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Abstract—Delivering on the promise of real-world robotics
will require robots that can communicate with humans through
natural language by learning new words and concepts through
their daily experiences. Our research strives to create a robot that
can learn the meaning of haptic adjectives by directly touching
objects. By equipping the PR2 humanoid robot with state-of-
the-art biomimetic tactile sensors that measure temperature,
pressure, and fingertip deformations, we created a platform
uniquely capable of feeling the physical properties of everyday
objects. The robot used five exploratory procedures to touch
51 objects that were annotated by human participants with 34
binary adjective labels. We present both static and dynamic
learning methods to discover the meaning of these adjectives
from the labeled objects, achieving average F1 scores of 0.57 and
0.79 on a set of eight previously unfelt items.

I. INTRODUCTION

Robots are beginning to move out of highly structured

factories and laboratories into the real world, aiding humans in

applications ranging from floor cleaning and flexible manufac-

turing to bomb disposal and surgery [1]. As robotic teammates

encounter increasingly uncertain environments, they will need

to communicate with the humans around them, an interaction

that will most likely occur through natural language [2], [3],

[4]. Robots will need to be able to learn new words and

concepts through their physical experience with the world,

as human children do, by seeing, hearing, and manipulating

real objects and environments. To deepen our understanding

of perceptually grounded language acquisition and improve

robotic interaction with the physical world, this work aims

to create a robot that can learn the meaning of haptic (touch-

based) adjectives by physically interacting with labeled objects

through sensitive fingertips, as shown in Fig. 1.

Touch is uniquely interactive among the senses, combining

the ability to feel rich stimuli across the skin with the knowl-

edge of bodily movement. Tactile sensitivity in the glabrous

(non-hairy) skin of the hand is governed by four types of

mechanoreceptors: the fast-adapting Meissner and Pacinian

corpuscles sense vibrations and impacts, and the slow-adapting

Merkel cells and Ruffini endings sense static skin deformation

and stretch [5]. Glabrous skin also contains thermoreceptors

Fig. 1. A PR2 equipped with BioTac sensors explores a blue sponge. All of
the objects on the table are in the Penn Haptic Adjective Corpus 1.

and nociceptors for sensing temperature and pain [5]. Standard

robotic tactile sensors do not begin to match the richness of

human tactile sensitivity, though robots do usually excel at

sensing their own motion. In humans, kinesthetic feedback

relays the pose of the limbs and the effort being exerted at each

joint by aggregating tactile mechanoreceptors with receptors

that measure muscle length and muscle velocity [5]. These

combined signals allow a human to know their hand position as

they gently scan a wall for the light switch in a dark room. As

this example illustrates, the sense of touch is inherently active

– uncovering information about the environment requires

exploration. Lederman and Klatzky were the first to discover

that humans use stereotypical exploratory procedures (EPs),

such as lateral motion for texture and pressure for hardness,

to reduce their uncertainty about new objects [6].

Other researchers have taken cues from human haptic

knowledge to make robots more graceful in manipulating their

environment. Romano et al. [7] imitated human grasping pro-

cedures to create a tactilely sensitive PR2 controller that holds

objects with near-minimal force to avoid crushing them. Chitta

et al. [8] used the PR2 to determine how much liquid remains

in a beverage container by grasping the container, rolling it

from side to side, and monitoring the high-frequency peaks in

the PR2’s tactile sensor array. Sinapov et al. [9] explored the



use of different scratching motions to recognize and categorize

textures; comparisons between single and multiple exploratory

motions showed that joining different motions improves the

results of the classification [9]. More recently, Fishel and

Loeb used a SynTouch BioTac sensor and Bayesian techniques

for choosing a series of movements from a repertoire of

various stroking motions to classify 117 textures with 95.4%

accuracy [10]. Griffith et al. [11] also demonstrated the benefits

of having a robot perform multiple exploratory movements

such as grasping, shaking, dropping, and flipping the object

while analyzing the resulting audio, visual, and haptic signals.

While much previous research has focused on enabling

robots to recognize particular object instances through the

sense of touch, e.g., [12], [13], [14], we are interested in

generalizable physical knowledge. To do so we focused on

haptic adjectives – words used to describe how objects feel.

Previous robotics work in this area is sparse, though human

use of common haptic adjectives has been reasonably well

characterized [15]. In this paper, we seek to demonstrate a set

of methods that enable a tactilely sensitive robot to learn the

meaning of haptic adjectives through physical interaction.

II. ROBOTIC PLATFORM

As shown in Fig. 1, we augmented a humanoid robot with

advanced multi-channel tactile sensors to obtain a platform ca-

pable of both controlled manipulation and rich tactile sensing.

We selected Willow Garage’s PR2 (Personal Robot 2) for

our robotic platform. The robot’s anthropomorphic arms and

head make it suited for performing tasks a human might

undertake, while its low inertia and backdrivabilty make it safe

to operate in a human environment. This standard platform

has a widely adopted software interface, the Robot Operating

System (ROS), which allowed for fast software integration

with pre-written libraries such as MIT’s EE Impedance Arm

Controller [16] and Willow Garage’s Tabletop Object Detec-

tor [17]. The PR2 robot has two 7-degree-of-freedom (7-DOF)

robotic arms, each with a 1-DOF two-fingered gripper, plus a

suite of cameras and LIDAR sensors. Each fingertip of each

gripper houses a default tactile sensor containing 22 tactile

sensing elements, 15 of which face inward to make contact

with the object being grasped. These fingerpads are capable

of sensing only pressure that is normal to each tactile cell,

sampled at 24.4 Hz. While this combination of discrete low-

frequency pressure signals is sufficient for preventing the robot

from crushing most objects [7], we sought robotic fingertips

capable of sensing a wider array of tactile signals at higher

frequencies to more closely match the touch sensing humans

have at their disposal when learning haptic adjectives.

We selected SynTouch’s BioTacs (Biomimetic Tactile Sen-

sors) for this project. Each human-fingertip-sized BioTac

sensor includes a lightly ridged silicone skin filled with

conductive fluid over a heated rigid core patterned with

electrodes [10]. The sensor measures five types of tactile sig-

nals: low-frequency fluid pressure (PDC), high-frequency fluid

vibrations (PAC), core temperature (TDC), core temperature

change (TAC), and a set of nineteen electrode impedances

(E1 . . . E19) spatially distributed across the core. PAC is

sampled at 2200 Hz, and the others are sampled at 100 Hz.

The metal fingers of the PR2’s gripper were redesigned to

mechanically accommodate a pair of BioTac sensors while

maintaining compatibility with the PR2’s default fingerpads.

The new fingers were custom machined out of aluminum,

anodized, and installed in a replacement gripper by technicians

at Willow Garage. In the new design, the BioTac sensor

slides into a profiled hole on the end surface of the finger

and is held in place with a set screw. As with the original

finger design, a default tactile sensor or a non-sensorized

fingerpad attaches to the inner surface of the finger using

two long machine screws. Because these screws pass through

the BioTac’s profiled hole, only one type of fingertip can be

installed at a time. Exchanging two default fingerpads for two

BioTacs takes between 5 and 10 minutes.

A 12-Volt USB hub was added to the exterior of the PR2’s

left shoulder for powering and communicating with the Bio-

Tacs. A Cheetah SPI-to-USB host adapter unit attaches to the

USB hub for communication. The USB-power and SPI data

cables were routed externally down the robot arm, attached

loosely in two locations to prevent the robot from straining the

wires during movement. The SynTouch BioTac hand board is

mounted at the base of the gripper, and each BioTac board is

mounted on the outside surface of its respective finger. This

modification was successfully performed on the PR2 robots at

both Penn and UC Berkeley. Full details of our mechanical

and electrical integration methods are available at http://bolt-

haptics.seas.upenn.edu/. To interface with ROS software, a

publisher node was built to read in the data from both BioTacs

and publish that data at 100 Hz over the ROS network.

III. PENN HAPTIC ADJECTIVE CORPUS

After integrating the BioTac sensors with the PR2, we

used this new system to collect a large amount of physical

interaction data while the robot repeatedly touched a set of

objects. We also had human participants blindly interact with

the same objects to provide ground-truth ratings of the haptic

adjectives that apply to each one. Together, the recorded robot

interaction data and the associated adjective labels constitute

the Penn Haptic Adjective Corpus 1 (PHAC-1).

A. Objects

We created an object specification list to ensure that ex-

plored items fit within the sensory and motor limits of our

platform while still preserving a range of interesting tactile

properties. To simplify the interactions, all objects must stand

upright on a table and have two flat, parallel, vertical sides

with identical surface properties. So that the PR2 gripper can

surround the object and then touch it with both BioTacs,

each object has a thickness between 1.5 cm and 8 cm. Each

object’s height is greater than 10 cm to give the PR2 gripper

room to vertically slide along the object’s surfaces without

colliding with the table. The silicone skin of the BioTacs can

be punctured or damaged by sharp, pointed, or scalding hot

objects, so we excluded items with any of these dangerous
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Fig. 2. The 51 objects included in the Penn Haptic Adjective Corpus 1,
organized by their primary material.

properties. In addition, all objects must be clean and dry to

prevent damage to any of the system’s electronics.

We found 51 objects that conform to the above specification,

as pictured and named in Figure 2. Many are household items,

while others are constructed from raw materials. We attempted

to obtain a large set of objects that represent a range of

physical properties without significant redundancy. In addition

to the 51 PHAC-1 objects, several extra objects that conform to

the specification were collected for use in testing our system.

B. Robotic Data Collection

The PR2 was programmed to execute a fixed set of move-

ments to tease out interesting haptic signals from each object in

the corpus. To expedite training, the object was placed within

a fully open gripper with a purposeful variation in position

to simulate the imprecision of object detection. For the full

testing and demonstration system, we integrated standard ROS

tabletop object detection and arm motion planning algorithms

to place the gripper around the object. Once the gripper

is in position, a touch-reactive controller using the BioTac

sensors begins to explore the object. This custom controller

was largely based on the “pr2 gripper sensor controller” ROS

package written by Romano et al. [7].

Lederman and Klatzky demonstrated that humans employ

a stereotypical set of exploratory procedures (EPs) when

haptically evaluating novel objects [6]. For this work, we

identified a subset of these procedures that are feasible for the

PR2 to perform: “Enclosure” (for perceiving object volume),

“Pressure” (hardness), “Static Contact” (temperature), and

“Lateral Motion” (texture). While these four EPs might be

sufficient for a robot to learn many haptic adjectives, the

“Lateral Motion” EP in particular can be performed in a

variety of ways. Fishel and Loeb recently showed that different

textures can be recognized with greater accuracy if a BioTac

performs multiple lateral motions of varying pressure and

speed [10]. Their results indicated that higher force with lower

speed (1.262 N, 1.0 cm/s) was good for perceiving traction,

while low force with high speed (0.20 N, 6.31 cm/s) reduced

uncertainty about the surface’s roughness. Combining this

information with knowledge about human EPs, we refined

and expanded the robot explorations into five predefined robot

motions that yield streams of haptic data: Tap, Squeeze, Static
Hold, Slow Slide, and Fast Slide. The entire sequence can be

seen in the video that accompanies this paper.

Figure 3 presents the haptic signals for one complete robotic

interaction with an object, with the controller states labeled

across the top. The Center state is not intended for data

analysis, but rather to achieve approximately equal contact

pressure on the two BioTacs. Without centering, the finger that

first contacts the object tends to develop a high contact force,

while the other finger may not touch the object at all, adding

unnecessary variability between trials. Centering involves a

simple bang-bang control based on the two PDC signals; the

gripper closes both fingers simultaneously, makes light contact

with one finger first, re-centers the gripper by a small amount,

and repeats this process several times until the two fingers

contact the object at approximately the same instant.

During the Tap phase, the PR2’s gripper quickly closes

around the object until contact occurs on both BioTacs. When

both fingers’ PDC readings exceed a small predefined value,

the gripper opens to release the object. Squeeze slowly closes

the gripper at constant velocity until a moderately large

predefined PDC value is achieved on at least one of the two

fingers, then the gripper slowly opens. During Static Hold, the

robot gently holds the object for ten seconds to let the warm

fingers reach thermal equilibrium with the object, which is

typically at room temperature. During this phase, the desired

aperture for the robot’s gripper is 50% of the distance between

the position where contact is first detected and the position

where the PDC threshold is reached during Squeeze. Our initial

attempts to achieve consistent light contact based only on

PDC were largely unsuccessful when tested on the range of

objects in the PHAC-1 because the fingertips must penetrate

soft objects significantly more than hard objects in order to

reach the same finger pressures. For Slow Slide and Fast
Slide, the PR2 contacts the object with both fingers and then

moves downward for a distance of 5 cm, releasing the object

in between and at the end of the motion. Slow Slide uses a

stronger contact (20% of the total distance during Squeeze)

and slides at 1 cm/s, compared to the lighter contact (10%)

and faster 2.5 cm/s speed of Fast Slide.

The robot used this sequence of five EPs to touch each of the

51 objects ten times. Each of these 510 trials was recorded as a

ROS bagfile that contains time histories of all PR2 transforms,

left arm joint efforts, positions, and velocities, left gripper

accelerometer readings, the narrow stereo left camera video

feed, all readings from both BioTac sensors, and the timing

of the controller states and sub-states. As shown in Figure 3,

a subset of these signals was chosen for the current analysis,

including gripper aperture, Xg , the vertical position of the

gripper in the torso frame, Ztf , and all signals from both left

and right BioTacs.
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C. Haptic Adjective Labels

Ground-truth labels are needed to enable the robot to

associate the quantitative data it collects with subjective ratings

of how the objects are perceived to feel. We started this

labeling process by having pilot participants touch the objects

under conditions matched to those used by the PR2 – using

only two fingers, wearing noise-canceling headphones playing

pink noise, and with the object occluded from view by a

visual barrier. We first tested these pilot participants in free

response to see what adjectives they used. We also surveyed

the literature to discover what adjectives have previously been

used to describe the feel of objects [15], [18]. This process

allowed us to assemble the list of 34 adjectives shown in

Figure 4. We treat each adjective as a binary label that can

apply to any object, while each object can have any number

of positive labels from this set. We purposefully avoided

assuming any antonym or synonym relationships because we

want to develop methods that can uncover such correlations

from the data. Four volunteers then touched each PHAC-1

object using the above procedure and assigned each object a

binary (yes/no) rating for each of the 34 selected adjectives.

The objects were presented in random order.

For each object-adjective pair, we counted the number of

participants who used that adjective to describe that object, a

value that ranged from 0 to 4. These ratings were subjected to

a majority voting scheme to determine the final binary labels:

for our set of four participants, an agreement of three or more

individuals was required to yield a positive label, whereas two

or fewer individual positive labels produced an overall negative
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label for that object-adjective pair. As noted in Fig. 4, three

adjectives (elastic, grainy, and porous) were found to apply

to only one object in the corpus. Learning the meaning of an

adjective from a single example is a difficult problem, and the

lack of additional examples precludes testing any developed

learning methods, so we eliminated these three adjectives from

further consideration, leaving 31 in the set.

Since this dataset of adjective ratings is categorical, non-

negative, and uniformly scaled, we used correspondence anal-

ysis (CA) to investigate the validity of these labels. As

Picard et al. explains [18], “CA has been traditionally used to

posit both stimuli and descriptors in an n-dimensional space,

where the distance between the stimuli reflects their perceived

dissimilarity and the location of the descriptors reflects their

degree of association with the stimuli.” In our study, the stimuli

are the objects, and the descriptors are the adjectives. We

found that 10 dimensions contribute significantly to the space

described by the 51 objects and the 31 binary adjectives.

Figure 5 shows where each adjective and each object sit in the

first two dimensions. We observe that similar objects, such as

the concrete and the brick, appear close to one another, as do

similar adjectives, such as compressible and deformable. This

investigation demonstrates the validity of the labels.



IV. MACHINE LEARNING TECHNIQUES

Given the novelty of this research, we tested two approaches

for learning the associations between what the robot felt when

exploring the objects and the ground-truth haptic adjective

labels. Our first method follows existing robotic texture recog-

nition systems such as those by Fishel and Loeb [10] and

Sinapov et al. [9], which use carefully crafted static features

in conjunction with machine learning algorithms. Our second

method is inspired by the observation that many of the haptic

data channels resemble audio signals, a research area that

typically uses dynamic learning techniques. All of our machine

learning algorithms were implemented using scikit-learn [19],

an open-source package for Python.

A. Static Feature Learning

Before extracting features from a robot-object interaction

trial, we zero each of the 46 channels of BioTac data (2 ×
(4 + 19)) by subtracting the mean of the channel’s first 100

measurements. We then split the run into the five EPs: Tap,

Squeeze, Static Hold, Slow Slide, and Fast Slide. Each EP is

passed through our feature extraction pipeline, with the same

set of features being calculated for each one. This systematic

feature extraction process was designed to enable the machine

learning algorithms to determine which EP and which features

are best for learning a given adjective. We selected a total of

47 features: 22 for each BioTac and 3 for the robot transforms.

1) Features: The first set of features focuses on PDC , the

internal fluid pressure experienced by the BioTac over the

duration of the EP. We calculate the maximum and the mean

of the signal as the first two features. For the third, we smooth

PDC using an 11-point Hanning window before computing the

greatest change in the signal’s slope over time. These features

were designed to capture the compliance of the object as the

PDC curve varies significantly between stiff and soft objects.

The next set of features is based on the high-frequency

pressure variations recorded in the BioTac’s PAC channel. Past

research has demonstrated good robotic texture recognition

using simple frequency-domain features constructed from this

same signal [10] and from measurements by a high-bandwidth

accelerometer [9]. We first convert zeroed PAC into a non-

normalized energy spectral density, ESD(ω), where ω is the

vector of frequencies. To capture the shape of this curve using

only a small number of features, we then compute the total

energy, equivalent to the area under the ESD curve; the spectral

centroid, equivalent to the weighted average of the ESD; the

spectral variance, equivalent to the statistical variance of ESD;

the spectral skewness; and the spectral kurtosis.

The third set of features is constructed from the two tem-

perature signals provided by the BioTacs. As shown by Lin et

al. [20], the thermal conductivity of a material can be measured

using TAC and TDC . Under the same contact conditions,

thermally conductive materials (e.g., metal) pull heat from

the BioTacs more quickly than thermally insulating materials.

The first feature we selected in this domain is the area under

TAC over the duration of the EP, calculated via trapezoidal

integration, to capture the amount of heat transferred out of

the sensor. The second selected feature is the time constant

of an exponential fit of TDC over time, which directly reflects

how quickly the BioTac core temperature changes after coming

into contact with an object at room temperature.

The fourth group of tactile features is based on the readings

from the BioTac’s 19 electrodes. These signals are highly

coupled due to their spatial proximity within the fluid of the

finger. Consequently, we used Principal Component Analysis

(PCA) to find the synergies that arise between the electrodes

for each of the five EPs (analyzed separately to obtain

principal components specific to each motion). The first two

principal components were found to capture the majority of

the electrode signal variance in the training data for all five

EPs. The features selected were the coefficients of fifth-order

polynomial fits of the first two principal components over time,

which yields twelve features.

The last set of features stems from the movement of the

PR2 robot, particularly the gripper aperture distance, Xg , and

the vertical position of the gripper, Ztf . We take the mean

and minimum of the aperture distance and the range of the

gripper’s vertical position. These features were designed to

reveal the size of the object and the extent of the gripper’s

vertical movement during the trial. Vertical movement was

selected because the friction of the object affects how the

PR2’s hand moves during the sliding EPs.

2) Learning Algorithms: The first stage of the static-

feature-based pipeline divides the data into train (two thirds)

and test (one third) sets for each adjective, with an equal

proportion of positive and negative examples in both sets. For

example, an adjective that has 9 positive examples (objects)

and 42 negative examples produces a training set with 6
positive and 28 negative examples, and a testing set with 3
positive and 14 negative examples; all 10 trials recorded for

each object are grouped together. The features in the training

sets are normalized and used to create classifiers specific to

each adjective-EP combination.

We compared initial results from a one-element feature vec-

tor against the results of classifying on the entire 47-element

feature vector; the one-element feature vector generally outper-

formed the full feature vector. Given the strength of the indi-

vidual features, we decided to train many weak classifiers from

these individual features and boost them using Gradient Tree

Boosting (GTB), which is advantageous for heterogeneous

data sources and also tolerant of outliers [21]. The specific

implementation from scikit-learn was Gradient Boosting Clas-

sification and LOOCV performed on learning rate, boosting

stages, and maximum tree depth. With 31 adjectives and 5 mo-

tions, we ended the first training stage with 155 adjective-EP-

specific classifiers. We then fed the test set to these classifiers

and computed an average F1 score for each classifier. These

testing results enable us to select the best EP-specific classifier

for each adjective, which we use for final classification.

B. Dynamic Feature Learning

As seen in Fig. 3, time plays a major role in shaping the

signals from the robot’s tactile and kinesthetic sensors. This



consideration led us to test an alternative machine learning

approach that analyzes the temporal fluctuation of the haptic

signals using Hidden Markov Models (HMMs) [22].

Using HMMs with our recorded haptic signals poses two

significant problems. First, HMMs require discrete signals

rather than continuously varying signals. Second, signals that

have many dimensions or many samples lead to numeri-

cal instability and an overall poor performance when using

HMMs. The first problem can be overcome by discretizing

the data, for example via k-means. The second problem

required dimensionality reduction via PCA and resampling

using interpolation. Given an input signal x ∈ R
n×d, the

processing pipeline to train an HMM is:

1) Reduce the signal dimensionality to p ≤ d via PCA.

2) Resample the signal to m elements using interpolation.

3) Cluster the resulting signal y ∈ R
m×p into k symbols

using k-means.

4) Train an HMM using a discrete signal with length m
and an output alphabet of k symbols.

The main issue with this approach is that several parameters

need to be tuned to avoid over-fitting. The most important

ones are the new number of dimensions p, the resampling

size m, the resampling approach (linear, cubic, spline or

nearest neighbors), the number of clusters k in k-means (which

corresponds to the number of output symbols in the HMM),

and the number of hidden states in the HMM. We coupled grid

search with cross-validation to find the set of parameters that

yielded the best generalization. Similar to the static-feature-

based approach, we used two thirds of the positive examples

in the corpus for training and the remaining third for testing.

The score of each HMM is calculated as the log-probability of

the observed sequence found by using the forward algorithm.

The dynamic-feature-based approach did not consider the

Tap EP because of its short duration. Furthermore, this analysis

included only the main four tactile channels, omitting Xg ,

Ztf , and TDC . This choice yielded 16 signals (4 EPs × 4
tactile channels) for each trial. We then trained 16 HMMs for

each adjective using the pipeline described above. Although

each HMM had its own set of parameters, cross-validation

highlighted some common patterns in the corpus:

• An aggressive resampling with as few as 50 elements

proved to be sufficient for a high HMM score. How-

ever, given the probabilistic nature of HMMs, usually

the shorter the sequence the higher the probability of

observing it. We believe that this effect, while mitigated

by cross-validation and the need for generalization, may

have biased the effective resampling size. Further analysis

will be required to investigate how much the aggressive

resampling affected the results.

• The same applied to the number of dimensions, where 7
to 8 dimensions were found to be sufficient to explain

97% of the variance of an otherwise 38-dimensional

space (in the case of the electrodes for two fingers).

• The cardinality of the HMM alphabet varied between 12
and 20 symbols. This number suggests that the training

data is probably ambiguous, and fine details are required

to distinguish between otherwise very similar signals.

• The number of hidden states is of the same order as the

alphabet. Though expected, this result negatively affected

the required training time for the HMMs.

Once the HMMs were trained, for each adjective we have

a set of 16 log-probabilities that describe the confidence each

model has for having seen a particular pattern. The classifier

that decides if an adjective applies to a certain trial is a linear

SVM trained using the 16 outputs of the HMMs. The penalty

factor C was chosen using cross-validation on a different split

of the training data. Given the nature of the training set, the

number of negative examples is greater than the number of

positive ones.

V. RESULTS

We tested both of our classification approaches on data

reserved from the corpus and also on the 8 previously unfelt

objects shown in Figure 6, labeled by participants in the same

way as those in the corpus.

The following sections report the performance of our

machine learning techniques in terms of precision, recall, and

F1 score, as defined in Table I. Here, tp is the true positive

count (the number of correct positive results returned by

the classifier), fp is false positives (the number of results

incorrectly labeled as positive by the classifier), and fn is

false negatives (the number of positive results missed by the

classifier). To satisfy space constraints, we report only brief

results for our second method.

A. Static Feature Learning

For the static feature learning approach (Sec. IV-A), we

first analyzed the feature vectors to confirm that they capture

meaningful differences in the feel of the objects. All 47 fea-

tures were calculated for every Squeeze trial in the corpus, and

each object’s 10 trials were averaged to yield 51 object-specific

average feature vectors. Performing PCA on these average

Fig. 6. The final test set. In order from left to right: Cardboard Box, Dark
Foam, Light Foam, Hardcover Book, Cushioned Envelope, Layered Cork, and
Rough/Smooth Acrylic (different sides of the same object).

TABLE I
METRIC EQUATIONS

Precision Recall F1

tp

tp+fp

tp

tp+fn
2 · precision · recall

precision+ recall



−3 −2 −1 0 1 2 3 4

−6

−4

−2

0

2

4

Black Acrylic

Metal Channel

Black Foam

Koozie

Brick

Bubble Wrap

Bumpy Foam

Blue Sponge

Orange Sponge

Black Eraser

Furry Eraser

Coco Liner

Glass Container

Concrete

Cookie Box

Corkboard

Cutting Board

Dishcloth
Silicone Block

Cloth Sack

Pink Foam

Gray Foam

Plastic Case

Index Card Case

Kithchen Sponge

Tissue Pack

Loofah
Cosmetics BoxGray Eraser

Fiberboard

Applicator Pad

Flat Foam

Notepad

Glass Bottle

Charcoal Foam

Pen Case

Satin Pillowcase

Metal Block

Placemat

Plastic Dispenser

Pool Noodle
Hardcover Book

Shelf Liner

Bath Cloth

Soap Dispenser

Metal Vase

Tarp
Toilet Paper

Red Toothpaste

Blue Toothpaste

Yellow Foam

2nd Component, 13.3%

1s
t C

om
po

ne
nt

, 4
0.

8%

Fig. 7. The first two principal components of the feature space created from
the average Squeeze feature vector of each object. Haptically similar objects
generally appear close to one another, much like the adjective-based space
(Fig. 5).

feature vectors revealed the top two principal components and

the distribution of objects shown in Figure 7. By comparing

this plot with the adjective space seen in Figure 5, we observe

that both of the first principal components seem to indicate

compliance, a highly salient object property, with a greater

proportion of the feature variance attributable to this dimen-

sion. The second components do not seem to correlate cleanly,

though objects close together in feature space do generally

seem to feel similar, substantiating the value of these features.

Having intermediate classifiers trained on the features from

just one exploratory procedure allows us to see how each EP

performs for each of the 31 adjectives. The F1 scores for each

adjective-EP combination are shown in Table II; these results

were generated by testing on the third of the corpus not seen

during the intermediate classifier training.

The selected best EP-specific classifiers achieved an average

precision, recall, and F1 score of 0.91, 0.88, 0.88 respectively,

across all adjectives on the training set. However, selecting

the maximum EP based on the test set, rather than merging

the results of all of the EPs (as the HMM approach does),

introduces biases that can be seen in the final results. The

final results of the classifiers were calculated by object rather

than by adjective. For example, the human participants had

labeled the dark foam as squishy, thick, compressible, fuzzy,

absorbent, and soft, whereas the classifiers predicted it to be

squishy, compressible, and soft. The static feature learning’s

average F1 score on the previously unfelt objects shown in

Figure 6 was 0.57. This relatively low score supports our

belief that multiple motions should be combined to increase

the recognition of haptic object properties.

B. Dynamic Feature Learning

The adjective-specific SVMs trained on the HMM outputs

(Sec. IV-B) achieved an impressive average precision score of

TABLE II
F1 SCORE ACROSS ADJECTIVES AND EXPLORATORY PROCEDURES

Tap Squeeze Hold Slide Fast Slide PE*

absorbent 0.108 0.370 0.000 0.000 0.333 3

bumpy 0.526 0.143 0.000 0.182 0.333 2

compact 0.644 0.795 0.675 0.487 0.574 11

compressible 0.821 0.847 0.806 0.833 0.829 26

cool 0.348 0.324 0.431 0.419 0.417 6

crinkly 0.000 0.143 0.250 0.000 0.000 1

deformable 0.000 0.000 0.190 0.000 0.000 3

fibrous 0.000 0.000 0.000 0.000 0.000 3

fuzzy 0.388 0.097 0.267 0.448 0.327 8

gritty 0.000 0.000 0.000 0.000 0.000 3

hairy 0.000 0.000 0.000 0.000 0.000 2

hard 0.814 0.835 0.913 0.850 0.764 13

hollow 0.000 0.154 0.000 0.667 0.143 4

meshy 0.714 0.000 0.133 0.000 0.000 1

metallic 0.000 0.000 0.000 0.471 0.125 2

nice 0.333 0.000 0.000 0.500 0.488 5

plasticky 0.000 0.286 0.000 0.000 0.000 4

rough 0.386 0.051 0.391 0.491 0.667 5

scratchy 0.526 0.385 0.000 0.000 0.390 4

slippery 0.000 0.000 0.000 0.061 0.378 7

smooth 0.494 0.667 0.510 0.582 0.593 18

soft 0.333 0.769 0.277 0.108 0.150 9

solid 0.787 0.779 0.808 0.787 0.788 12

springy 0.000 0.000 0.000 0.000 0.000 3

squishy 0.686 0.815 0.860 0.772 0.693 18

sticky 0.233 0.143 0.386 0.225 0.170 12

stiff 0.807 0.868 0.855 0.885 0.916 13

textured 0.000 0.000 0.000 0.000 0.000 2

thick 0.500 0.000 0.000 0.606 0.000 4

thin 0.800 0.500 0.857 0.579 0.711 5

unpleasant 0.000 0.000 0.000 0.000 0.000 2
*PE indicates the number of positive examples in the training set.

0.98 across all adjectives on the reserved corpus data, due to

a low rate of false positives. However, the classifiers had a

somewhat higher number of false negatives, resulting in an

average F1 score of 0.81 on the reserved training corpus. To

investigate the generalization capabilities of this approach, we

also tested these classifiers on the previously unfelt objects

shown in Figure 6. The average F1 score over this new set

was 0.79, which supports the hypothesis that our methods can

produce a meaningful set of adjectives for completely new

objects when using all EPs.

VI. DISCUSSION AND CONCLUSION

The presented results prove that a robot equipped with rich

multi-channel tactile sensors can discover the haptic properties

of objects through physical interaction and then generalize this

understanding across previously unfelt objects. Furthermore,

we have shown that these object properties can be related to

subjective human labels in the form of haptic adjectives, a task

that has rarely been explored in the literature, though it stands

to benefit a wide range of future applications in robotics.

Both the static and dynamic learning methods showed

promise in the reported experiments, including the strict test

involving everyday objects the robot had never before encoun-

tered. The static-feature approach yielded an average F1 score

of 0.57 for the 8 objects in this test set, and the dynamic-

feature approach achieved an average F1 score of 0.79. While

these raw performance scores are lower than those achieved by

existing research in areas of texture and object classification,

generalizing adjectives to new objects is a harder problem than

instance recognition. These results establish a baseline against

which future efforts in this area can be compared.



As shown in Table II, the individual scores from the

intermediate classifiers in the static feature learning approach

differ by adjective and by exploratory procedure. Adjectives

with a large number of positive examples achieve good results

across all five EPs. However, when there are only a handful

of positive examples, the results differ more between the

EPs. For example, rough’s F1 score ranges from 0.051 for

Squeeze up to 0.667 for Fast Slide, showing that certain

object properties are most easily felt through certain actions,

and confirming the fundamental motivation for using different

exploratory procedures. Adjectives that have only one or two

positive examples in the training set tend to achieve low F1

scores regardless of the EP, implying that our current static-

feature-based approach cannot learn the meanings of these

adjectives with a single best EP from so few examples. This

limitation will become a key focus of our future research,

as we shift toward online learning and no longer have the

luxury of many positive examples. Also, the low overall F1

score on the test set by a single best EP in the static-feature-

based approach suggests that multiple EPs are necessary to

determine properties of objects. The more novel dynamic-

feature-based learning approach that combined all EPs has

already demonstrated strong results for adjectives with only

a small number of examples, so we will look for ways to

combine the two approaches as well as to use information

from multiple EPs. Future work will also involve Bayesian

techniques for selecting among several available EPs, as done

by Fishel and Loeb for texture recognition [10].

Looking again at the data in Table II, we notice two other

interesting trends. First, even though an increase of training

examples generally leads to an increase in performance, some

adjectives do not follow this rule. For example, the system

seems to have struggled to learn the meanings of nice and soft,

though they have 5 and 9 positive examples in the training

set, respectively. We suspect that ambiguities and multiple

physical interpretations of the meaning of these adjectives

may make them harder to learn from a handful of examples

compared to more straightforward adjectives, as found in

the tactile adjective study by Picard et al. [18]. Second, the

adjectives related to textural properties (fibrous, gritty, hairy,

rough, scratchy, slippery, smooth, and textured) seem to have

lower overall performance than adjectives pertaining to other

object properties. This difference may stem from how the

robot executed the EPs, from shortcomings in our feature

set, or from a lack of textural sensitivity in our BioTac

sensors, possibly due to a gradual wearing away of its synthetic

fingerprints. Our future work will investigate these trends

along with questions pertaining to the connection between

visual and haptic perception for adjective learning.
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