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Abstract

Quantification is the task of estimating the class-distribution of a data-set. While
typically considered as a parameter estimation problem with strict assumptions
on the data-set shift, we consider quantification in-the-wild, on two large scale
data-sets from marine ecology: a survey of Caribbean coral reefs, and a plankton
time series from Martha’s Vineyard Coastal Observatory. We investigate several
quantification methods from the literature and indicate opportunities for future
work. In particular, we show that a deep neural network can be fine-tuned on a
very limited amount of data (25 - 100 samples) to outperform alternative methods.

1 Introduction
The term ‘quantification’ was introduced by Forman [3] and defined as the task of estimating the
class-distribution of a categorical data-set. In a typical scenario, a classifier is trained on a set of
labeled ‘source’ samples, and applied to a new set of ‘target’ samples. This is challenging in the
presence of ‘data-set shifts’[9] where the underlying probability function of the source data differs
from that of the target data. Contrary to classification, which is studied both in the presence and
absence of domain shift, quantification is only of interest under data-set shift, since otherwise, the
class-distribution can be estimated directly from the labeled source data.

Quantification is important for two principled reasons. First the class-distribution itself, rather than
the full labeling, is the desired end-product in many applications. This occurs for example in sam-
pling surveys, where repeated quantification is required to assess spatial or temporal patterns [3, 18].
Second, in applications where a full labeling is required, the class-distribution of the target data can
be used to re-calibrate a classifier trained on the source data [14, 16].

Quantification has been studied under the class-distribution shift assumption [16, 3, 2], meaning that
the source and target class conditional distributions are the same [9]. As we shall see, this is a rather
strong assumption and may not hold in practice. In another line of work, domain adaptation (DA)
has been studied under the assumption that the source and target class-conditional distributions are
‘similar’ [7]. In this work, the class-distribution shift is often controlled for by experimenting on
class-balanced data-sets [15].

We introduce two large-scale data-sets from marine ecology, where quantification arise naturally
and where automation is imperative for ecological analysis. We evaluate efficacy of several quan-
tification methods from the literature.

1.1 Problem statement
Let x ∈ Rd be d-dimensional input samples, and y ∈ 1, . . . , c class labels. We assume that a large
number of samples and classes, {(xi, yi)}ni=1, are available in a source domain defined by some joint
probability function p(x, y). We also assume that a large number of unlabeled samples, {xi}n

′

i=1,
are available in a target domain, defined by different probability function p′(x, y) 6= p(x, y). The
general goal of quantification is to estimate the probability distribution over classes in the target
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domain: p′(y) ≡ q ∈ Rc. However, the problem statement as defined above is intractable if (a) the
domain shift is arbitrary and (b) there are no labeled samples in the target domain. It is therefore
typically studied under one of two relaxations:
Definition 1.1. Unsupervised Quantification: In unsupervised quantification, the data-set shift is
assumed to be a pure class-distribution shift, i.e. p(y) 6= p′(y), but p(x|y) = p′(x|y). Alternatively,
the data-set shift is assumed to be ‘small’, and the unlabeled set of target samples, {xi}n

′

i=1, is used
to align the internal feature representation of a machine learning algorithm.
Definition 1.2. Supervised Quantification: In supervised quantification, no explicit assumptions
are made on the data-set shift, but it is assumed that a small amount of samples are available in the
target domain, {(xi, yi)}bi=1 ∈ p′(x, y).

For supervised quantification, we only consider methods where the labeled target samples are se-
lected randomly, leaving the design of active sampling methods to future work.

1.2 Related work
For unsupervised quantification, a straight-forward method is classify & count [3] where a classi-
fier, f is trained using the source data and then used to estimate q̂c = 1

n′

∑n′

i=1 1(f(xi), c). The
classifier, f can also be adapted using unsupervised adaption methods [19, 5]. Further, unsupervised
quantification has been studied extensively under class-distribution shift [9, 3, 16]. This work follow
one of two main strategies. The first, introduced by Saerens et al. [16], and refined by [2], derive an
EM algorithm for maximizing the likelihood of the target data, p′(x) by iterative updates of p̂′(y)
and p̂′(y|x). The second, discussed by several authors [3, 16, 17, 1], rely on the miss-classification
rates (confusion matrix) estimated on the source data to adjust the estimated counts on the target
data. Forman extended this method with several heuristic demonstrating significant performance
increase for binary quantification [3].

For supervised quantification, simple random sampling [18] can be utilized to achieve an unbiased
estimate the class-distribution: q̂c = 1

b

∑b
i=1 1(ysi , c) where s is a vector of randomly permuted

indices and b the annotation budget. Simple random sampling doesn’t utilize the classifier, f , but
it can be incorporated using auxiliary sampling designs, through offset [1] or ratio [13] estimators.
In these methods, some property (e.g. bias) of the classifier is estimated from the labeled subset,
and then used to adjust the prediction on the whole target set. Other methods include adapting
the classifier to operate in the target domain, typically achieved by modifying the internal feature
representation of the classifier [19].

2 Data-sets
We introduce two large-scale, image data-sets from marine ecology. In both, repeated sets of col-
lected survey images require quantification, and manual annotation is unfeasible due to the vast
amounts of collected data. In both, a large set of labeled source images are available to train a
classifier, and several randomly selected smaller sets are available for evaluation. Each such set is
denoted a test ‘cell’ and the goal is to achieve accuracy quantification across all test cells. Domain
shifts occur naturally in these data-sets, so that the class appearance, p(x|y) and class-distributions,
p(y), varies across the test cells. However, the extent of these variations differ between the two data-
sets as discussed below. A data-set overview is given in Table 1, and all data can be downloaded
from www.eecs.berkeley.edu/˜obeijbom/quantification_dataset.html.

2.1 Plankton population survey
Background: The Imaging Flow Cytobot (IFCB), is an in-situ instrument for measuring plankton
populations [10, 11]. The IFCB is installed at an offshore tower at 4 m below water level at the
Martha’s Vineyard Coastal Observatory, and collects images by automatically drawing seawater
from the environment. From this stream of images (∼ 100k day−1) the ecologists need to quantify
the daily plankton class-distribution. Manual annotation of the complete data stream is unfeasible,
and is currently restrained to two randomly chosen hours each month. While insufficient for a
complete ecological analysis, these randomly selected, fully annotated, image-sets are ideal for
evaluation of quantification methods.

Details: We formalize the Plankton Survey quantification benchmark as follows. All IFCB labeled
data from 2006-2013 is considered as pertaining to the source domain. The 21 randomly selected
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Table 1: Data-set summary. n = number, avg. = average
Data-set n train samples n test cells avg. n samples cell−1 n classes
Plankton Survey 3.3m 21 14248 33
Coral Survey 325k 15 1480 32

hours of annotated data from 2014 are the test cells. Only classes with > 1000 total samples are
included in this benchmark, leaving around 3.3 million total labeled samples across 33 classes. The
Plankton Survey data-set is dominated by a class-distribution shift (Figs. S7, S6).

2.2 Coral reef survey
Background: The XL Catlin Seaview Survey (XL CSS) is an ambitious project to monitor the
world’s coral reefs [4]. Using underwater scooters, 2 kilometer of reef-scape is imaged each dive,
with approximately one image meter−1. The XL CSS has surveyed the Great Barrier Reef, the
Coral Sea, the Caribbean, the Coral Triangle, the Maldives, and Chagos, and captured over 1 million
photographs. From this images set, ecologists are interested in quantifying the percent cover of
key benthic substrates for each set of 30 consecutive images [4]. Percent cover for each image is
estimated by classifying 50 patches extracted at random row & column locations in each image as
pertaining to one of 32 classes [12], for a total of ∼ 1500 patches across the 30 images. Similarly
to the Plankton Survey, we can think of these sets of patches as cells, each requiring quantification.
Manual quantification of all cells is unfeasible: the images from the Caribbean alone would require
30 person-years to annotate [4].

Details: We formalize the Coral Survey quantification benchmark as follows. A training-set of
324732 annotated patches extracted from 1505 images constitute the source domain. In addition,
15 randomly selected sets of 30 consecutive images, each with 50 annotated patches, are the test
cells (Fig. S2). Both class appearance and class-distribution varies across the test cells (since they
are drawn from different location across the Caribbean), meaning that the data-set shifts are more
complex than for the IFCB data-set (Figs. S3, S4).

2.3 Performance evaluation
Let q(m) = P (y) be the normalized ground-truth class-distribution: q(m) ∈ Rc,

∑c
j=1 q

(m)
j = 1 ∀m

for sampling cell m, and q̂ the estimated distribution. We measure the distance between q(m) and
q̂(m) using the Bray-Curtis distance, which is commonly used in ecology. For normalized class
counts, it reduces to the l1-norm: hBC(q(m), q̂(m)) = |q(m)−q̂(m)|1

2 . The utility of a quantification
method is evaluated by the average Bray-Curtis distance across the sampling cells.

3 Experiments

For all experiments, we train a Convolutional Neural Network, f , of the Alexnet network architec-
ture [8], on the source data using Caffe [6]. More details are given in [11, 1].

Unsupervised quantification: We evaluate four unsupervised quantification methods. Applying
Classify & Count is straight-forward, and creates a natural baseline (Fig. 1). The EM-algorithm
of [16] is also evaluated (Fig. S8) along with the confusion-matrix (CM) correction method of [3, 17,
16]. The latter method requires inverting the confusion-matrix, which can be problematic for multi-
class problems, since inversion requires full rank. We therefore apply the abundance correction
for each class, i independently, by mapping the CM to a binary 2 × 2 matrix before inverting and
estimating q̂i. We then normalized q̂ so that

∑c
j=1 q̂j = 1. Finally, we use a recent unsupervised

domain-adaptation method which adapts the source net to the unlabeled data from each cell [19].

Supervised quantification: We investigate quantification performance for budgets, 10 < b < 150
samples, which well covers the feasible range of what is economical for the respective surveys. Ran-
dom sampling is used to establish an upper bound on the error, and the offset estimator is included as
a simple improvement [1]. We also experimented with a ratio estimator [18], but this is impractical
for small sample sizes [1]. Further, we used a DA baseline (’DA mix’). In this method, the classifier,
f was further fine-tuned on a mixture of 75% source and 25% target data (drawn from the b samples)
for ∼ 3 epochs. Finally, the supervised DA method of [19] was evaluated.
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Figure 1: Unsupervised results. Quantification errors displayed as mean ± SE for Classify &
Count [3], the unsupervised Deep Transfer DA method of [19], distribution matching using the EM
algorithm [16], and for correction using Confusion Matrix inversion [3, 17, 16].
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Figure 2: Supervised results. Quantification errors displayed as mean ± SE for Simple random
sampling [18], Offset sampling [1], DA mix, and Deep Transfer DA [19]

Results: For unsupervised quantification, our results indicate that the appropriate method depends
on the nature of the data-set shift. For the Plankton Survey, the EM and CM correction methods
work well, significantly lowering the estimation errors (Fig. 1). The EM method [16] outperformed
the CM method [3], suggesting that this approach is more appropriate for high number of classes.
However, for the Coral Survey, where the class-distribution shift assumption is violated, the CM
and EM corrections corrupt the results, and simply counting the raw classification is preferable. The
Deep Transfer DA method [19] was able to capture the data-set shift for the Plankton Survey, but
produced inferior quantification compared to the CM and EM methods. Also note that the quantifi-
cation results are, in general, stronger for the Plankton Survey, since it is an easier classification task
with smaller data-set shift.

Fur supervised quantification, the two DA methods outperformed the random sampling baselines,
in particular for smaller annotation budgets (Fig. 2). The adaptation method of [19] performed on
par with DA mix. Among the random sampling methods, the offset estimator clearly outperformed
simple random sampling on the Plankton Survey, but performed on-par for the Coral Survey. This
is expected, as the hybrid estimator performs better when the classification errors are small, which
they are in the Plankton Survey (Fig. 2; [1]).

Discussion: In pure class-distribution shift situations, as with the Plankton Surveys, the EM algo-
rithm of [16] worked well, achieving a mean Bray-Curtis distance of 4.7 ± 3.2%. Achieving such
accurate quantification through simple random sampling would require b ≈ 150 samples. The DA
mix method, which achieved 3.7 ± 0.5% at b = 50 and 4.1 ± 0.4% at b = 25, makes better use
of the supervision. It is a compelling alternative overall since it performed well also on the more
challenging Coral Survey data. This is important since, in a real-world situation, one may not now
a-priori what type of data-set shift to expect for the new target data.

The fact that fine-tuning of a deep neural network can be achieved with such small amount of target
data (25 samples) is surprising, and deserves further investigation. Further, while the EM method
presented here didn’t perform very strongly, Forman suggested several improvements for binary
classification [3]. We were unable to generalize these to the multi-class case, but it deserves atten-
tion. Finally, we think active sampling methods offer much promise, with collected samples utilized
either to correct the raw classification counts, or for fine-tuning model parameters.
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Supplementary Information: Quantification in-the-wild:
data-sets and baselines

A Supplementary data-set information

A.1 Coral Survey

Image from the Catlin Seaview Survey can be accessed from catlinseaviewsurvey.com and
http://globalreefrecord.org/. The particular sites studied in this paper are indicated
in Fig. S2. From each image, 30 patches are cropped and classified. Some samples patches are
shown in Fig. S1. The data-set shift in the Coral Survey data-set is shown in Fig. S4 and Fig. S3.
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Figure S1: Sample images from the Coral Survey

Figure S2: Caribbean locations used as for the Coral Survey benchmark. Blue circles indicate
location of the test-cells and red circles the training images.
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Figure S4: Area under ROC curve (mean ± SD) for the 9 most abundance classes in the Coral
Survey. The large difference indicate a significant shift in appearance, p(x|y), between the cells.
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A.2 Plankton Survey

The IFCB data-set can be downloaded at https://github.com/hsosik/WHOI-Plankton
from which an interactive image viewer can be reached. Some sample images are shown in Fig. S5.
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Figure S5: Sample images from the Plankton Survey
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Figure S6: Area under ROC curve (mean ± SD) for the 9 most abundance classes in the Plankton
Survey. Note that the smaller y-axis range compared to Fig. S4.
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Figure S7: Class-distribution for the Plankton Survey test cells, sorted by overall class abundance.
Total number of cell members is indicated above each cell. Top: full distribution illustrating the
dominance of the ‘mix’ class, bottom: highlight of the range between 80% and 100%
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B Supplementary results

We include a convergence plot for the EM algorithm of [16] in Fig. S8
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Figure S8: Convergence of the EM algorithm [16]. Since the class-distribution shift assumption of
this method is not satisfied for the Coral Survey, it converges to a unsatisfactory state.
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