPC unit to form
longer i-vectors. Figure 1 illustrates this approach, which we
refer to as “i-vector concatenation.”

I-vector Concatenation
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Fig. 1. Generating BPC-combined scores for the i-vector sys-
tem via i-vector concatenation.

The second approach involves a simply averaging the
scores for the standalone systems, and the third approach
involves training logistic regression score combination using
the Bosaris Toolkit [20]. The logistic regression function
is training using a set of scores generated from all target
speaker conversation side pairs. Note that we have also at-
tempted a T-matrix-level combination technique inspired by
the work of Scheffer et al. [5], but could not get performance
improvements over the i-vector concatenation combination.

In addition to the i-vector system, the GMM-UBM system
was used to verify the effectiveness of BPCs as demonstrated
in prior GMM-UBM-based experiments, such as in [3]. The
GMM-UBM approach involves training target speaker GMM
models via MAP adaptations of the UBM for each target
speaker conversation side, followed by the computation of
the log-likelihood of the MFCC features of each test conver-



sation side for a set of target speaker GMM models [21].

5. EXPERIMENTS AND RESULTS

Initial experiments consist of comparing the performance of
the i-vector-concatenation of standalone BPC systems with
a baseline system without the use of phonetic information.
The standalone BPC systems use 205 UBM mixtures and 80
i-vector dimensions, and combining the 5 BPCs gives 1,025
UBM mixtures and 400 i-vector dimensions. The standalone
BPC system parameters are chosen such that when the 5 BPCs
are combined, the total number of parameters roughly match
the number of parameters for a baseline, non-BPC system,
which has 1,024 UBM mixtures and 400 i-vector dimensions.
Experiments are also performed to verify the effectiveness of
BPCs using the GMM-UBM system, as demonstrated in prior
work. Score-level-averaging is used to combine BPCs for the
GMM-UBM system.

Note that these experiments were performed using only
the clean telephone conversation sides in our SREO8 and
SRE10 dataset. They consist of 10,161 true speaker and
4,966,080 impostor trials for males, and 13,993 true speaker
and 10,373,383 impostor trials for females. Table 1 presents
the i-vector and GMM-UBM results.

I-vector Results for Males

BPC Units UBM Mixtures | EER (%)
Vow 205 3.1
Nasals 205 6.7
Glides/Liquids 205 6.9
Fricatives 205 7.2
Stops 205 8.4
All 5 BPCs 1,025 1.3
Non-BPC Baseline 1,024 0.6

GMM-UBM Results for Males
All 5 BPCs 1,025 6.7
Non-BPC Baseline 1,024 8.1
I-vector Results for Females

BPC Units UBM Mixtures | EER (%)
Vow 205 4.0
Nasals 205 7.0
Glides/Liquids 205 8.9
Fricatives 205 8.3
Stops 205 8.8
All 5 BPCs 1,025 2.0
No BPCs Baseline 1,024 1.5

GMM-UBM Results for Females

All 5 BPCs 1,025 9.0
Non-BPC Baseline 1,024 9.5

Table 1. Results for BPC units using the i-vector system,
with i-vector-level combinations, and 205 UBM mixtures and
80 dim i-vectors per BPC. One UBM is trained per BPC.

Results show that for the GMM-UBM system, combin-
ing the 5 BPCs gives performance improvements over the
baseline for both males (6.7% vs. 8.1% EER) and females
(9.0% vs. 9.5% EER), which confirms trends observed from
prior experiments. However, the i-vector-level combinations
of BPCs do not perform nearly as well as the non-BPC base-
line system, with EERs of 0.6% for males and 1.5% for fe-
males. Among the standalone BPCs, the Vowel BPC per-
forms the best using the i-vector system (3.1% EER and 4.0%
EER for males and females), while nasals perform the second
best (6.7% EER and 7.0% EER for males and females).

Results suggest that in contrast to the GMM-UBM sys-
tem, the i-vector system is better able to handle the lexi-
cal variability contained in clean telephone conversational
speech. In the above experimental framework, the focus-
ing of modeling power on BPCs is not needed, and even
hurts performance, as it limits the total amount of data used
in each standalone i-vector system. Another issue is that
of data sparsity. While BPCs are superior to smaller-sized
units in terms of having more data per conversation side, the
fact BPCs such as Glides/Liquids perform worst for females
(8.9% EER) could still be due to data sparsity, since it com-
prises only 9% of our speech data (as discussed in Section 3).
Our past experiments have shown that the over-training of i-
vector system parameters is an issue for BPCs in the presence
of insufficient i-vector system development data.

The next experiments consist of using BPC-based i-vector
systems on the noisy extended dataset. This dataset provides
two advantages for BPC-based experiments: First, the pres-
ence of noise increases intersession variability, while BPCs
help reduce lexical variability. It could be that reducing lex-
ical variability is more effective in the context of increased
intersession variability. Second, the increased data assists in
addressing the data sparsity issue for BPCs. In an additional
attempt to address data sparsity, a 2-BPC system is imple-
mented, with only the Vowel and Consonant BPCs, both com-
prising roughly 50% of speech data. The Consonant BPC
combines all non-Vowel BPCs.

Note also that the system parameters are increased to
2,048 UBM mixtures and 600 i-vector dimensions for the new
non-BPC baseline systems, which we refer to as Baseline_1I.
The parameters for the standalone BPCs in the 5-BPC and
2-BPC systems are chosen such that the number of parame-
ters in the BPC-combined systems match the total number of
parameters for the Baseline_1 system. Results obtained using
the old baseline system (i.e. Baseline_0) using 1,024 UBM
mixtures and 400 i-vector dimensions are also shown. Both
the i-vector stacking (i-vect) and Logistic Regression (LR)
combination approaches are used. Tables 2 shows male and
female results using the noisy extended dataset.

Results suggest that in the presence of a large noisy
dataset, phonetic-based systems perform much closer to the
non-phonetic baseline systems. For males, the 5-BPC and 2-
BPC systems give 1.8% and 1.7% EERs, compared to 1.7%



I-vector Results for Males
System(s) Comb. UBM i-vect | EER

Approach Mix dims | (%)
All 5 BPCs - 2,050 600 1.8
All 2 BPCs - 2,048 600 1.7
Baseline_1 - 2,048 600 1.6
Baseline_0 — 1,024 400 1.7
Cons+Vow LR 1,024x2 300x2 1.8
Baseline_0+ LR 1,024x3 + | 400+ 14
Cons+Vow 300x2

I-vector Results for Females
System(s) Comb. UBM i-vect | EER

Approach Mix dims | (%)
All 5 BPCs - 2,050 600 2.8
All 2 BPCs - 2,048 600 2.5
Baseline_1 - 2,048 600 2.4
Baseline_0 - 1,024 400 2.7
Cons+Vow LR 1,024x2 300x2 | 2.6
Baseline_0+ LR 1,024x3 400+ | 2.4
Cons+Vow 300x2

Table 2. Male noisy data results for BPC units using the i-
vector system, with system combinations using i-vector con-
catenation and logistic regression via the Bosaris Toolkit. The
EER is computed by averaging EERs across 12 and 18 splits
of scores for male and female speakers.

and 1.6% EERs for the Baseline_1 and Baseline_0 systems.
For females, the 5-BPC and 2-BPC systems give 2.8% and
2.5% EERs, compared to 2.4% and 2.7% EERs for the Base-
line_1 and Baseline_O systems. The 2-BPC system is also
at least as good as the 5-BPC system. While the 5-BPC,
2-BPC, and the Baseline_1 systems all use similar numbers
of parameters, the advantage of BPC-based systems is that
parallelization can be used in their implementation. For in-
stance, instead of training a single 2,048-mixture UBM or a
rank-600 T-matrix, two 1,024-mixture UBMs and rank-300
T-matrices can be trained in parallel

The combination results suggest that combining BPC-
based systems with non-BPC-based systems is helpful. Lo-
gistic regression combination of the Baseline 0, and stan-
dalone Vowel and Consonant BPC systems gives a minimum
EER of 1.4% for males. This represents a 13% relative im-
provement over the best standalone male result (1.6% EER
for the Baseline_1 system). Note that the number of parame-
ters in the combination has been increased over the Baseline_1
system. However, a comparison of results for the Baseline_1
and Baseline_0 systems for males, suggests that having in-
creased parameters does not necessarily imply significant
EER improvements (1.7% vs. 1.6% EER where Baseline_1
has nearly twice the number of parameters as Baseline_0).

6. CONCLUSION AND CAVEATS

We have demonstrated that BPC-based systems are able to
outperform the non-BPC baseline system using the GMM-
UBM approach and telephone conversational speech without
added noise. For males, the 5-BPC system using the GMM-
UBM approach gives a 6.7% EER, compared to an 8.1% EER
for the non-BPC baseline. For females, the 5-BPC system
gives a 9.0% EER, compared to 9.5% for the non-BPC base-
line. While the BPC-based systems do not outperform the
baseline systems using the i-vector approach on the clean tele-
phone conversational speech data, improvements using BPCs
have been observed using the expanded dataset and two types
of environmental noise — car and crowd — at 10dB and 20dB
SNRs. The Vowel and Consonant BPCs, when combined with
the a baseline system using Logistic regression, gives a 13%
relative improvement over the standalone baseline system.

Nevertheless, there are potential caveats for the presented
effort that ought to be addressed in any future work. The
conditions for which the BPC-based i-vector systems im-
proved over the non-BPC baseline are narrow and specific,
and required manufacturing of the dataset, the noise condi-
tions, and BPCs used. The noise conditions — conversational
speech specifically in car and crowd noise at 10dB and 20dB
SNRs — may not represent the general noise characteristics
encountered in the real-world. Furthermore, it’s possible that
the observed improvements resulted simply from the fact that
system combinations can lead to improvements in general,
rather than the discriminative characteristics of the BPCs
themselves. Lastly, using a combination of BPCs results in a
system with significantly greater computational complexity,
than using a single non-BPC system. The BPCs were also de-
rived from an automatic speech recognizer, which itself is not
perfect. Hence, systems that claim to use a specific BPC may
also be incorporating data outside of the BPC, and leaving
out certain regions of the BPC. An alternative solution is to
use manually-transcribed speech, but that requires substantial
human effort for a large speech corpora. The 13% improve-
ment over the baseline i-vector system attributed to the BPCs,
hence, needs to be evaluated given the above considerations
and potential caveats.
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