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Abstract

A collaboration between the Speech Processing and Auditory Perception laboratory at UCLA
and the Speech Group at ICSI focused on the refinement of the simple models used in ASR with
representations that have been filtered in the modulation domain to better match human
perception. To quantitatively measure the effects of this modification, UCLA collected CVC
stimuli uttered quickly and more slowly, and conducted perceptual tests for clean and noisy
versions of the stimuli. The ICSI team then conducted tests to determine if inclusion of Gabor-
filtered spectrograms with lower or higher temporal modulations could be used to correlate
better with human perception. Here we report on results that confirmed an improvement in
this correlation, particularly for noisy and rapid speech, while also improving the accuracy.
Overall accuracies in noise for all systems tested, though, were quite poor, suggesting that
further auditory modeling might be necessary to improve the modeling of human performance
on this task.

1 International Computer Science Institute, Berkeley, CA, USA

2 EECS Department, UC Berkeley, Berkeley, CA, USA

3 Electrical Engineering Department, UC Los Angeles, Los Angeles, CA, USA
4 Amazon.com, Inc., Seattle, WA, USA

5 Department of Bioengineering, UC Los Angeles, Los Angeles, CA, USA

We are indebted to Bernd Meyer and Marc Schadler for their versions of Gabor filters that we routinely use. And

last but not least, we acknowledge the support of NSF Award 1248047.Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the authors or originators and do not necessarily reflect
the views of theNational Science Foundation.

Note: title of the NSF grant at ICSI is Towards Modeling Human Speech Confusions in Noise.
This was a project of the Speech Group.



Introduction

One of our long-term goals is to duplicate in automatic speech recognition (ASR) the
robust properties of human speech recognition (e.g., cocktail party effect, word
recognition in noise, insensitivity to a wide range of speaking rates, etc.). While it is
possible that such significant improvements might be provided without
incorporating biological models, making use of known properties of these natural
systems could provide a shortcut to better systems, since the design space for signal
representations is essentially infinite. Towards this end, we think that it is desirable
to improve our models of hearing by incorporating more properties observed in
mammals.

The work reported here was limited by available resources (funded only by a
modest NSF EAGER grant), so we chose to correspondingly limit our research plan.
Rather than incorporate an elaborate auditory model as our baseline, we used a
standard front end that is commonly used in ASR, namely, MFCCs, which do model
some basic properties of hearing; in a later refinement, we also tried using
spectrograms processed with steps from the Power Normalized Cepstral
Coefficients (PNCC) approach (Kim and Stern, 2012), which has shown some
improvements over PLP or MFCC in some tests on noisy speech. We then applied
Gabor filters over a range of temporal modulations, and used the resulting features
as inputs to a neural network that was trained to generate features for a Gaussian
mixture based HMM ASR system.

We have previously conducted many ASR studies using such Gabor-filtered inputs,
which were modeled after spectro-temporal receptive fields that have been
measured in experiments by Shamma, Mesgarani, and others (Mesgarani et al,
2008). However, in this case, our effort differed in at least two key aspects. First, our
source material was much simpler (CVC syllables, recorded at UCLA), so that we
could observe the distribution of accuracies in order to derive correlations with
human perception. And secondly, the specific goal of these studies was not to
improve ASR, but rather to observe whether these specific modifications of a
standard ASR signal representation would improve the correlations with measures
of hearing. One intriguing notion to be tested was, at least in this limited example,
whether using representations inspired by physiological measurements (the Gabor
approach to modulation processing) would provide a better match to
psychoacoustics.

Physiological Background for Spectro-Temporal Modulation Filtering

2D Gabor filters appear to closely resemble the spectro-temporal response fields of
neurons in the primary auditory cortex, and in particular are used to extract
features that simultaneously capture spectral and temporal modulation frequencies
for automatic speech applications, as they are used to extract spatial-temporal
modulation frequencies for image processing applications (De-Valois and De-Valois,
1990). The overall sensitivity pattern for human hearing has also been observed via
perceptual experiments, e.g., from Chi et al (1999) and Drullman et al. (1994). It was



observed that humans are most sensitive to temporal modulation frequencies up to
16 Hz and spectral modulation frequencies up to 2 cycles per octave.

A reasonable representation of this process, and one that we have successfully used
in speech processing tasks (e.g., speech recognition and speech activity detection), is
to filter the time-frequency plane (currently represented by log mel spectral
energies extracted every 10 ms from a 25 ms window) with multiple Gabor impulse
responses. Each impulse response is complex, with the real component being a
cosine windowed by a truncated Gaussian (or a Hann window), and the imaginary
being a windowed sine function. Note that such a spectro-temporal impulse
response selectively emphasizes particular components of the temporal and
spectral modulations that constitute a time-frequency representation. The output of
each of these filters (or in some cases of a group of these filters) is further processed
by a multi-layer perceptron (MLP) that has been trained to discriminate between
phonetic classes. The MLP outputs can then be interpreted as posterior probabilities
for these classes, and can be combined additively with weights that are computed
dynamically in order to take advantage of the properties of the different feature
“streams” for each new acoustic situation. For modeling of human speech
perception, the MLP posterior estimates can be used for comparison to
experimental phonetic confusions.
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Figure 1: Courtesy of S. Shamma, U. of Maryland (from a presentation). The figure shows the
Shamma model of spectro-temporal receptive fields as they have been observed in mammalian
primary auditory cortex. Note that “Rate” refers to temporal modulations, “Scale” refers to
Spectral modulations, and the Frequency axis is the auditory frequency axis associated with some
approximation to the warping of frequency by cochlear function.



Methodology
Collection of the UCLA CVC stimuli

A set of 36 CVC (consonant-vowel-consonant) phonetically balanced syllables was
selected that incorporated 13 consonants and 3 vowels. Recordings took place at
UCLA using an AKG C-410 head mounted microphone in a soundproof room, with
two talkers (one male and one female). Each CVC was repeated twice by each
speaker. Babble noise from the Noisex database (Varga and Steeneken, 1993) was
added to the CVCs to prepare noisy stimuli. The SNR was calculated by using the
average SNR level over the speech-only segment, which was then used to determine
the noise power to be added. Each stimulus was prefixed with 100 ms of pure noise
(at the noise power calculated in the previous step) in order to enable listeners to
adapt to the noise environment. Stimuli were generated corresponding to 6
conditions: 3 SNRs (quiet, 5 dB, 0 dB) x 2 speaking rates (slow, fast). Given the two
speakers and the two repetitions, this yielded (36x2x2x2x3) = 864 utterances for
both perceptual and ASR experiments.

Conducting Perceptual Experiments

Listening experiments were conducted with 52 subjects, in a soundproof booth at
UCLA using the stimuli described above. The subjects would hear the set of 864 CVC
stimuli (36 syllables x 2 talkers x 2 speaking rates x 3 noise levels x 2 repetitions)
over two sessions of one hour each, corresponding to 432 stimuli per session. The
stimuli were played back to back, and the subjects were given a 3 second window
between the stimuli in order to respond. They were asked to repeat back the
stimulus that they heard. A short break of 10 seconds was given after every 20
stimuli. Two phonetically trained linguists transcribed these manually.

For analysis of the perceptual data, effects were observed for each of the generation
factors, but for the purpose of this report, the focus will be on the speaking rate
characteristics over the range of consonants.

Automatic Speech Recognition (ASR)

For the ASR, we used a neural network to generate features, and a Gaussian Mixture
Model/Hidden Markov Model (GMM/HMM) approach to the modeling of the CVCs.
Given the limited amount of CVC data, we primarily used 51 hours of read Wall
Street Journal speech (22,092 utterances) for training of both the MLP feature
generator and the GMM/HMM acoustic models. However, we adapted the MLP to
471 of the CVC utterances (unused for other testing). Testing was then done on an
independent set of 864 CVC utterances. Results for recognition of the different
consonants were then compared to the UCLA perceptual results for the different
front end models that were considered, and for differing noise levels and speaking
rates.



Baseline acoustic front end for ASR experiments

In the 1930s, researchers at places like Bell Labs used filter banks for speech
analysis, particularly for experimental analysis-synthesis systems. As speech
recognition efforts began in earnest in the 1960s and 70s, filter banks were adapted
from earlier applications as a reasonable way to characterize the different speech
sounds for classification by machine learning methods of the time. By the mid-late
1980s, it was already customary to use enhancements of these filter banks to
emphasize properties of hearing, most notably: (1) some approximation to critical
band integration of spectral components (roughly linear at low frequencies and
logarithmic at high frequencies, both for bandwidth and spacing); (2) intensity-to-
loudness compression of each band’s energy; and (3) equal-loudness pre-emphasis
(in particular de-weighting low frequencies).

In general, as has become standard for these spectral measures to be transformed
into cepstral ones, primarily for the orthogonality property of the latter features,
which is desirable for Gaussian modeling. As of this writing, this transformation is
sometimes falling out of favor, particularly when it is to be followed by a neural
network, which tends to be less “fussy” about preferring decorrelated inputs.
However, for our baseline systems, we followed the older convention, since the
baseline feature vectors are modeling by a GMM/HMM approach.

Our primary baseline features were Mel Frequency Cepstral Coefficients (MFCCs),
which are the most common front ends for GMM/HMM based ASR systems. The
filter spacing uses the mel scale (which was derived from pitch perception, and so is
not really ideal for spectral estimation, but it has become a standard), and the
compression is logarithmic (built into the cepstral transformation). The pre-
emphasis typically has a zero at zero frequency as a practical matter, in order to
handle the effects of d.c. that can be present in recording equipment.

In addition to twelfth-order MFCCs themselves, we followed establish practice and
augmented the 13 (C0-C12) features with their first and second differences (the so-
called “delta” features). The features were also normalized to zero mean at the
utterance level.

There are many other front end features that, arguably, better represent properties
of human hearing, but for the purpose of this study we used this common method as
our baseline, primarily to compare with the application of a single combination of
methods chosen to a specific simplified model of mammalian hearing.

Acoustic features under test

We augmented the MFCC-based features with features derived from three primary
steps: (1) Gammatone-based (Patterson, 1992) spectrogram estimation (2) Gabor
filtering (Mesgarani et al, 2008); and (3) neural networks trained as described
below. We will refer to this augmentation vector as GT-Gabor-MLP.



We also used a variant of PNCC, which also incorporates gammatone-base spectral
estimation, but also includes (1) “medium-time” nonlinear processing that
suppresses the effects of additive noise and room reverberation, and (2) a power
nonlinearity with exponent 1/15. The final transformation from spectral to cepstral
coefficients is performed for PNCC but is skipped or PNS.

Gabor filtering is briefly described in the introduction to this report. For these
experiments, seven ranges of temporal modulations, including four in the range of
from O to 6.2 Hz (centered at 0, 2.4, 3.9, and 6.2 Hz) and three from 9.9 to 25 Hz
(centered at 9.9, 15.7, and 25 Hz) were used. For each feature stream, there were 9
spectral modulations ranging from -0.25 to 0.25 cycles per channel leading to a total
of 125 inputs (as shown in Table 1 below).

Spectral Number of
modulation outputs
frequency

(cycle/channel)

0.25,-0.25 40
0.12,-0.12 13
0.06,-0.06 5
0.03,-0.03 3

0 3

Table 1: Spectral modulation ranges used for each temporal modulation frequency

For each of the seven Gabor-filtered PNS-spectrogram inputs, an MLP with a single
hidden layer of 1000 neurons was trained to classify one of 41 phonetic units.
During testing, the posterior probability outputs were combined using weights
derived from the inverse of the entropy of each posterior vector (normalized so that
the seven weights added up to one). The weighted and summed outputs were then
transformed by a logarithm and PCA dimensionality reduction to yield 25 features,
which were then used to augment the MFCC-based baseline features.

GMM/HMM Modeling

As noted above, we trained our GMM/HMM systems with 51 hours of speech from
the Wall Street Journal corpus. The acoustic models use cross-word triphones as the
modeled units, with statistics estimated with a maximum likelihood procedure. Each
triphone is modeled using a 3-state HMM with no skip states. The resulting triphone
states are clustered using a decision tree to 5000 tied states. The output distribution
for each tied state is modeled with a mixture of 32 multivariate Gaussians with
diagonal covariance matrices. The word level model consists of a silence state at the
start, followed by an initial /a/ and then a branch to all 36 possible CVCs, concluding
with a final silence. HTK was used for both training and decoding,.



Determination of results

Following decoding with the word models described above, scoring was done to
determine accuracy of the consonant recognition. The vector of consonant
accuracies was then compared to UCLA’s human perception results via both
inspection and correlation.

Results

Here we summarize some of the most prominent results from the study.

The strongest effect observed is shown in Table 2. Note that the 3rd front end
method (MFCC + PN-GT-Gabor) only differs from the second by the use of medium-
term power normalization, and the use of 1/15 exponent power transformation.
Here it appears that, for the case of noisy CVCs, the joint incorporation of these
characteristics not only provide a significant improvement in accuracy (although it’s
still terrible), but also give a better correlation to human perception. However, the
use of Gabor modulation filters by themselves (along with a gammatone spectral
analysis and MLP transformation of the Gabor output) does not significantly
improve accuracy, and appear to even worsen correlation with perception.

Front end method Machine consonant Correlation with
accuracy in 5dB SNR perception in 5 dB SNR

Baseline (MFCC) 14.9% 0.24

MFCC + GT-Gabor-MLP 15.3% 0.21

MFCC + PN-GT-Gabor-MLP 18.2% 0.28

Table 2: Front end effects for noisy CVCs

For clean speech, on the other hand, neither of the alternative strategies yielded
better performance by augmenting MFCCs. It is not clear what we can infer from
this, since the additional features incorporate a trained component, and this aspect
might have limited the results due to the small amount of training used. See Table 3
for a summary of these results. However, once again it is clear that the additional
front end steps are to be preferred (at least they degrade the results less!)

Front end method Machine consonant Correlation with
accuracy in high SNR perception in high SNR

Baseline (MFCC) 75.7% 0.96

MFCC + GT-Gabor-MLP 67.0% 0.89

MFCC + PN-GT-Gabor-MLP 73.4% 0.93

Table 3: Front end effects for high SNR CVCs

For rapid speech in noise, there is a significant degradation of all accuracies (e.g.,
from the 14.9% for MFCCs overall to 12.5% for the rapid speech component);
however, as shown in Table 4, the correlation with perception for the high




modulation Gabor filters actually increases, and the accuracy is far better than what
we achieve when all modulation filters are used. Here we are only showing the PN-
GT case, since the GT case degrades further in noise (but its results are available in
the Appendix). Interestingly, although the accuracy for the low modulations is
worse, the correlation with perception is just as strong as for the high modulations.

Front end method Machine consonant Correlation with
accuracy in 5dB SNR perception in 5 dB SNR

Baseline (MFCC) 12.5% 0.20

MFCC + PN-GT-Gabor-MLP 13.2% 0.26

MFCC + PN-GT-Gabor-MLP 10.2% 0.31

low modulations only

MFCC + PN-GT-Gabor-MLP 16.5% 0.31

high modulations only

Table 4: Front end effects for noisy CVCs, rapid speech

There is a related effect for slower speech, as illustrated in Table 5; the use of
features from low temporal modulations not only yield better accuracy than using
MFCCs alone, but also yield better accuracy than just using all of the Gabor filters.
However, in this case, some of the results are not as strong. For instance, the
correlation number is not better than the baseline. And in this case, using the higher
modulations still provide the highest accuracy, and equivalent correlation, despite
the test data being slower rate speech.

Front end method Machine consonant Correlation with
accuracy in 5dB SNR perception in 5 dB SNR

Baseline (MFCC) 17.4% 0.24

MFCC + PN-GT-Gabor-MLP 16.9% 0.19

MFCC + PN-GT-Gabor-MLP 19.3% 0.24

low modulations only

MFCC + PN-GT-Gabor-MLP | 20.0% 0.24

high modulations only

Table 5: Front end effects for noisy CVCs, slower speech




In general, the high modulations tend to do as well or better in all conditions, as

highlighted by Tables 6 and 7.

Testing condition

Machine consonant

Machine consonant

accuracy , accuracy,
MFCC + PN-GT-Gabor- MFCC + PN-GT-Gabor-
MLP MLP high modulations
only

Clean, all speech 73.4% 74.8%

Clean, rapid speech 71.9% 74.4%

Clean, slow speech 74.9% 75.3%

Noisy, all speech 15.1% 18.2%

Noisy, rapid speech 13.2% 16.5%

Noisy, slow speech 16.9% 20.0%

Table 6: Comparison between using all modulation filters and only the high ones for all
testing conditions, using the PN-GT-Gabor-MLP front end, consonant accuracies.

Table 6 shows that the accuracies are always improved (often significantly) by the
constraint to higher modulations; while Table 7 shows that the correlations with the
results from perceptual tests are similarly improved. There are many possible
reasons for this behavior; for instance, the MFCC features to which the modulation
features are appended are essentially broad in modulation range, and so
emphasizing the higher modulations may help to boost an important region.

We note that for the case of high modulations only, the TOTAL number of trained
parameters is significantly lower, since only some of the MLPs are used and the
number of hidden units is kept constant.

Testing condition

Machine correlation

Machine correlation with

with perception, perception,
MFCC + PN-GT-Gabor- MFCC + PN-GT-Gabor-
MLP MLP high modulations
only
Clean, all speech 0.93 0.95
Clean, rapid speech 0.92 0.94
Clean, slow speech 0.92 0.95
Noisy, all speech 0.22 0.28
Noisy, rapid speech 0.26 0.31
Noisy, slow speech 0.19 0.24

Table 7: Comparison between using all modulation filters and only the high ones for all
testing conditions, using the PN-GT-Gabor-MLP front end, correlation with perception.




Full tables of the resulting accuracies are shown in the Appendices to this report.
Discussion

For most of the tests, any strategy that improved consonant accuracy also yielded a
better correlation with human performance. However, all of the measured ASR
accuracies were far lower than the human perceptual case, particularly for the cases
of noise, which is not a surprise. Arguably, having significantly more relevant
training data could improve these numbers, but this was not the point of the study.
The more relevant question was whether higher temporal modulations were indeed
more effective in recognizing faster speech, and this has been demonstrated.
However, in case of additive noise, these modulations still provided an
improvement, perhaps because the MFCCs covered a range of modulations (and
likely were dominated by lower temporal modulations).

In noise, the high temporal modulation additions to the front-end model (using
other improvements based on gammatone spectral analysis, power normalization,
and 1/5 root compression) did appear to provide better accuracy and correlation
with perceptual consonantal accuracies. However, the lack of improvement in the
model for the high SNR case (and even an overall reduction in correlation with the
perceptual results) indicates that our current approach does not provide an overall
effective improvement in modeling. However, we are using far less training data
than an adult human has had access to. Perhaps this experiment could be repeated
with far more training data, both for the original training data and for the
adaptation data. Furthermore, a follow-up experiment should incorporate
adaptation of the GMMs, and not only of the MLPs. While this would also be
expected to improve the baseline results, our experience with MLPs (and
discriminant training of all types) suggests that they could be even more susceptible
to overfitting an insufficient amount of training data.

Concluding Remarks

To a speech recognition researcher, the most obvious conclusion is that our
system’s performance is far worse than what can be observed in human perception.

Still, it is apparent that the use of high temporal modulations is quite effective in
improving performance for rapid speech, as one might expect. It is particularly
interesting that the reduction of the inputs to filter out low temporal modulations at
the input actually improves performance, despite the incorporation of machine
learning techniques that in principle would handle the variability in speaking rate.
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Appendix A: Full results for PN-GT-Gabor-MLP augmentation of MFCCs

Table A1 - High SNR results, consonant accuracy, speech overall

Front end method Machine accuracy Correlation with
perception

Baseline (MFCC) 75.7% 0.96

PN-Gabor-MLP 73.4% 0.93

PN-Gabor-MLP-low | 69.2% 0.86

mod

PN-Gabor-MLP- 74.8% 0.95

high mod

Table A2 - High SNR results, consonant accuracy, rapid speech

Front end method Machine accuracy Correlation with
perception

Baseline (MFCC) 76.7% 0.94

PN-Gabor-MLP 71.9% 0.92

PN-Gabor-MLP-low | 65.5% 0.86

mod

PN-Gabor-MLP- 74.4% 0.94

high mod

Table A3 - High SNR results, consonant accuracy, slower speech

Front end method Machine accuracy Correlation with
perception

Baseline (MFCC) 74.7% 0.94

PN-Gabor-MLP 74.9% 0.92

PN-Gabor-MLP-low | 72.9% 0.86

mod

PN-Gabor-MLP- 75.3% 0.95

high mod




Table A4 - 5 dB SNR results, consonant accuracy, speech overall

Front end method

Machine accuracy

Correlation with

perception
Baseline (MFCC) 14.9% 0.24
PN-Gabor-MLP 15.1% 0.22
PN-Gabor-MLP-low | 14.7% 0.26
mod
PN-Gabor-MLP- 18.2% 0.28

high mod

Table A5 - 5 dB SNR results, consonant accuracy, rapid speech

Front end method

Machine accuracy

Correlation with

perception
Baseline (MFCC) 12.5% 0.20
PN-Gabor-MLP 13.2% 0.26
PN-Gabor-MLP-low | 10.2% 0.31
mod
PN-Gabor-MLP- 16.5% 0.31

high mod

Table A6 - 5 dB SNR results, consonant accuracy, slower speech

Front end method

Machine accuracy

Correlation with

perception
Baseline (MFCC) 17.4% 0.24
PN-Gabor-MLP 16.9% 0.19
PN-Gabor-MLP-low | 19.3% 0.22
mod
PN-Gabor-MLP- 20.0% 0.24

high mod




Appendix B: Full results for GT-Gabor-MLP augmentation of MFCCs

Table B1 - High SNR results, consonant accuracy, speech overall

Front end method Machine accuracy Correlation with
perception

Baseline (MFCC) 75.7% 0.96

GT-Gabor-MLP 67.0% 0.89

GT-Gabor-MLP-low | 57.2% 0.78

mod

GT-Gabor-MLP- 68.7% 0.87

high mod

Table B2 - High SNR results, consonant accuracy, rapid speech

Front end method Machine accuracy Correlation with
perception

Baseline (MFCC) 76.7% 0.94

GT-Gabor-MLP 65.1% 0.87

GT-Gabor-MLP-low | 51.1% 0.68

mod

GT-Gabor-MLP- 70.3% 0.88

high mod

Table B3 - High SNR results, consonant accuracy, slower speech

Front end method Machine accuracy Correlation with
perception

Baseline (MFCC) 74.7% 0.94

GT-Gabor-MLP 65.1% 0.87

GT-Gabor-MLP-low | 63.3% 0.81

mod

GT-Gabor-MLP- 67.2% 0.81

high mod




Table B4 - 5 dB SNR results, consonant accuracy, speech overall

Front end method Machine accuracy Correlation with
perception

Baseline (MFCC) 14.9% 0.24

GT-Gabor-MLP 15.3% 0.21

GT-Gabor-MLP-low | 11.1% 0.15

mod

GT-Gabor-MLP- 6.5% 0.09

high mod

Table B5 - 5 dB SNR results, consonant accuracy, rapid speech

Front end method Machine accuracy Correlation with
perception

Baseline (MFCC) 12.5% 0.20

GT-Gabor-MLP 13.8% 0.27

GT-Gabor-MLP-low | 10.3% 0.21

mod

GT-Gabor-MLP- 4.3% 0.10

high mod

Table B6 - 5 dB SNR results, consonant accuracy, slower speech

Front end method Machine accuracy Correlation with
perception

Baseline (MFCC) 17.4% 0.24

GT-Gabor-MLP 16.8% 0.18

GT-Gabor-MLP-low | 11.9% 0.11

mod

GT-Gabor-MLP- 9.0% 0.10

high mod
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