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Abstract 
It is well known that human beings can often attend to a single sound source within a mixed 
signal from multiple sources, and that unaided automatic speech recognition (without the 
benefit of effective blind source separation) is quite poor at this task. Here we report on the 
analysis of human cortical signals to demonstrate the relative robustness of these signals to the 
mixed signal phenomenon, which is contrasted to a deep neural network-based ASR system. 
Confirming this difference with a carefully designed experiment is the first step towards 
ultimately improving blind source separation for the purpose of speech recognition; in 
particular, the design of features extracted from the neural signals is leading to insights about 
the corresponding feature extraction on the acoustic side, e.g., for CASA systems of the future. 



1. Introduction 

We have recently been studying the cortical mechanisms 
involved in auditory source separation for mixed single-
channel speech signals, using neuroelectric responses directly 
measured from the surface of the human cortex using a 256-
electrode array, giving a view of cortical sound processing of 
unprecedented detail and flexibility. This work has dual goals: 
(1) to better understand these neural mechanisms in humans, 
and (2) to use this new understanding to help us to design 
better artificial systems for the separation of mixed signals 
(e.g., to voices), with the ultimate goal of making speech 
recognition systems more robust. In both cases, the effort has 
built on the earlier work reported in [1], in which the 
spectrotemporal representation of attended speech was 
reconstructed. In the newer work, our goal is to design a 
CASA (computational auditory scene analysis) system with 
insights from the analysis of the human neural data. For this 
document, however, we are reporting an initial result in which 
we have observed that signals collected from the surface of 
the human cortex (specifically in the area called the Superior 
Temporal Gyrus, or STG) can be processed to classify phones 
with similar error rates for both single and mixed single cases. 
The rest of this paper describes the experiment, interprets the 
results, and discusses implications for future work.  

 

 
Figure 1: MRI reconstruction of subject's cortex, with 
electrocorticogram (ECoG) electrodes (16x16 grid, 4 mm 
spacing) indicated by dots. The red and yellow regions 
(temporal lobe) are expected to contribute most to speech 
processing. 
 
 

2. Experimental Methods 

2.1. Data 

The acoustic and neural data used in this study were 
previously generated in sessions with surgery patients as 
described in [1]. The patients  had customized high-density 
electrode arrays implanted subdurally that are sometimes 
necessary for the surgical management of patients with 
epilepsy refractory to medications [2] (see Figure 1). They 
participated in behavioral testing using stimuli from the 
Coordinate Response Measure (CRM) corpus [3]. The corpus 
consists of phrases of the form “Ready (call sign) go to (color) 
(number) now” spoken with different combinations of call 
signs (“Tiger” or “Ringo”), 3 colors (“Blue”, “Green”, “Red”), 
3 numbers (“Two”, “Five”, Seven”) and two speakers. The 
patients are instructed to report the color and number 

associated with a call sign (e.g. “Tiger”); however, they do not 
know a priori which speaker will be the target in each trial. 
Consequently, subjects are required to attend to both speakers 
at the beginning of mixture until they hear the target call sign 
and then attend to the corresponding speaker.  At the end of 
each experiment block, the patients have responded to the 
same 28 sound mixtures while attending to both speakers. This 
experimental design allows us to determine the effect of 
attention on neural responses, while controlling for identical 
acoustic stimulus conditions (i.e., hearing the same speaker 
mixture, while attending to only one or the other voice). For 
the purposes of this study, we have been working with data 
collected from three subjects, but since neural responses are 
highly individual, all the results reported here are from a single 
individual. 
       Given the extremely modest amount of data (e.g., 3115 
phones) from the CRM experiments, we also used of a subset 
of TIMIT to augment the acoustic training set. As described 
below, we also used a jackknifing technique [4] to make better 
use of the limited amount of data. 
 

2.2. Feature extraction 

2.2.1 Acoustic features  

For the purposes of this study, we only used un-enhanced 
MFCCs. We used the Kaldi front-end [5] to produce a 39 
dimensional feature vector every 10 ms, which converted each 
25 ms signal frame into 13 Mel-cepstral coefficients, including 
energy, plus their first and second differences. 

2.2.2 Neural features  

While the usual signal representations for phone or speech 
recognition are acoustic features, we also attempt to decode 
the phone sequence directly from neural features. We use the 
term feature here in the pattern recognition sense of any 
suitably preprocessed input to the recognizer. 
The question is how to suitably preprocess the raw, often noisy, 
broadband ECoG signal for ~optimal performance in the 
recognizer. First, some degree of noise is unavoidable in the 
present clinical context, and some epochs and electrodes are 
rejected after human examination [as in 1]. Second, although 
human brain waves have been known since 1929, and 
intraoperative recording attempted soon thereafter [6], it was 
not until relatively recently [7, 8] that it became apparent that 
the information available in the so-called “high-gamma” band 
(~70-170 Hz) carries information of far greater spatial and 
temporal specificity compared to the more traditionally-
studied frequency ranges below ~60 Hz [9]. Although we have 
not ruled out the use of lower frequencies as auxiliary 
information [e.g., 10], the present study uses only the ECoG 
data in the high-gamma range. Specifically, we sum over 
Hilbert envelopes [11] for center frequencies ~70-170 Hz [as 
in 9, 12], and downsample to 100 Hz. Analytic amplitudes are 
distributed ~Rayleigh and heteroscedastic [13, 14], so we 
further take the natural log to render ~Normal and to stabilize 
variance [15, 16]. 
       The end result of preprocessing is a set of ~250 high-
gamma time series, one for each retained electrode. With small 
training sets, DNNs may be prone to overfitting, so 
dimensionality reduction to 48 neural features was deemed 
necessary. We then explored several approaches to reduce 250 
single-electrode features to 48 neural features. 



       The most obvious, and nearly the oldest, method of 
dimensionality reduction is spatial principal component 
analysis (PCA). However, the resulting components lack any 
physiological significance and also serve poorly in a pattern 
recognition sense. This problem has been known for nearly as 
long as spatial PCA itself [17, 18], and the most frequent 
solution has been to rotate the components so as to achieve 
sparsity, locality, clustering by similarity, or some other 
objective. After extensive study of available rotation methods, 
component analyses, hard and soft clustering approaches, and 
various other machine learning methods surrounding 
embedding and dimensionality reduction, it was surprising to 
find that the old method of varimax rotation [19, 20] 
performed as well or better than any of the several modern 
methods tried. This becomes less surprising when one 
considers that such rotation is the old L2-norm method to 
achieve sparsity (called “simple structure” in factor analysis), 
co-sparsity [21], within-cluster smoothness, across-cluster 
decorrelation, and greater physical plausibility; all of these 
known to be virtues for pattern recognition features [e.g., 22]. 
As an L2 method, it is also extremely fast. 
       Convex non-negative matrix factorization (NMF) [23] 
was found to slightly improve the results taking the varimax 
components as initializing input. Neither ordinary NMF [24], 
nor convex NMF without a good initialization, performed as 
well as varimax for our purposes. The requirement of a good 
initialization is the known drawback of NMF. Intuitively, 
convex NMF achieves the clustering objective that correlated 
electrodes should cluster together, whereas the resulting 
cluster time series should be as decorrelated as possible. 
       The final neural features used here are thus 48 convex 
NMF components derived from varimax rotation of spatial 
PCA analysis of ~250 log-high-gamma time series (see Figure 
2). 
 

 
 

Figure 2: Spatial weightings for 4 out of 48 of the convex 
NMF neural features used. These are typical examples, 
chosen for their loadings onto temporal lobe sites 
important for speech processing. 

2.3. Phone recognition system 

For both neural and acoustic observations, we exploited the 
hybrid HMM/Artificial Neural Network (ANN) architecture 
[25] (more recently called HMM/DNN [26,27] when more 
than a single hidden layer is used) to model context-
independent phoneme as shown in Figure 3 where network 

outputs were used as posteriors to derive emission 
probabilities for hidden Markov models (HMMs). We used the 
Kaldi toolkit [5] for both model training and decoding, as well 
as for the ANN processing. The hybrid HMM/ANN set up was 
adapted from Kaldi recipe s5 [5]. 
       The inputs of the ANNs were obtained from splicing 39-d 
MFCCs or 48-d neural features across 17 frames, followed by 
reducing the dimension to 250 using linear discriminant 
analysis. Mean and variance normalization were performed for 
both MFCCs and neural features. The ANNs had 2 hidden 
layers (marginally “deep”), each of which consists of 1100 
tanh units. The output layer consisted of 117 context-
independent phonetic states (three states per phoneme), giving 
1.6 M parameters in total (see Figure 3). Frame-level forced 
alignment was provided by a simple context-independent 
HMM/GMM system. The ANNs were trained with stochastic 
gradient descent, starting with a learning rate of 0.015 and 
ending at 0.002. During training we decrease them by a factor 
of 1.14, except for 5 epochs at the end during which we kept 
them constant. The network was trained for a total of 20 
epochs. A biphone language model was estimated on the 
training set. 
       The acoustic recognition scenario gave a 26.9% phone 
error rate for the standard TIMIT train-test set, where 3696 
utterances were included for training and 192 utterances for 
testing. Given the constraint of ECoG neural data, we set up 
our train-test sets using only 374 utterances from TIMIT, 155 
utterances from single source CRM data and 61 utterances 
from mixed source CRM data. 
       Due to the small amount of data, we used the jackknife 
resampling process [4], splitting the set of CRM data into 5 
different train-test cuts. For each of the training sets, we 
randomly drew samples from the CRM data and augmented 
them with 374 utterances of the TIMIT set. The rest of the 
CRM sets were used for testing. This yielded 7,520 instances 
of phones for single source test sets and 3,115 instances for 
mixed source test sets. The results reported here are average 
score over the 5 different train-test sets. 
 

               
 



Figure 3: Hybrid HMM/ANN architecture for context 
independent monophone model where acoustic or neural 
features were used as input of 2-hidden layer deep neural 

network to model 117 state targets 

 

3. Results and Discussion 
Table 1 below shows that the phone error rate for the acoustic 
features, while far better than that achieved with our neural 
signals for the single voice case, degrades greatly for the 
mixed signal. For the neural features, the error rates overall are 
quite high, but there is very little additional degradation when 
the subject is motivated to attend to the desired voice. Why 
should this result be interesting, when it conforms to our 
expectations that humans will tend to be more robust to 
interfering signals than our artificial systems? Let’s consider 
what we were trying to see. 
       The primary hypothesis being tested was, given specific 
neural signals, and given the chosen features extracted from 
these signals, that the phone recognition error rates would be 
affected far less for the neural signals than for the acoustic 
signals. While it is a common experience that humans do 
better in the “cocktail party” scenario than our current machine 
methods, what is being tested here is the utility of the specific 
brain signals that we are measuring to show this phenomenon. 
Furthermore, the experimentation with feature extraction 
methods given the raw data has begun to show us what aspects 
of the STG neural signals are most effective for phone 
recognition. 

 
 Acoustic features Neural features 

Single source 48.6% 68.2% 

Mixed source 73.2% 70.5% 

 

Table 1: Phone error rate for complete CRM 
utterances 

       We currently make no use of standard enhancement or 
blind source separation algorithms. Furthermore, for 
consistency with the small amount of neural data we could 
collect, the task-specific acoustic data set was quite small. 
Consequently all error rates are quite high. Nonetheless, the 
observed effects are quite striking: the neural features yield 
nearly the same error rates for single and mixed sources, and 
the acoustic features are much less informative for the mixed 
source case. 
       Tables 2 and 3 show similar trends for the phone error 
rates in target words (color and number, respectively). Phone 
error rates for acoustic features rise significantly for the mixed 
signal case, but are nearly the same using neural features.  
 

 Acoustic features Neural features 

Single source 54.0% 72.0% 

Mixed source 75.2% 73.1% 

 

Table 2: Phone error rates within the color target 
word (red, green, or blue)  

 
 Acoustic features Neural features 

Single source 56.1% 73.5% 

Mixed source 79.9% 73.9% 

Table 3: Phone error rates within the number target 
word (two, five, or seven)  

4. Where this work can lead 
The work reported here confirmed that the STG can provide 
meaningful information for phonetic recognition, at least for 
the task used, that can be relatively independent of interfering 
voices that the subject is not paying attention to. This is in 
contrast to the oft-observed increases in error rate for phone 
recognition given such interfering signals.  
       Despite this, it is likely that the phone categories used 
here are not the best match to the observed neural signals. 
Other work [28] has shown that the instrumented areas appear 
to provide information about, for instance, manner categories.  
We also are not yet certain that we are computing the best 
neural features; we are currently focusing on the “high 
gamma” region of the neural signal (~70-170 Hz), and there 
may yet be some utility in observing signals in other bands, 
something that we are starting to explore. 
       Ultimately, our goal is to learn more about how the brain 
is recognizing speech when competing signals (particularly 
multiple voices) are present. But as our other goal is to learn 
from this exploration how we can improve automatic speech 
recognition in the presence of mixed signals, we will have to 
use partial information (for instance from comparison of error 
patterns) to modify our artificial systems to act more like the 
natural one. We are just beginning this process, and this paper 
reports the initial effort to simultaneously study the scientific 
and engineering components.  
 

5. References 
[1] Mesgarani N, Chang E (2012). Selective cortical representation of 
attended speaker in multi-talker speech perception. Nature 485: 233-
236.  
[2] Chang E, Rieger J, Johnson K, Berger M, Barbaro N, Knight, R 
(2010). Categorical speech representation in human superior temporal 
gyrus. Nature Neuroscience. 
[3] Bolia RS, Nelson WT, Ericson MA, Simpson BD (2000). A speech 
corpus for multitalker communications research. The Journal of the 
Acoustical Society of America 107, 1065. 
[4] Efron B (1982). The jackknife, the bootstrap, and other resampling 
plans. Society of Industrial and Applied Mathematics CBMS-NSF 
Monographs, 38. 
[5] Povey D, Ghoshal A, Boulianne G, Burget L, Glembek O, Goel N, 
Hannemann M, Motlícek P, Qian P, Schwarz P, Silovsk J, Stemmer G, 



Vesey K (2011). The kaldi speech recognition toolkit. Proc. IEEE 
2011 Workshop on ASRU. Dec. 2011, IEEE Signal Processing Society. 
[6] Berger H (1931). Über das Elektrenkephalogramm des Menschen. 
Dritte Mitteilung. Arch Psychiatr Nervenkr 94: 16-60. 
[7] Crone NE, Miglioretti DL, Gordon B, Lesser RP (1998). 
Functional mapping of human sensorimotor cortex with 
electrocorticographic spectral analysis. II. Event-related 
synchronization in the gamma band. Brain 121(Pt 12): 2301-15. 
[8] Crone NE, Boatman D, Gordon B, Hao L (2001). Induced 
electrocorticographic gamma activity during auditory perception. Clin 
Neurophysiol 112(4): 565-82. 
[9] Edwards E (2007). Electrocortical activation and human brain 
mapping. Dept. of Psychology dissertation. Berkeley: Univ. of 
California: 147 p. 
[10] Zion Golumbic EM, Ding N, Bickel S, Lakatos P, Schevon CA, 
McKhann GM, Goodman RR, Emerson R, Mehta AD, Simon JZ, 
Poeppel D, Schroeder CE (2013). Mechanisms underlying selective 
neuronal tracking of attended speech at a "cocktail party". Neuron 
77(5): 980-91. 
[11] Baghdady EJ (1961). Diversity techniques. In: Baghdady EJ, ed. 
Lectures on communication system theory. New York: McGraw-Hill: 
125-75. 
[12] Edwards E, Soltani M, Kim W, Dalal SS, Nagarajan SS, Berger 
MS, Knight RT (2009). Comparison of time-frequency responses and 
the event-related potential to auditory speech stimuli in human cortex. 
J Neurophysiol 102(1): 377-86. 
[13] Arens R (1957). Complex processes for envelopes of normal 
noise. IRE Trans Inf Theory 3(3): 204-7. 
[14] Bendat JS, Piersol AG (2000). Random data: analysis and 
measurement procedures, 3rd Ed. New York: J. Wiley. 
[15] Prucnal PR, Goldstein EL (1987). Exact variance-stabilizing 
transformations for image-signal-dependent Rayleigh and other 
Weibull noise sources. Appl Opt 26(6): 1038-41. 
[16] Pitas I, Venetsanopoulos AN (1990). Nonlinear digital filters: 
principles and applications. Boston: Kluwer Academic. 
[17] Lorenz EN (1956). Empirical orthogonal functions and statistical 
weather prediction. Statistical Forecasting Project. Scientific Report 
No. 1. Cambridge, MA: MIT, Dept. of Meteorology: 49 p. 
[18] Jolliffe IT (2002). Principal component analysis, 2nd Ed. New 
York: Springer. 
[19] Kaiser HF (1958). The varimax criterion for analytic rotation in 
factor analysis. Psychometrika 23(3): 187-200. 
[20] Richman MB (1986). Rotation of principal components. J 
Climatol 6(3): 293-335. 
[21] Elad M (2012). Sparse and redundant representation modeling – 
what next? IEEE Signal Process Lett 19(12): 922-8. 
[22] Hall MA (1999). Correlation-based feature selection for machine 
learning. Dept. of Computer Science. Hamilton, New Zealand: 
University of Waikato: 178 p. 
[23] Ding C, Li T, Jordan MI (2010). Convex and semi-nonnegative 
matrix factorizations. IEEE Trans Pattern Anal Mach Intell 32(1): 45-
55. 
[24] Lee DD, Seung HS (1999). Learning the parts of objects by non-
negative matrix factorization. Nature 401(6755): 788-91. 
[25] Bourlard H, Morgan N (1993). Connectionist Speech 
Recognition: A Hybrid Approach, Kluwer Press. 
[26] Mohamed A, Dahl G, Hinton G (2012). Acoustic modeling using 
deep belief networks.  Audio, Speech, and Language Processing, IEEE 
Transactions on, vol. 20, no. 1, pp. 14 –22.  
[27] Seide F, Li G, Yu D (2011). Conversational Speech Transcription 
Using Context-Dependent Deep Neural Networks. Proc. Interspeech, 
2011. 
[28] Mesgarani N, Cheung C, Johnson K, Chang EF (2014). Phonetic 
feature encoding in human superior temporal gyrus. Science 
343(6174): 1006-10. 


	TR-15-02 cover
	TR-15-002 no cover

