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Abstract. Convolutional Neural Networks (CNNs) can provide accu-
rate object classification. They can be extended to perform object detec-
tion by iterating over dense or selected proposed object regions. However,
the runtime of such detectors scales as the total number and/or area of
regions to examine per image, and training such detectors may be pro-
hibitively slow. However, for some CNN classifier topologies, it is possible
to share significant work among overlapping regions to be classified. This
paper presents DenseNet, an open source system that computes dense,
multiscale features from the convolutional layers of a CNN based object
classifier. Future work will involve training efficient object detectors with
DenseNet feature descriptors.
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Fig. 1: DenseNet multiscale feature pyramid extraction

1 Introduction

The rebirth of deep neural networks has led to profound improvements in the
accuracy of object recognition algorithms. The key algorithms of the deep learn-
ing revolution can be traced back to the late 1980s [1]. However, the rise of
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big data has led to huge labeled datasets (e.g. ImageNet [2] with >1M la-
beled images) for training and evaluating object recognition systems. Addition-
ally, extremely efficient deep neural network implementations such as Berkeley’s
Caffe [3] and Toronto’s cuda-convnet [4] expose enough parallelism to make Im-
ageNet a tractable benchmark for deep neural network object classification. The
Caffe framework is also designed to encourage research, development, and collab-
oration though a robust open source development model and a rich set of features
for configuration, testing, training, and general CNN experimentation. Today,
deep convolutional neural networks (CNNs) such as Alexnet [4] and Clarifai [5]
produce state-of-the-art object classification accuracy (up to 88% when scored
on top-5 categories) on the 1000-category ImageNet dataset. Further, in areas
such fine-grained recognition and image segmentation, using ImageNet-trained
deep CNNs as feature descriptors has advanced the state-of-the-art accuracy
substantially [6].

Perhaps the biggest success story for cross-domain portability of ImageNet-
trained CNNs lies in object detection. While object classification problems pro-
vide labels or crops to indicate object locations, object detection requires both
object localization and classification.
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Fig. 2: Sliding-window object recognition. A number of detection methods in-
cluding Deformable Parts Models (DPMs) and Poselets are built on pipelines
like this.

The sliding window approach is common way to convert a object classifier
into an object detector. Compared to sparse approaches, one key property is
that it is trivial to create the set of region proposals. However, depending on
the desired density in position and scale, the number of region proposals may
become quite large. Traditionally, algorithms such as Deformable Parts Models
(DPMs) [7] and Poselets [8] achieved high-quality object detection with sliding-
window multi-template detectors on HOG [9] features. The best of the sliding-
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window detector breed have typically yielded around 33% mean average precision
(mAP) on the PASCAL [10] 2007 object detection dataset; using additional
hand-engineered descriptors can yield incremental improvements.

Extending a current state of the art CNN-based classifier into an object
detector using a naive dense sliding window set of region proposals would be
prohibitively slow. For example, with a per-region classification time of ∼50ms
and ∼200K regions, the per image detection time would be ∼3 hours. To avoid
this issue, one can either reduce the number of region proposals, decrease the
time spent per region, or some combination of the two. In particular, CNNs
offer the potential to share significant work between overlapping regions. In the
related work section, we consider various approaches that explore specific design
points in this space of options.

The remainder of the paper is organized as follows: In Section 2, we review
related work on dense CNN features, particularly for object detection. Section 3
proposes DenseNet, our approach to efficiently extracting pyramids of CNN de-
scriptors. We discuss using the DenseNet features to efficiently support the clas-
sification method of [4] over many possible region proposals for an image; in
particular, we discuss the key issues of supporting per-region data centering,
varied sizes, and varied aspect ratios.

2 Related Work

CNNs for Object Detection.
DetectorNet [11] performs sliding-window detection on a coarse 3-scale CNN

pyramid. Due to the large receptive field of CNN descriptors, localization can be
a challenge for sliding-window detection based on CNNs. Toward rectifying this,
DetectorNet adds a procedure to refine the CNN for better localization. However,
DetectorNet does not pretrain its CNN on a large data corpus such as ImageNet,
and this may be a limiting factor in its accuracy. In fact, DetectorNet reported
30% mAP on PASCAL VOC 2007, less than the best HOG-based methods.

OverFeat [12] generates dense, multi-scale CNN features suitable for object
detection and classification for square regions. OverFeat does not consider the is-
sue of non-square region proposals as they are not necessary for their approaches
to detection or classification. In our approach, we support both the extraction
of non-square regions of feature descriptors as well as the higher level approach
of constructing multiple feature pyramids where, for each pyramid, the input
has been warped to a selected aspect ratio. While precompiled binaries for run-
ning the OverFeat CNN to create such features using provided pre-trained CNN
model parameters are provided, training code is explicitly not provided. Further,
it is unclear how much of the source code for the rest of the OverFeat system
is available; some is part of the Torch7 [13] framework used by OverFeat. This
lack of openness hinders the usage of OverFeat as the basis for coupled CNN
/ detection algorithm design space exploration and comparison, particularly for
benchmark sets where no OverFeat-based detection results are available (such
as the PASCAL objection detection benchmarks). Also, unlike the Caffe sys-
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tem into which DenseNet is integrated, it appears that OverFeat does not focus
on providing a robust, general, open platform for research, development, and
efficient GPU computation of CNNs.

Another recent approach called Regions with Convolutional Neural Network
features (R-CNN) [14] leverages an ImageNet-trained CNN as a feature descrip-
tor to achieve a profound boost in accuracy: 54% mAP on PASCAL 2007, and up
to 59% with bounding box regression. Unlike traditional sliding-window detec-
tion approaches, R-CNN decouples the localization and classification portions of
the object detection task. R-CNN begins by generating class-independent region
proposals with an algorithm such as Selective Search [15]. Then, it extracts CNN
descriptors on the proposed regions after warping them to a fixed square size.
Finally, R-CNN scores and classifies the proposed regions using a linear SVM
template on the CNN descriptors.
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Fig. 3: Object Detection with R-CNN [14]: region proposals and CNN descrip-
tors.

Currently, the overall runtime of R-CNN yields a latency of ∼10s per image.
This latency renders the approach unsuitable for interactive applications such
as image labeling or search. However, since many of the region proposals for
a given image overlap, much image area is being processed by the CNN many
times. Further, the bulk of the computation of the CNNs occurs in its early con-
volutional layers and does not depend on the relative position of image patches
within regions. This suggests that it may be possible to share a great deal of
work among all the region proposals for a given image. However, data centering
issues and the fact that the regions are of differing sizes and aspect ratios makes
this reuse more difficult to achieve. Using DenseNet to achieve such reuse for the
R-CNN algorithm without significant loss of accuracy is a subject of ongoing
work.

Other Uses of Dense and Multiscale CNN Pyramids.

A number of approaches have arisen for computing dense pyramids of CNN
features in various computer vision applications outside of object detection. Fara-
bet et al. [16] and Jiu et al. [17] construct multiresolution pyramids of 2-layer
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CNNs. Farabet et al. apply their network to scene parsing, and Jiu et al. showed
multiscale CNN results on human pose estimation. Along the same lines, Giusti
et al. compute CNN pyramids and perform sliding-window processing for image
segmentation [18]. Several years earlier, Vaillant et al. densely computed CNNs
on full images for robust face localization [19].

3 DenseNet CNN Feature Pyramids

The CNN object classifier of [4] operates on fixed size square images. The bulk
of the computation performed by the classifier occurs in the first five convolu-
tional layers of the neural network and takes time roughly proportional to the
number of input pixels. As a preprocessing step, the input image is centered by
subtracting the mean image created from a large data set. However, after this
step, the computation performed in the convolutional layers is translationally
invariant. Thus, the output of a node at the final convolution layer depends
only on the value of the supporting image patch, not on the relative location
of the node within its image plane. Hence, for two overlapping region proposals
of the same size and aspect ratio, the values of any nodes that share the same
supporting image patch will be identical, and need not be recomputed. Consider
the following simplified example: assume a classifier that operates on images of
size M ∗M (ex: 200) and an input image of size N ∗N (ex: 1000). With a stride
of 16px, there are ∼R = ((N − M)/16)2 (ex: ∼2.5K) possible M ∗ M regions
within the N ∗N region. Computing the convolutional layers on these R regions
takes time proportional to R ∗M ∗M (ex: ∼100Mops). However, computing the
convolutional layers on the original image directly only takes time proportional
to 1 ∗N ∗N (ex: ∼1Mops). Thus, a single full-image dense computation of the
features yields a speedup of 100X over computing the features per-region.

However, we wish to accelerate classification over broader set of aspect ratios
and sizes of regions within the input image, and we must somehow deal with the
mean-image data centering issue as well. We will detail our approach to these
problems in the following sections. In summary:

– For the issue of differing scales, we take the traditional approach of construc-
tion a multi-resolution pyramid of images formed by up- and down- sampling
the input image with a configurable selection of scales. Additionally, we deal
with some complexities of processing such pyramids in the Caffe [3] system.

– For the issue of data centering, we choose to center using a single mean pixel
value, rather than a mean image, and provide some experimental justification
that this simplification is acceptable.

– For the issue of multiple aspect ratios, we choose to push the problem down-
stream to later detector stages, but also consider the possibility of creating
multiple image pyramids at a selection of aspect ratios.

3.1 Multiscale Image Pyramids for CNNs

We show the overall flow of our DenseNet multiscale feature extractor in Fig-
ure 1. The selection of scales chosen for our pyramids is similar to that used
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for other features in other object detectors, such as the HOG feature pyramids
used by the DPM object detectors of [20]. The maximum scale is typically 2,
and the minimum scale is chosen such that the down-sampled image maintains a
particular minimum size (often ∼16-100px). There are typically 3, 5, or 10 scales
per octave (depending on application), yielding pyramids with ∼10-50 levels and
∼3-8X the total number of pixels of the original image.

A key factor in the rebirth of CNNs is the rise of efficient CPU and GPU
implementations such as cuda-convnet [4], Torch 7 [13], and Caffe [3]. To max-
imize computational efficiency, these CNN implementations are optimized for
batch mode, where tens or hundreds of equal-sized images are computed con-
currently. However, to compute feature pyramids, our goal is to compute CNN
descriptors on an input image sampled at many resolutions. Thus, our multi-
resolution strategy is at odds with the CNN implementations’ need for batches
of same-sized images.

However, with at least the Caffe implementation of CNNs, a single large
image (with a similar total pixel count as a normal batch) can also be efficiently
computed. Using the Bottom-Left Fill (BLF) algorithm implemented in [21], we
stitch the multiple scales of the input image pyramid onto as many large (often
of size 1200x1200 or 2000x2000, depending on available GPU memory) images
as needed, and then run each individual image as a batch. Finally, we unpack
the resulting stitched convolutional feature planes into a feature pyramid.

Using this approach, however, in turn raises another issue. Given the ker-
nel/window sizes of the convolutional and max-pooling commonly found in
CNNs, each descriptor from a deep convolutional layer can have a large (perhaps
∼200px) receptive field size (or supporting image patch size) in the input image.
Thus, stitching could lead to edge/corner artifacts and receptive field pollution
between neighboring pyramid scales that are adjacent in the large stitched im-
ages. To mitigate this, we add a 16px border to each image, for a total of at least
32px of of padding between any pair of images on a plane. We fill the background
with the mean pixel value used for data centering (as discussed below). Finally,
we linearly interpolate all image padding between the image’s edge pixel and
the centering mean pixel value. Experimentally, we find that this scheme seems
successful in avoiding obvious edge/corner artifacts and receptive field pollution.

3.2 Data Centering / Simplified RGB mean subtraction

The CNN classifier of [4] subtracts a mean image (derived from ImageNet) from
each input image to center it prior to feeding it into the CNN. For stitched
images containing many pyramid levels, or even for a single image that is to be
processed to support many possible region proposals, it is unclear how achieve
per-region centering by a mean image. Therefore, we instead use a mean pixel
value (derived from the ImageNet mean image).

Remember from the previous subsection that we fill the background pixels in
our planes with the mean ImageNet mean RGB value, so the background pixels
on planes end up being zeros after centering.
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As a validation of this simplified mean pixel centering scheme, we run a
pretrained Alexnet model on ImageNet. Running with one RGB mean pixel is
0.2% less accurate than using the RGB mean mask for top-1 classification. Thus,
our simplification of using a mean pixel does not appear to substantially affect
accuracy.

3.3 Aspect Ratios

For the most part, we choose to delegate the handling of different aspect ratios
to later stages in the detection pipeline. In particular, such stages may utilize
multiple templates with various aspect ratios or warp regions in feature space
using non-square down-sampling such as non-square max-pooling. However, note
that for any selection of interesting aspect ratios it is possible to, for each aspect
ratio, warp the input image and construct an entire warped feature pyramid as
per the above procedure. Of course, the overall feature computation time scales
as the number of desired aspect ratios.

3.4 Measured Speedup

We observe that it takes 10sec to compute 2000 window proposals in traditional
Alexnet network in Caffe. DenseNet takes 1sec to compute a 25-scale feature
pyramid. We conducted these experiments on an NVIDIA K20 GPU.

3.5 Straightforward Programming Interface

We provide DenseNet pyramid extraction APIs for Matlab and Python inte-
grated into the open source Caffe framework. Our API semantics are designed
for easy interoperability with the extremely popular HOG implementation in the
Deformable Parts Model (DPM) codebase:

DPM HOG: pyra = featpyramid(image)

DenseNet: pyra = convnet featpyramid(image filename)

4 Qualitative Evaluation

One of our main goals in densely computing CNN descriptors is to avoid the
computational cost of independently extracting CNN descriptors for overlap-
ping image regions. Thus, it is important that we evaluate whether or not our
dense CNN descriptors can approximate CNN descriptors that are computed for
individual image regions in isolation. In other words, when computing descrip-
tors for regions of an image, how different do the descriptors look whether we
crop the regions before or after doing the CNN descriptor computation?

To perform this evaluation, we visualize some example images in two differ-
ent feature extraction pipelines. In Figure 4, we crop regions from pixel space
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and compute descriptors on each window independently. This pipeline is com-
putationally inefficient with large numbers of regions, but this pipeline serves as
our baseline for descriptor computation in applications such as R-CNN [14]. In
contrast to Figure 4, DenseNet first computes descriptors densely without regard
for region proposal windows, and then regions can be cropped from DenseNet
descriptor pyramids. In Figure 5, we show an example scale from a DenseNet
descriptor pyramid, and we crop descriptor regions based on the same regions
used in Figure 4. Note that descriptors are visualized as the sum over channels
– this preserves spatial resolution while sufficiently reducing dimensionality for
straightforward 2D visualization. The key takeaway here is that the descriptors
in the rightmost boxes of Figures 4 and 5 look similar, so DenseNet appears to
be a good approximation of per-region descriptors computed in isolation.

5 Conclusion

We have presented an overview of how we densely compute CNN feature pyra-
mids with DenseNet.
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Fig. 4: Descriptors independently computed on image regions. Here, we first crop
regions from images, then compute descriptors. This is the type of approach used
in R-CNN [14]. The image regions were chosen arbitrarily, not taken from [15].
Also notice that the image regions used in this example are square, so no pixel
warping is needed.
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Fig. 5: Descriptors computed on a full image. These descriptors can be cropped to
approximate region proposal windows (rightmost panel). DenseNet is optimized
for this type of feature extraction.
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