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Abstract

We present a holistic data-driven technique that gener-
ates natural-language descriptions for videos. We com-
bine the output of state-of-the-art object and activity
detectors with “real-world” knowledge to select the
most probable subject-verb-object triplet for describ-
ing a video. We show that this knowledge, automati-
cally mined from web-scale text corpora, enhances the
triplet selection algorithm by providing it contextual in-
formation and leads to a four-fold increase in activity
identification. Unlike previous methods, our approach
can annotate arbitrary videos without requiring the ex-
pensive collection and annotation of a similar training
video corpus. We evaluate our technique against a base-
line that does not use text-mined knowledge and show
that humans prefer our descriptions 61% of the time.

Introduction

Combining natural-language processing (NLP) with com-
puter vision to to generate English descriptions of visual
data is an important area of active research (Motwani and
Mooney 2012; Farhadi et al. 2010; Yang et al. 2011). We
present a novel approach to generating a simple sentence for
describing a short video that:

1. Identifies the most likely subject, verb and object (SVO)
using a combination of visual object and activity detec-
tors and text-mined knowledge to judge the likelihood of
SVO triplets. From a natural-language generation (NLG)
perspective, this is the content planning stage.

2. Given the selected SVO triplet, it uses a simple template-
based approach to generate candidate sentences which are
then ranked using a statistical language model trained on
web-scale data to obtain the best overall description. This
is the surface realization stage.

Figure 1 shows sample system output. Our approach can
be viewed as a holistic data-driven three-step process where
we first detect objects and activities using state-of-the-art vi-
sual recognition algorithms. Next, we combine these often
noisy detections with an estimate of real-world likelihood,
which we obtain by mining SVO triplets from large-scale
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<person, ride, horse>
A person is riding a horse.

Figure 1: Content planning and surface realization

web corpora. Finally, these triplets are used to generate can-
didate sentences which are then ranked for plausibility and
grammaticality. The resulting natural-language descriptions
can be usefully employed in applications such as semantic
video search and summarization, and providing video inter-
pretations for the visually impaired.

Using vision models alone to predict the best subject
and object for a given activity is problematic, especially
while dealing with challenging real-world YouTube videos
as shown in Figures 4 and 5, as it requires a large anno-
tated video corpus of similar SVO triplets (Packer, Saenko,
and Koller 2012). We are interested in annotating arbitrary
short videos using off-the-shelf visual detectors, without the
engineering effort required to build domain-specific activity
models. Our main contribution is incorporating the pragmat-
ics of various entities’ likelihood of being the subject/object
of a given activity, learned from web-scale text corpora. For
example, animate objects like people and dogs are more
likely to be subjects compared to inanimate objects like balls
or TV monitors. Likewise, certain objects are more likely to
function as subjects/objects of certain activities, e.g., “riding
a horse” vs. “riding a house.”

Selecting the best verb may also require recognizing ac-
tivities for which no explicit training data has been provided.
For example, consider a video with a man walking his dog.
The object detectors might identify the man and dog; how-
ever the action detectors may only have the more general
activity, “move,” in their training data. In such cases, real-



world pragmatics is very helpful in suggesting that “walk”
is best used to describe a man “moving” with his dog. We
refer to this process as verb expansion.

After describing the details of our approach, we present
experiments evaluating it on a real-world corpus of YouTube
videos. Using a variety of methods for judging the output of
the system, we demonstrate that it frequently generates use-
ful descriptions of videos and outperforms a purely vision-
based approach that does not utilize text-mined knowledge.

Background and Related Work

Most prior work on natural-language description of vi-
sual data has focused on static images (Felzenszwalb,
McAllester, and Ramanan 2008; Laptev et al. 2008; Yao et
al. 2010; Kulkarni et al. 2011). The small amount of exist-
ing work on videos (Khan and Gotoh 2012; Lee et al. 2008;
Kojima, Tamura, and Fukunaga 2002; Ding et al. 2012;
Yao and Fei-Fei 2010) uses hand-crafted templates or rule-
based systems, works in constrained domains, and does not
exploit text mining. Barbu et al. (2012) produce senten-
tial descriptions for short video clips by using an interest-
ing dynamic programming approach combined with Hidden
Markov Models for obtaining verb labels for each video.
However, they make use of extensive hand-engineered tem-
plates.

Our work differs in that we make extensive use of text-
mined knowledge to select the best SVO triple and gener-
ate coherent sentences. We also evaluate our approach on a
generic, large and diverse set of challenging YouTube videos
that cover a wide range of activities. Motwani and Mooney
(2012) explore how object detection and text mining can aid
activity recognition in videos; however, they do not deter-
mine a complete SVO triple for describing a video nor gen-
erate a full sentential description.

With respect to static image description, Li et al. (2011)
generate sentences given visual detections of objects, vi-
sual attributes and spatial relationships; however, they do not
consider actions. Farhadi et al. (2010) propose a system that
maps images and the corresponding textual descriptions to
a “meaning” space which consists of an object, action and
scene triplet. However, they assume a single object per im-
age and do not use text-mining to determine the likelihood
of objects matching different verbs. Yang et al. (2011) is
the most similar to our approach in that it uses text-mined
knowledge to generate sentential descriptions of static im-
ages after performing object and scene detection. However,
they do not perform activity recognition nor use text-mining
to select the best verb.

Approach

Our overall approach is illustrated in Figure 2 and consists of
visual object and activity recognition followed by content-
planning to generate the best SVO triple and surface realiza-
tion to generate the final sentence.

Dataset

We used the English portion of the YouTube data collected
by Chen et al. (2010), consisting of short videos each with
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Figure 3: Activity clusters discovered by HAC

multiple natural-language descriptions. This data was previ-
ously used by Motwani and Mooney (2012), and like them,
we ensured that the test data only contained videos in which
we can potentially detect objects. We used Felzenswalb’s
(2008) object detector as it achieves the state-of-the-art per-
formance on the PASCAL Visual Object Classes (VOC)
Challenge. As such, we selected test videos whose subjects
and objects belong to the 20 VOC object classes - aeroplane,
car, horse, sheep, bicycle, cat, sofa, bird, chair, motorbike,
train, boat, cow, person, tv monitor, bottle, dining table, bus,
dog, potted plant. During this filtering, we also allow syn-
onyms of these object names by including all words with a
Lesk similarity (as implemented by Pedersen et al. (2004))
of at least 0.5.! Using this approach, we chose 235 potential
test videos; the remaining 1,735 videos were reserved for
training.

All the published activity recognition methods that work
on datasets such as KTH (Schuldt, Laptev, and Caputo
2004), Drinking and Smoking (Laptev and Perez 2007) and

"Empirically, this method worked better than using WordNet
synsets.



UCF50 (Reddy and Shah 2012) have a very limited recog-
nition vocabulary of activity classes. Since we did not have
explicit activity labels for our YouTube videos, we followed
Motwani and Mooney (2012)’s approach to automatically
discover activity clusters. We first parsed the training de-
scriptions using Stanford’s dependency parser (De Marn-
effe, MacCartney, and Manning 2006) to obtain the set of
verbs describing each video. We then clustered these verbs
using Hierarchical Agglomerative Clustering (HAC) using
the res metric from WordNet::Similarity (Pedersen, Pat-
wardhan, and Michelizzi 2004) to measure the distance be-
tween verbs. By manually cutting the resulting hierarchy
at a desired level (ensuring that each cluster has at least 9
videos), we discovered the 58 activity clusters shown in Fig-
ure 3. We then filtered the training and test sets to ensure that
all verbs belonged to these 58 activity clusters. The final data
contains 185 test and 1,596 training videos.

Object Detection

We used Felzenszwalb’s (2008) discriminatively-trained de-
formable parts models to detect the most likely objects in
each video. Since these object detectors were designed for
static images, each video was split into frames at one-second
intervals. For each frame, we ran the object detectors and se-
lected the maximum score assigned to each object in any of
the frames. We converted the detection scores, f(x), to esti-
mated probabilities p(z) using a sigmoid p(z) = 27

Activity Recognition

In order to get an initial probability distribution for activ-
ities detected in the videos, we used the motion descrip-
tors developed by Laptev et al. (2008). Their approach ex-
tracts spatio-temporal interest points (STIPs) from which it
computes HoG (Histograms of Oriented Gradients) and HoF
(Histograms of Optical Flow) features over a 3-dimensional
space-time volume. These descriptors are then randomly
sampled and clustered to obtain a “bag of visual words,”
and each video is then represented as a histogram over these
clusters. We experimented with different classifiers such as
LIBSVM (Chang and Lin 2011) to train a final activity de-
tector using these features. Since we achieved the best clas-
sification accuracy (still only 8.65%) using an SVM with
the intersection kernel, we used this approach to obtain a
probability distribution over the 58 activity clusters for each
test video. We later experimented with Dense Trajectories
(Wang et al. 2011) for activity recognition but there was only
a minor improvement.

Text Mining

We improve these initial probability distributions over ob-
jects and activities by incorporating the likelihood of differ-
ent activities occuring with particular subjects and objects
using two different approaches. In the first approach, us-
ing the Stanford dependency parser, we parsed 4 different
text corpora covering a wide variety of text: English Giga-
word, British National Corpus (BNC), ukWac and WaCk-
ypedia_EN. In order to obtain useful estimates, it is essential
to collect text that approximates all of the written language

Corpora | Size of text
British National Corpus (BNC) | 1.5GB
WaCkypedia_EN 2.6GB
ukWaC 5.5GB
Gigaword 26GB
GoogleNgrams 10'2 words

Table 1: Corpora used to Mine SVO Triplets

in scale and distribution. The sizes of these corpora (after
preprocessing) are shown in Table 1.

Using the dependency parses for these corpora, we mined
SVO triplets. Specifically, we looked for subject-verb re-
lationships using nsubj dependencies and verb-object re-
lationships using dobj and prep_ dependencies. The prep_
dependency ensures that we account for intransitive verbs
with prepositional objects. Synonyms of subjects and ob-
jects and conjugations of verbs were reduced to their base
forms (20 object classes and 58 activity clusters) while form-
ing triplets. If a subject, verb or object not belonging to these
base forms is encountered, it is ignored during triplet con-
struction.

These triplets are then used to train a backoff language
model with Kneser-Ney smoothing (Chen and Goodman
1999) for estimating the likelihood of an SVO triple. In this
model, if we have not seen training data for a particular SVO
trigram, we “back-off” to the Subject-Verb and Verb-Object
bigrams to coherently estimate its probability. This results in
a sophisticated statistical model for estimating triplet proba-
bilities using the syntactic context in which the words have
previously occurred. This allows us to effectively determine
the real-world plausibility of any SVO using knowledge au-
tomatically mined from raw text. We call this the “SVO Lan-
guage Model” approach (SVO LM).

In a second approach to estimating SVO probabilities,
we used BerkeleyLM (Pauls and Klein 2011) to train an n-
gram language model on the GoogleNgram corpus (Lin et
al. 2012). This simple model does not consider synonyms,
verb conjugations, or SVO dependencies but only looks at
word sequences. Given an SVO triplet as an input sequence,
it estimates its probability based on n-grams. We refer to this
as the “Language Model” approach (LM).

Verb Expansion

As mentioned earlier, the top activity detections are ex-
panded with their most similar verbs in order to generate
a larger set of potential words for describing the action. We
used the WUP metric from WordNet::Similarity to expand
each activity cluster to include all verbs with a similarity of
at least 0.5. For example, we expand the verb “move” with
go 1.0, walk 0.8, pass 0.8, follow 0.8, fly 0.8, fall 0.8, come
0.8, ride 0.8, run 0.67, chase 0.67, approach 0.67, where the
number is the WUP similarity.

Content Planning

To combine the vision detection and NLP scores and deter-
mine the best overall SVO, we use simple linear interpola-
tion as shown in Equation 1. When computing the overall



vision score, we make a conditional independence assump-
tion and multiply the probabilities of the subject, activity
and object. To account for expanded verbs, we addition-
ally multiply by the WUP similarity between the original
and expanded verbs. The NLP score is obtained from either
the “SVO Language Model” or the “Language Model” ap-
proach, as previously described.

score = w1 * vis_score + ws * nlp_score @))]

vis_score = P(S/vid) x P(Vsim /vid)
* STM(Viim, Vorig) * P(O/vid)

After determining the top n=5 object detections and top
k=10 verb detections for each video, we generate all pos-
sible SVO triplets from these nouns and verbs, including all
potential verb expansions. Each resulting SVO is then scored
using Equation 1, and the best is selected. We compare this
approach to a “pure vision” baseline where the subject is the
highest scored object detection (which empirically is more
likely to be the subject than the object), the object is the
second highest scored object detection, and the verb is the
activity cluster with the highest detection probability.

Surface Realization

Finally, the subject, verb and object from the top-scoring
SVO are used to produce a set of candidate sentences, which
are then ranked using a language model. The text corpora in
Table 1 are mined again to get the top three prepositions for
every verb-object pair. We use a template-based approach in
which each sentence is of the form:

“Determiner (A,The) - Subject - Verb (Present, Present Con-
tinuous) - Preposition (optional) - Determiner (A,The) - Ob-
Jject.”

Using this template, a set of candidate sentences are gen-
erated and ranked using the BerkeleyLM language model
trained on the GoogleNgram corpus. The top sentence is
then used to describe the video. This surface realization
technique is used for both the vision baseline triplet and our
proposed triplet.

In addition to the one presented here, we tried alterna-
tive “pure vision” baselines, but they are not included since
they performed worse. We tried a non-parametric approach
similar to Ordonez, Kulkarni, and Berg (2011), which com-
putes global similarity of the query to a large captioned
dataset and returns the nearest neighbor’s description. To
compute the similarity we used an RBF-Chi? kernel over
bag-of-words STIP features. However, as noted by Ordonez,
Kulkarni, and Berg (2011), who used 1 million Flickr im-
ages, our dataset is likely not large enough to produce good
matches. In an attempt to combine information from both
object and activity recognition, we also tried combining ob-
ject detections from 20 PASCAL object detectors (Felzen-
szwalb, McAllester, and Ramanan 2008) and from Object
Bank (Li et al. 2010) using a multi-channel approach as pro-
posed in (Zhang et al. 2007), with a RBF-Chi? kernel for the
STIP features and a RBF-Correlation Distance kernel for ob-
ject detections.

Method | Subject% | Verb% | Object% [ All%

Vision Baseline 71.35 8.65 29.19 1.62
LM(VE) 71.35 8.11 10.81 0.00
SVO LM(NVE) 85.95 16.22 24.32 11.35
SVO LM(VE) 85.95 36.76 33.51 23.78

Table 2: SVO Triplet accuracy: Binary metric

Method | Subject% | Verb% | Object% [ All%

Vision Baseline 87.76 40.20 61.18 63.05
LM(VE) 85.77 53.32 61.54 66.88
SVO LM(NVE) 94.90 63.54 69.39 75.94
SVO LM(VE) 94.90 66.36 72.74 78.00

Table 3: SVO Triplet accuracy: WUP metric

Experimental Results
Content Planning

We first evaluatated the ability of the system to identify the
best SVO content. From the ~ 50 human descriptions avail-
able for each video, we identified the SVO for each descrip-
tion and then determined the ground-truth SVO for each of
the 185 test videos using majority vote. These verbs were
then mapped back to their 58 activity clusters. For the re-
sults presented in Tables 2 and 3, we assigned the vision
score a weight of 0 (w1 = 0) and the NLP score a weight of
1 (we = 1) since these weights gave us the best performance
for thresholds of 5 and 10 for the objects and activity detec-
tions respectively. Note that while the vision score is given
a weight of zero, the vision detections still play a vital role
in the determination of the final triplet since our model only
considers the objects and activities with the highest vision
detection scores.

To evaluate the accuracy of SVO identification, we
used two metrics. The first is a binary metric that re-
quires exactly matching the gold-standard subject, verb
and object. Its results are shown in Table 2, where VE
and NVE stand for “verb expansion” and “no verb ex-
pansion” respectively. However, the binary evaluation can
be unduly harsh. If we incorrectly choose “bicycle” in-
stead of a “motorbike” as the object, it should be con-
sidered better than choosing “dog.” Similarly, predicting
“chop” instead of “slice” is better than choosing “go”.
In order to account for such similarities, we also mea-
sure the WUP similarity between the predicted and cor-
rect items. For the examples above, the relevant scores are:
wup(motorbike,bicycle)=0.7826, wup(motorbike,dog)=0.1,
wup(slice,chop)=0.8, wup(slice,g0)=0.2857. The results for
the WUP metric are shown in Table 3.

Surface Realization

Figures 4 and 5 show examples of both good and bad sen-
tences generated by our method compared to the vision base-
line.

Automatic Metrics To automatically compare the sen-
tences generated for the test videos to ground-truth human
descriptions, we employed the BLEU and METEOR metrics



Proposed: A person is riding a motorbike.
Baseline: A person plays a bicycle.

" Ground truth: A man is riding a motorcycle.
URL: http://www.youtube.com/watch Pv=SPL2sQd65YY

Proposed: A person is riding a horse.
Baseline: A person plays a cat.

Ground truth: A woman is riding on a horse.
URL: http://www.youtube.com/watch?v=X09MVEENMbc

Proposed: A person goes to the car.

Baseline: A person plays a bottle.

Ground truth: A girl is jumping onto a car.
URL: http://www.youtube.com/watch?v=JQevOG60KDVA

Proposed: A person pulls the chair.

Baseline: A person plays a bottle.

. Ground truth: A woman is drinking from a bottle.
URL: http://www.youtube.com/watch?v=Rkail80qbis

Proposed: A person is walking a dog.
Baseline: A person plays a cat.

Ground truth: A baby plays with a cat.
URL: http://www.youtube.com/watch?v=YIUCWNsMIHM

Proposed: A person rides a car.

Baseline: A person moves a cat.

Ground truth: A man is dragging a cat.

URL: http://www.youtube.com/watch?v=NOGAIpPXd4o

Figure 5: Examples where we underperform the baseline

used to evaluate machine-translation output. METEOR was
designed to fix some of the problems with the more popular
BLEU metric. They both measure the number of matching
n-grams (for various values of n) between the automatic and
human generated sentences. METEOR takes stemming and
synonymy into consideration. We used the SVO Language
Model (with verb expansion) approach since it gave us the
best results for triplets. The results are given in Table 4.

Human Evaluation using Mechanical Turk Given the
limitations of metrics like BLEU and METEOR, we also
asked human judges to evaluate the quality of the sentences
generated by our approach compared to those generated by
the baseline system. For each of the 185 test videos, we
asked 9 unique workers (with >95% HIT approval rate and
who had worked on more than 1000 HITs) on Amazon Me-
chanical Turk to pick which sentence better described the
video. We also gave them a “none of the above two sen-

Method | BLEU score | METEOR score
Vision Baseline | 0.37£0.05 0.2540.08
SVO LM(VE) 0.45+0.05 0.36+0.27

Table 4: Automatic evaluation of sentence quality

tences” option in case neither of the sentences were rele-
vant to the video. Quality was controlled by also including
in each HIT a gold-standard example generated from the
human descriptions, and discarding judgements of workers
who incorrectly answered this gold-standard item. Overall,
when they expressed a preference, humans picked our de-
scriptions to that of the baseline 61.04% of the time. Out
of the 84 videos where the majority of judges had a clear
preference, they chose our descriptions 65.48 % of the time.

Discussion

Overall, the results consistently show the advantage of uti-
lizing text-mined knowledge to improve the selection of an
SVO that best describes a video. Below we discuss various
specific aspects of the results.

Vision Baseline: For the vision baseline, the subject accu-
racy is quite high compared to the object and activity accu-
racies. This is likely because the person detector has higher
recall and confidence than the other object detectors. Since
most test videos have a person as the subject, this works
in favor of the vision baseline, as typically the top object
detection is “person”. Activity (verb) accuracy is quite low
(8.65% binary accuracy). This is because there are 58 activ-
ity clusters, some with very little training data. Object ac-
curacy is not as high as subject accuracy because the true
object, while usually present in the top object detections, is
not always the second-highest object detection. By allow-
ing “partial credit”, the WUP metric increases the verb and
object accuracies to 40.2% and 61.18%, respectively.

Language Model(VE): The Language Model approach
performs even worse than the vision baseline especially for
object identification. This is because we consider the lan-
guage model score directly for the SVO triplet without any
object synonyms, verb conjugations and presence of deter-
miners between the verb and object. For example, while the
GoogleNgram corpus is likely to contain many instances of a
sentence like “A person is walking with a dog”, it will prob-
ably not contain many instances of “person walk dog”, re-
sulting in lower scores.

SVO Language Model(NVE): The SVO Language
Model (without verb expansion) improves verb accuracy
from 8.65% to 16.22%. For the WUP metric, we see an im-
provement in accuracy in all cases. This indicates that we
are getting semantically closer to the right object compared
to the object predicted by the vision baseline.

SVO Language Model(VE): When used with verb ex-
pansion, the SVO Language Model approach results in a dra-
matic improvement in verb accuracy, causing it to jump to
36.76%. The increase in WUP score for verbs is relatively
minor between SVO Language Model(VE) and SVO Lan-
guage Model(NVE). This is because even without verb ex-
pansion, semantically similar verbs are selected but not the
one used in most human descriptions. So, the jump in verb
accuracy for the binary metric is much more than the one for
the WUP metric.

Importance of verb expansion: Verb expansion clearly
improves activity accuracy. This idea could be extended to
a scenario where the test set contains many activities for
which we do not have any explicit training data. As such, we



Method | Subject% [ Verb% | Object% | All%
Vision Baseline 71.35 8.65 29.19 1.62
Train Desc. 85.95 16.22 16.22 8.65
Gigaword 85.95 3243 20.00 14.05
BNC 85.95 17.30 29.73 14.59
ukWaC 85.95 34.05 32.97 22.16
WaCkypedia_EN 85.95 35.14 40.00 28.11
All 85.95 36.76 33.51 23.78

Table 5: Effect of training corpus on SVO binary accuracy

Method | Subject% [ Verb% | Object% | All%
Vision Baseline 87.76 40.20 61.18 63.05
Train Desc. 94.95 45.12 61.43 67.17
Gigaword 94.90 63.99 65.71 74.87
BNC 94.88 51.48 73.93 73.43
ukWaC 94.86 60.59 72.83 76.09
WaCkypedia_EN 94.90 62.52 76.48 77.97
All 94.90 66.36 72.74 78.00

Table 6: Effect of training corpus on SVO WUP accuracy

cannot train activity classifiers for these “missing” classes.
However, we can train a “coarse” activity classifier using the
training data that is available, get the top predictions from
this coarse classifier and then refine them by using verb ex-
pansion. Thus, we can even detect and describe activities
that were unseen at training time by using text-mined knowl-
edge to determine the description of an activity that best fits
the detected objects.

Effect of different training corpora: As mentioned ear-
lier, we used a variety of textual corpora. Since they cover
newswire articles, web pages, Wikipedia pages and neutral
content, we compared their individual effect on the accu-
racy of triplet selection. The results of this ablation study
are shown in Tables 5 and 6 for the binary and WUP met-
ric respectively. We also show results for training the SVO
model on the descriptions of the training videos. The WaCk-
ypedia_EN corpus gives us the best overall results, probably
because it covers a wide variety of topics, unlike Gigaword
which is restricted to the news domain. Also, using our SVO
Language Model approach on the triplets from the descrip-
tions of the training videos is not sufficient. This is because
of the relatively small size and narrow domain of the training
descriptions in comparison to the other textual corpora.

Effect of changing the weight of the NLP score We ex-
perimented with different weights for the Vision and NLP
scores (in Equation 1). These results can be seen in Figure 6
for the binary-metric evaluation. The WUP-metric evalua-
tion graph is qualitatively similar. A general trend seems to
be that the subject and activity accuracies increase with in-
creasing weights of the NLP score. There is a significant im-
provement in verb accuracy as the NLP weight is increased
towards 1. However, for objects we notice a slight increase
in accuracy until the weight for the NLP component is 0.9
after which there is a slight dip. We hypothesize that this dip
is caused by the loss of vision-based information about the
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Figure 6: Effect of increasing NLP weights (Binary metric)

objects which provide some guidance for the NLP system.

BLEU and METEOR results: From the results in Ta-
ble 4, it is clear that the sentences generated by our ap-
proach outperform those generated by the vision baseline,
using both the BLEU and METEOR evaluation metrics.

MTurk results: The Mechanical Turk results show that
human judges generally prefer our system’s sentences to
those of the vision baseline. As previously seen, our method
improves verbs far more than it improves subjects or objects.
We hypothesize that the reason we do not achieve a simi-
larly large jump in performance in the MTurk evaluation is
because people seem to be more influenced by the object
than the verb when both options are partially irrelevant. For
example, in a video of a person riding his bike onto the top
of a car, our proposed sentence was “A person is a riding a
motorbike” while the vision sentence was “A person plays a
car”’, and most workers selected the vision sentence.

Drawback of Using YouTube Videos: YouTube videos
often depict unusual and “interesting” events, and these
might not agree with the statistics on typical SVOs mined
from text corpora. For instance, the last video in Figure 5
shows a person dragging a cat on the floor. Since sentences
describing people moving or dragging cats around are not
common in text corpora, our system actually down-weights
the correct interpretation.

Conclusion

This paper has introduced a holistic data-driven approach
for generating natural-language descriptions of short videos
by identifying the best subject-verb-object triplet for de-
scribing realistic YouTube videos. By exploiting knowledge
mined from large corpora to determine the likelihood of
various SVO combinations, we improve the ability to se-
lect the best triplet for describing a video and generate de-
scriptive sentences that are prefered by both automatic and
human evaluation. From our experiments, we see that lin-
guistic knowledge significantly improves activity detection,
especially when training and test distributions are very dif-
ferent, one of the advantages of our approach. Generating
more complex sentences with adjectives, adverbs, and multi-
ple objects and multi-sentential descriptions of longer videos
with multiple activities are areas for future research.
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